Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 19(6): e0304876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848336

RESUMEN

We have identified an acyl-carrier protein, Rv0100, that is up-regulated in a dormancy model. This protein plays a critical role in the fatty acid biosynthesis pathway, which is important for energy storage and cell wall synthesis in Mycobacterium tuberculosis (MTB). Knocking out the Rv0100 gene resulted in a significant reduction of growth compared to wild-type MTB in the Wayne model of non-replicating persistence. We have also shown that Rv0100 is essential for the growth and survival of this pathogen during infection in mice and a macrophage model. Furthermore, knocking out Rv0100 disrupted the synthesis of phthiocerol dimycocerosates, the virulence-enhancing lipids produced by MTB and Mycobacterium bovis. We hypothesize that this essential gene contributes to MTB virulence in the state of latent infection. Therefore, inhibitors targeting this gene could prove to be potent antibacterial agents against this pathogen.


Asunto(s)
Proteína Transportadora de Acilo , Proteínas Bacterianas , Mycobacterium tuberculosis , Animales , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Ratones , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteína Transportadora de Acilo/metabolismo , Proteína Transportadora de Acilo/genética , Macrófagos/microbiología , Macrófagos/metabolismo , Virulencia , Regulación Bacteriana de la Expresión Génica , Tuberculosis/microbiología , Lípidos/química
2.
Mol Genet Genomics ; 298(1): 49-65, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271918

RESUMEN

This study aimed to evaluate the postulated cellular function of a novel family of amino acid (acyl carrier protein) ligases (AALs) in natural product biosynthesis. Here, we analyzed the manually curated, putative, aal-associated natural product biosynthetic gene clusters (NP BGCs) using two computational platforms for NP prediction, antiSMASH-BiG-SCAPE-CORASON and DeepBGC. The detected BGCs included a diversity of type I polyketide/nonribosomal peptide (PKS/NRPS) hybrid BGCs, exemplified by the guadinomine BGC, which suggested a dedicated function of AALs in the biosynthesis of rare (2S)-aminomalonyl-ACP extension units. Besides modular PKS/NRPSs and NRPSs, AAL-associated BGCs were predicted to assemble arylpolyenes, ladderane lipids, phosphonates, aminoglycosides, ß-lactones, and thioamides of both nonribosomal and ribosomal origins. Additionally, we revealed a frequent association of AALs with putative, seldom observed transglutaminase-like and BtrH-like transferases of the cysteine protease superfamily, which may form larger families of ACP-dependent amide bond catalysts used in NP synthesis. Our results disclosed an exceptional chemical novelty and biosynthetic potential of the AAL-associated BGCs in NP biosynthesis. The presented in silico evidence supports the initial hypothesis and provides an important foundation for future experimental studies aimed at discovering novel pharmaceutically relevant active compounds.


Asunto(s)
Productos Biológicos , Ligasas , Ligasas/genética , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Aminoácidos/genética , Familia de Multigenes
3.
J Healthc Eng ; 2022: 2669114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36193167

RESUMEN

Acyl-CoA thioesterase (ACOT) plays a considerable role in lipid metabolism, which is closely related to the occurrence and development of cancer, nevertheless, its role has not been fully elucidated in acute myeloid leukemia (AML). To explore the role of ACOT2 in AML and to provide a potential therapeutic target for AML, the expression pattern of ACOT was investigated based on the TNMplot, Gene Expression Profiling Interactive Analysis (GEPIA), and Cancer Cell Line Encyclopedia (CCLE) database, and diagnostic value, prognostic value, and clinical phenotype of ACOT were explored based on data from The Cancer Genome Atlas (TCGA). Functional annotation and enrichment analysis of the common targets between ACOT2 coexpressed and AML-related genes were further performed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) analyses. The protein-protein interaction (PPI) network of ACOT2 coexpressed genes and functional ACOT2-related metabolites association network were constructed based on GeneMANIA and Human Metabolome Database. Among ACOTs, ACOT2 was highly expressed in AML compared to normal control subjects according to TNMplot, GEPIA, and CCLE database, which was significantly associated with poor overall survival (OS) in AML (P=0.003). Moreover, ACOT2 exhibited excellent diagnostic efficiency for AML (AUC: 1.000) and related to French-American-British (FAB) classification and cytogenetics. GO, KEGG, and GSEA analyses of 71 common targets between ACOT2 coexpressed and AML-related genes revealed that ACOT2 is closely related to ACOT1, ACOT4, enoyl-acyl carrier protein reductase, mitochondrial (MECR), puromycin-sensitive aminopeptidase (NPEPPS), SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1), and long-chain fatty acid-CoA ligase 1 (ACSL1) in PPI network, and plays a significant role in lipid metabolism, that is, involved in fatty acid elongation and biosynthesis of unsaturated fatty acids. Collectively, the increase of ACOT2 may be an important characteristic of worse OS and abnormal lipid metabolism, suggesting that ACOT2 may become a potential therapeutic target for AML.


Asunto(s)
Leucemia Mieloide Aguda , Metabolismo de los Lípidos , Actinas/genética , Actinas/metabolismo , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Cromatina , Coenzima A/genética , Coenzima A/metabolismo , Ácidos Grasos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Ligasas/genética , Ligasas/metabolismo , Metabolismo de los Lípidos/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Palmitoil-CoA Hidrolasa/genética , Palmitoil-CoA Hidrolasa/metabolismo , Tioléster Hidrolasas
4.
mBio ; 13(5): e0152422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36125273

RESUMEN

Invertebrates, particularly sponges, have been a dominant source of new marine natural products. For example, lasonolide A (LSA) is a potential anticancer molecule isolated from the marine sponge Forcepia sp., with nanomolar growth inhibitory activity and a unique cytotoxicity profile against the National Cancer Institute 60-cell-line screen. Here, we identified the putative biosynthetic pathway for LSA. Genomic binning of the Forcepia sponge metagenome revealed a Gram-negative bacterium belonging to the phylum Verrucomicrobia as the candidate producer of LSA. Phylogenetic analysis showed that this bacterium, here named "Candidatus Thermopylae lasonolidus," only has 88.78% 16S rRNA identity with the closest relative, Pedosphaera parvula Ellin514, indicating that it represents a new genus. The lasonolide A (las) biosynthetic gene cluster (BGC) was identified as a trans-acyltransferase (AT) polyketide synthase (PKS) pathway. Compared with its host genome, the las BGC exhibits a significantly different GC content and pentanucleotide frequency, suggesting a potential horizontal acquisition of the gene cluster. Furthermore, three copies of the putative las pathway were identified in the candidate producer genome. Differences between the three las repeats were observed, including the presence of three insertions, two single-nucleotide polymorphisms, and the absence of a stand-alone acyl carrier protein in one of the repeats. Even though the verrucomicrobial producer shows signs of genome reduction, its genome size is still fairly large (about 5 Mbp), and, compared to its closest free-living relative, it contains most of the primary metabolic pathways, suggesting that it is in the early stages of reduction. IMPORTANCE While sponges are valuable sources of bioactive natural products, a majority of these compounds are produced in small quantities by uncultured symbionts, hampering the study and clinical development of these unique compounds. Lasonolide A (LSA), isolated from marine sponge Forcepia sp., is a cytotoxic molecule active at nanomolar concentrations, which causes premature chromosome condensation, blebbing, cell contraction, and loss of cell adhesion, indicating a novel mechanism of action and making it a potential anticancer drug lead. However, its limited supply hampers progression to clinical trials. We investigated the microbiome of Forcepia sp. using culture-independent DNA sequencing, identified genes likely responsible for LSA synthesis in an uncultured bacterium, and assembled the symbiont's genome. These insights provide future opportunities for heterologous expression and cultivation efforts that may minimize LSA's supply problem.


Asunto(s)
Antineoplásicos , Productos Biológicos , Poríferos , Animales , ARN Ribosómico 16S/genética , Sintasas Poliquetidas/genética , Filogenia , Simbiosis/genética , Proteína Transportadora de Acilo/genética , Metagenómica , Poríferos/microbiología , Bacterias/genética , Productos Biológicos/farmacología , Aciltransferasas/genética
5.
BMC Genomics ; 23(1): 538, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879672

RESUMEN

BACKGROUND: Acyl carrier proteins (ACP) constitute a very conserved carrier protein family. Previous studies have found that ACP not only takes part in the fatty acid synthesis process of almost all organisms, but also participates in the regulation of plant growth, development, and metabolism, and makes plants adaptable to stresses. However, this gene family has not been systematically studied in sorghum. RESULTS: Nine ACP family members were identified in the sorghum genome, which were located on chromosomes 1, 2, 5, 7, 8 and 9, respectively. Evolutionary analysis among different species divided the ACP family into four subfamilies, showing that the SbACPs were more closely related to maize. The prediction results of subcellular localization showed that SbACPs were mainly distributed in chloroplasts and mitochondria, while fluorescence localization showed that SbACPs were mainly localized in chloroplasts in tobacco leaf. The analysis of gene structure revealed a relatively simple genetic structure, that there were 1-3 introns in the sorghum ACP family, and the gene structure within the same subfamily had high similarity. The amplification method of SbACPs was mainly large fragment replication, and SbACPs were more closely related to ACPs in maize and rice. In addition, three-dimensional structure analysis showed that all ACP genes in sorghum contained four α helices, and the second helix structure was more conserved, implying a key role in function. Cis-acting element analysis indicated that the SbACPs might be involved in light response, plant growth and development regulation, biotic and abiotic stress response, plant hormone regulation, and other physiological processes. What's more, qRT-PCR analysis uncovered that some of SbACPs might be involved in the adaptive regulation of drought and salt stresses, indicating the close relationship between fatty acids and the resistance to abiotic stresses in sorghum. CONCLUSIONS: In summary, these results showed a comprehensive overview of the SbACPs and provided a theoretical basis for further studies on the biological functions of SbACPs in sorghum growth, development and abiotic stress responses.


Asunto(s)
Sorghum , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/metabolismo , Estrés Fisiológico/genética , Zea mays/genética , Zea mays/metabolismo
6.
Res Microbiol ; 173(4-5): 103940, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35337986

RESUMEN

The phosphopantetheinyl transferases (PPTases) catalyze the post-translational modification of carrier proteins (CPs) from fatty acid synthases (FASs) in primary metabolism and from polyketide synthases (PKSs) and non-ribosomal polypeptide synthases (NRPSs) in secondary metabolism. Based on the conserved sequence motifs and substrate specificities, two types (AcpS-type and Sfp-type) of PPTases have been identified in prokaryotes. We present here that Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, harbors merely one PPTase, namely PptP. Complementation and gene deletion experiments clearly show that PptP can replace the function of Escherichia coli AcpS and is essential for the growth of P. gingivalis. Purified PptP transfers the 4-phosphopantetheine moiety of CoA to inactive apo-acyl carrier protein (ACP) to form holo-ACP, which functions as an active carrier of the acyl intermediates of fatty acid synthesis. Moreover, PptP exhibits broad substrate specificity, modifying all ACP substrates tested and catalyzing the transfer of coenzyme A (CoA) derivatives. The lack of sequence alignment with known PPTases together with phylogenetic analyses revealed PptP as a new class of PPTases. Identification of the new PPTase gene pptP exclusive in Porphyromonas species reveals a potential target for treating P. gingivalis infections.


Asunto(s)
Porphyromonas , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Proteína Transportadora de Acilo/genética , Proteínas Bacterianas/metabolismo , Coenzima A/química , Coenzima A/genética , Coenzima A/metabolismo , Escherichia coli/metabolismo , Filogenia , Porphyromonas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
7.
Nat Commun ; 12(1): 6721, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795302

RESUMEN

Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Represoras/metabolismo , Proteína Transportadora de Acilo/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/genética , Cromosomas Bacterianos/genética , Activación Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación , Unión Proteica , Proteínas Represoras/genética
8.
BMC Microbiol ; 21(1): 173, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103011

RESUMEN

BACKGROUND: Aeromonas hydrophila is a gram-negative bacterium and the major causative agent of the fish disease motile aeromonad septicemia (MAS). It uses N-acyl-homoserine lactone (AHL) quorum sensing signals to coordinate biofilm formation, motility, and virulence gene expression. The AHL signaling pathway is therefore considered to be a therapeutic target against pathogenic A. hydrophila infection. In A. hydrophila, AHL autoinducers biosynthesis are specifically catalyzed by an ACP-dependent AHL synthase AhyI using the precursors SAM and acyl-ACP. Our previously reported AhyI was heterologously expressed in E. coli, which showed the production characteristics of medium-long chain AHLs. This contradicted the prevailing understanding that AhyI was only a short-chain C4/C6-HSL synthase. RESULTS: In this study, six linear acyl-ACP proteins with C-terminal his-tags were synthesized in Vibrio harveyi AasS using fatty acids and E. coli produced active holo-ACP proteins, and in vitro biosynthetic assays of six AHL molecules and kinetic studies of recombinant AhyI with a panel of four linear acyl-ACPs were performed. UPLC-MS/MS analyses indicated that AhyI can synthesize short-, medium- and long-chain AHLs from SAM and corresponding linear acyl-ACP substrates. Kinetic parameters measured using a DCPIP colorimetric assay, showed that there was a notable decrease in catalytic efficiency with acyl-chain lengths above C6, and hyperbolic or sigmoidal responses in rate curves were observed for varying acyl-donor substrates. Primary sequence alignment of the six representative AHL synthases offers insights into the structural basis for their specific acyl substrate preference. To further understand the acyl chain length preference of AhyI for linear acyl-ACP, we performed a structural comparison of three ACP-dependent LuxI homologs (TofI, BmaI1 and AhyI) and identified three key hydrophobic residues (I67, F125 and L157) which confer AhyI to selectively recognize native C4/C6-ACP substrates. These predictions were further supported by a computational Ala mutation assay. CONCLUSIONS: In this study, we have redefined AhyI as a multiple short- to long-chain AHL synthase which uses C4/C6-ACP as native acyl substrates and longer acyl-ACPs (C8 ~ C14) as non-native ones. We also theorized that the key residues in AhyI would likely drive acyl-ACP selective recognition.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Aeromonas hydrophila/enzimología , Proteínas Bacterianas/química , Ligasas/química , Ligasas/metabolismo , Proteína Transportadora de Acilo/genética , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Aeromonas hydrophila/química , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cinética , Ligasas/genética , S-Adenosilmetionina/metabolismo , Espectrometría de Masas en Tándem
9.
J Am Chem Soc ; 143(7): 2962-2969, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33576619

RESUMEN

Natural products containing an o-dialkylbenzene moiety exhibit a wide variety of bioactivities, including antibacterial, antifungal, antitumor, and antiangiogenic activities. However, the biosynthetic scheme of the o-dialkylbenzene moiety remains unclear. In this study, we identified the biosynthetic gene cluster (BGC) of compounds 1 and 2 in Streptomyces sp. SANK 60404, which contains a rare o-dialkylbenzene moiety, and successfully reconstituted the biosynthesis of 1 using 22 recombinant enzymes in vitro. Our study established a biosynthetic route for the o-tolyl group within the o-dialkylbenzene moiety, where the triene intermediate 3 loaded onto a unique acyl carrier protein (ACP) is elongated by a specific ketosynthase-chain length factor pair of a type II polyketide synthase system with the aid of a putative isomerase to be termed "electrocyclase" and a thioesterase-like enzyme in the BGC. The C2-elongated all-trans diketo-triene intermediate is subsequently isomerized to the 6Z configuration by the electrocyclase to allow intramolecular 6π-electrocyclization, followed by coenzyme FAD/FMN-dependent dehydrogenation. Bioinformatics analysis showed that the key genes are all conserved in BGCs of natural products containing an o-dialkylbenzene moiety, suggesting that the proposed biosynthetic scheme is a common strategy to form o-dialkylbenzenes in nature.


Asunto(s)
Benceno/química , Productos Biológicos/metabolismo , Sintasas Poliquetidas/metabolismo , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Productos Biológicos/química , Ciclización , Familia de Multigenes , Sintasas Poliquetidas/genética , Streptomyces/metabolismo
10.
Mol Cell ; 78(4): 683-699.e11, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32386575

RESUMEN

Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids. We present the 2.9-Å resolution structure of M. abscessus AftD, determined by single-particle cryo-electron microscopy. AftD has a conserved GT-C glycosyltransferase fold and three carbohydrate-binding modules. Glycan array analysis shows that AftD binds complex arabinose glycans. Additionally, AftD is non-covalently complexed with an acyl carrier protein (ACP). 3.4- and 3.5-Å structures of a mutant with impaired ACP binding reveal a conformational change, suggesting that ACP may regulate AftD function. Mutagenesis experiments using a conditional knockout constructed in M. smegmatis confirm the essentiality of the putative active site and the ACP binding for AftD function.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Microscopía por Crioelectrón/métodos , Glicosiltransferasas/metabolismo , Mycobacterium smegmatis/enzimología , Proteína Transportadora de Acilo/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Pared Celular/metabolismo , Galactanos/metabolismo , Glicosiltransferasas/genética , Lipopolisacáridos/metabolismo , Mutación , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , Filogenia , Conformación Proteica , Especificidad por Sustrato
11.
PLoS One ; 14(7): e0219435, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31291335

RESUMEN

Carrier proteins are four-helix bundles that covalently hold metabolites and secondary metabolites, such as fatty acids, polyketides and non-ribosomal peptides. These proteins mediate the production of many pharmaceutically important compounds including antibiotics and anticancer agents. Acyl carrier proteins (ACPs) can be found as part of a multi-domain polypeptide (Type I ACPs), or as part of a multiprotein complex (Type II). Here, the main focus is on ACP2 and ACP3, domains from the type I trans-AT polyketide synthase MmpA, which is a core component of the biosynthetic pathway of the antibiotic mupirocin. During molecular dynamics simulations of their apo, holo and acyl forms ACP2 and ACP3 both form a substrate-binding surface-groove. The substrates bound to this surface-groove have polar groups on their acyl chain exposed and forming hydrogen bonds with the solvent. Bulky hydrophobic residues in the GXDS motif common to all ACPs, and similar residues on helix III, appear to prohibit the formation of a deep tunnel in type I ACPs and type II ACPs from polyketide synthases. In contrast, the equivalent positions in ACPs from type II fatty acid synthases, which do form a deep solvent-excluded substrate-binding tunnel, have the small residue alanine. During simulation, ACP3 with mutations I61A L36A W44L forms a deep tunnel that can fully bury a saturated substrate in the core of the ACP, in contrast to the surface groove of the wild type ACP3. Similarly, in the ACP from E. coli fatty acid synthase, a type II ACP, mutations can change ligand binding from being inside a deep tunnel to being in a surface groove, thus demonstrating how changing a few residues can modify the possibilities for ligand binding.


Asunto(s)
Proteína Transportadora de Acilo/química , Complejos Multiproteicos/química , Péptidos/química , Sintasas Poliquetidas/química , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Secuencias de Aminoácidos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Vías Biosintéticas/genética , Secuestro de Carbono/genética , Escherichia coli/genética , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/genética , Acido Graso Sintasa Tipo II/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Simulación de Dinámica Molecular , Complejos Multiproteicos/genética , Mupirocina/biosíntesis , Mupirocina/metabolismo , Péptidos/genética , Mutación Puntual/genética , Sintasas Poliquetidas/genética , Unión Proteica
12.
Mol Microbiol ; 110(1): 16-32, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29995983

RESUMEN

Xanthomonadins are yellow pigments that are produced by the phytopathogen Xanthomonas campestris pv. campestris (Xcc). A pig cluster is responsible for xanthomonadin biosynthesis. Previously, Xcc4014 of the cluster was characterized as a bifunctional chorismatase that produces 3-hydroxybenzoic acid (3-HBA) and 4-HBA. In this study, genetic analysis identified 11 genes within the pig cluster to be essential for xanthomonadin biosynthesis. Biochemical and bioinformatics analysis suggest that xanthomonadins are synthesized via an unusual type II polyketide synthase pathway. Heterologous expression of the pig cluster in non-xanthomonadin-producing Pseudomonas aeruginosa strain resulted in the synthesis of chlorinated xanthomonadin-like pigments. Further analysis showed that xanC encodes an acyl carrier protein (ACP) while xanA2 encodes a ATP-dependent 3-HBA:ACP ligase. Both of them act together to catalyse the formation of 3-HBA-S-ACP from 3-HBA to initiate xanthomonadin biosynthesis. Finally, we showed that xanH encodes a FabG-like enzyme and xanK encodes a novel glycosyltransferase. Both xanH and xanK are not only required for xanthomonadin biosynthesis, but also required for the balanced biosynthesis of extracellular polysaccharides and DSF-family quorum sensing signals. These findings provide us with a better understanding of xanthomonadin biosynthetic mechanisms and directly demonstrate the presence of extensive cross-talk among xanthomonadin biosynthetic pathways and other metabolic pathways.


Asunto(s)
Anisoles/metabolismo , Vías Biosintéticas/genética , ADN Bacteriano/genética , Xanthomonas campestris/enzimología , Xanthomonas campestris/genética , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Hidroxibenzoatos/metabolismo , Familia de Multigenes/genética , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Percepción de Quorum
13.
Structure ; 26(8): 1127-1136.e4, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29983374

RESUMEN

Cysteine desulfurase plays a central role in mitochondrial iron-sulfur cluster biogenesis by generating sulfur through the conversion of L-cysteine to L-alanine and by serving as the platform for assembling other components of the biosynthetic machinery, including ISCU, frataxin, and ferredoxin. The human mitochondrial cysteine desulfurase complex consists of two copies each of NFS1, ISD11, and acyl carrier protein. We describe results from chemical crosslinking coupled with tandem mass spectrometry and small-angle X-ray scattering studies that are consistent with a closed NFS1 dimer rather than an open one for both the cysteine desulfurase-ISCU and cysteine desulfurase-ISCU-frataxin complexes. We present a structural model for the cysteine desulfurase-ISCU-frataxin complex derived from chemical crosslinking restraints in conjunction with the recent crystal structure of the cysteine desulfurase-ISCU-zinc complex and distance constraints from nuclear magnetic resonance.


Asunto(s)
Proteína Transportadora de Acilo/química , Liasas de Carbono-Azufre/química , Proteínas de Unión a Hierro/química , Proteínas Reguladoras del Hierro/química , Proteínas Hierro-Azufre/química , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Sitios de Unión , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Clonación Molecular , Reactivos de Enlaces Cruzados/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Cinética , Maleimidas/química , Mitocondrias/química , Mitocondrias/enzimología , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Difracción de Rayos X , Frataxina
14.
Methods Enzymol ; 604: 207-236, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29779653

RESUMEN

ß-Branching is an expansion upon canonical polyketide synthase extension that allows for the installation of diverse chemical moieties in several natural products. Several of these moieties are unique among natural products, including the two vinyl methylesters found in the core structure of bryostatins. This family of molecules is derived from an obligate bacterial symbiont of a sessile marine bryozoan, Bugula neritina. Within this family, bryostatin 1 has been investigated as an anticancer, neuroprotective, and immunomodulatory compound. We have turned to the biosynthetic gene cluster within the bacterial symbiont to investigate the biosynthesis of bryostatins. Recent sequencing efforts resulted in the annotation of two missing genes: bryT and bryU. Using novel chemoenzymatic techniques, we have validated these as the missing enoyl-CoA hydratase and donor acyl carrier protein, essential components of the ß-branching cassette of the bryostatin pathway. Together, this cassette installs the vinyl methylester moieties essential to the activity of bryostatins.


Asunto(s)
Bioquímica/métodos , Brioestatinas/metabolismo , Enzimas/metabolismo , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Animales , Brioestatinas/biosíntesis , Briozoos/genética , Briozoos/metabolismo , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Enzimas/genética , Espectroscopía de Resonancia Magnética , Redes y Vías Metabólicas , Metilación , Familia de Multigenes , Policétidos/metabolismo
15.
Nat Commun ; 8(1): 1287, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29097656

RESUMEN

Iron-sulfur (Fe/S) clusters are essential protein cofactors crucial for many cellular functions including DNA maintenance, protein translation, and energy conversion. De novo Fe/S cluster synthesis occurs on the mitochondrial scaffold protein ISCU and requires cysteine desulfurase NFS1, ferredoxin, frataxin, and the small factors ISD11 and ACP (acyl carrier protein). Both the mechanism of Fe/S cluster synthesis and function of ISD11-ACP are poorly understood. Here, we present crystal structures of three different NFS1-ISD11-ACP complexes with and without ISCU, and we use SAXS analyses to define the 3D architecture of the complete mitochondrial Fe/S cluster biosynthetic complex. Our structural and biochemical studies provide mechanistic insights into Fe/S cluster synthesis at the catalytic center defined by the active-site Cys of NFS1 and conserved Cys, Asp, and His residues of ISCU. We assign specific regulatory rather than catalytic roles to ISD11-ACP that link Fe/S cluster synthesis with mitochondrial lipid synthesis and cellular energy status.


Asunto(s)
Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Chaetomium/química , Chaetomium/genética , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Reguladoras del Hierro/química , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Electricidad Estática , Difracción de Rayos X , Frataxina
16.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1913-1920, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28802701

RESUMEN

The mitochondrial acyl carrier protein (ACPM/NDUFAB1) is a central element of the mitochondrial fatty acid synthesis type II machinery. Originally ACPM was detected as a subunit of respiratory complex I but the reason for the association with the large enzyme complex remained elusive. Complex I from the aerobic yeast Yarrowia lipolytica comprises two different ACPMs, ACPM1 and ACPM2. They are anchored to the protein complex by LYR (leucine-tyrosine-arginine) motif containing protein (LYRM) subunits LYRM3 (NDUFB9) and LYRM6 (NDUFA6). The ACPM1-LYRM6 and ACPM2-LYRM3 modules are essential for complex I activity and assembly/stability, respectively. We show that in addition to the complex I bound fraction, ACPM1 is present as a free matrix protein and in complex with the soluble LYRM4(ISD11)/NFS1 complex implicated in Fe-S cluster biogenesis. We show that the presence of a long acyl chain bound to the phosphopantetheine cofactor is important for docking ACPMs to protein complexes and we propose that association of ACPMs and LYRMs is universally based on a new protein-protein interaction motif.


Asunto(s)
Proteína Transportadora de Acilo/genética , Proteínas Fúngicas/genética , Proteínas Hierro-Azufre/genética , Mitocondrias/metabolismo , Complejos Multiproteicos/química , Proteína Transportadora de Acilo/metabolismo , Secuencia de Aminoácidos/genética , Complejo I de Transporte de Electrón/genética , Ácidos Grasos/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/química , Mitocondrias/genética , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Yarrowia/metabolismo
17.
J Biol Chem ; 292(31): 12754-12763, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28615445

RESUMEN

The biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is a multistage, multicompartment process that is essential for a broad range of cellular functions, including genome maintenance, protein translation, energy conversion, and the antiviral response. Genetic and cell biological studies over almost 2 decades have revealed some 30 proteins involved in the synthesis of cellular [2Fe-2S] and [4Fe-4S] clusters and their incorporation into numerous apoproteins. Mechanistic aspects of Fe/S protein biogenesis continue to be elucidated by biochemical and ultrastructural investigations. Here, we review recent developments in the pursuit of constructing a comprehensive model of Fe/S protein assembly in the mitochondrion.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Adrenodoxina/química , Adrenodoxina/genética , Adrenodoxina/metabolismo , Animales , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Humanos , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Mitocondrias/enzimología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Sulfurtransferasas/química , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo , Frataxina
18.
PLoS Genet ; 13(1): e1006556, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28085879

RESUMEN

Bacterial pathogens often deliver effectors into host cells using type 3 secretion systems (T3SS), the extremity of which forms a translocon that perforates the host plasma membrane. The T3SS encoded by Salmonella pathogenicity island 1 (SPI-1) is genetically associated with an acyl carrier protein, IacP, whose role has remained enigmatic. In this study, using tandem affinity purification, we identify a direct protein-protein interaction between IacP and the translocon protein SipB. We show, by mass spectrometry and radiolabelling, that SipB is acylated, which provides evidence for a modification of the translocon that has not been described before. A unique and conserved cysteine residue of SipB is identified as crucial for this modification. Although acylation of SipB was not essential to virulence, we show that this posttranslational modification promoted SipB insertion into host-cell membranes and pore-forming activity linked to the SPI-1 T3SS. Cooccurrence of acyl carrier and translocon proteins in several γ- and ß-proteobacteria suggests that acylation of the translocon is conserved in these other pathogenic bacteria. These results also indicate that acyl carrier proteins, known for their involvement in metabolic pathways, have also evolved as cofactors of new bacterial protein lipidation pathways.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Acetilación , Proteína Transportadora de Acilo/genética , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
19.
Biochemistry ; 56(3): 487-499, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28001042

RESUMEN

Ferredoxins play an important role as an electron donor in iron-sulfur (Fe-S) cluster biosynthesis. Two ferredoxins, human mitochondrial ferredoxin 1 (FDX1) and human mitochondrial ferredoxin 2 (FDX2), are present in the matrix of human mitochondria. Conflicting results have been reported regarding their respective function in mitochondrial iron-sulfur cluster biogenesis. We report here biophysical studies of the interaction of these two ferredoxins with other proteins involved in mitochondrial iron-sulfur cluster assembly. Results from nuclear magnetic resonance spectroscopy show that both FDX1 and FDX2 (in both their reduced and oxidized states) interact with the protein complex responsible for cluster assembly, which contains cysteine desulfurase (NFS1), ISD11 (also known as LYRM4), and acyl carrier protein (Acp). In all cases, ferredoxin residues close to the Fe-S cluster are involved in the interaction with this complex. Isothermal titration calorimetry results showed that FDX2 binds more tightly to the cysteine desulfurase complex than FDX1 does. The reduced form of each ferredoxin became oxidized in the presence of the cysteine desulfurase complex when l-cysteine was added, leading to its conversion to l-alanine and the generation of sulfide. In an in vitro reaction, the reduced form of each ferredoxin was found to support Fe-S cluster assembly on ISCU; the rate of cluster assembly was faster with FDX2 than with FDX1. Taken together, these results show that both FDX1 and FDX2 can function in Fe-S cluster assembly in vitro.


Asunto(s)
Liasas de Carbono-Azufre/química , Ferredoxinas/química , Hierro/química , Azufre/química , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Secuencia de Aminoácidos , Animales , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Cisteína , Electrones , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Regulación de la Expresión Génica , Humanos , Hierro/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Moleculares , Oxidación-Reducción , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Azufre/metabolismo , Frataxina
20.
Cell Res ; 26(12): 1330-1344, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27874013

RESUMEN

Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular metabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. However, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic modules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the ß-sheet layer. These findings improve the general understanding of the dehydration process in the FAS system and will potentially facilitate drug and therapeutic design for diseases associated with abnormalities in FAS.


Asunto(s)
Proteína Transportadora de Acilo/química , Proteínas Bacterianas/química , Ácidos Grasos/biosíntesis , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Cristalografía por Rayos X , Dimerización , Dispersión Dinámica de Luz , Helicobacter pylori/enzimología , Helicobacter pylori/metabolismo , Hidroliasas/química , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Electricidad Estática , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA