Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Comput Biol Med ; 173: 108307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547657

RESUMEN

BACKGROUND: The functional relevance of cyclic adenosine monophosphate (cAMP)-response element-binding protein 5 (CREB5) in cancers remains elusive, despite its significance as a member of the CREB family. The current research aims to explore the role of CREB5 in multiple cancers. METHODS: Pan-cancer analysis was performed to explore the expression patterns, prognostic value, mutational landscape as well as single-cell omic, immunologic, and drug sensitivity profiles of CREB5. Furthermore, we incorporated five distinct machine learning algorithms and determined that the least absolute shrinkage and selection operator-COX (LASSO-COX) algorithm, which exhibited the highest C index, was the optimal selection. Subsequently, we constructed a prognostic model centered around CREB5-associated genes. To elucidate the biological function of CREB5 in glioma cells, several assays including cell counting kit-8 (CCK-8), wound healing, transwell, flow cytometric were performed. RESULTS: CREB5 was overexpressed in pan-cancer and was linked to unfavorable prognosis, particularly in glioma. Furthermore, genetic alterations were determined in various types of cancer, and modifications in the CREB5 gene were linked to the prognosis. The single-cell omics and enrichment analyses showed that CREB5 was predominantly expressed in malignant glioma cells and was critically involved in the regulation of various oncogenic processes. Elevated levels of CREB5 were strongly linked with the infiltration of cancer-associated fibroblasts and the Th1 subset of CD4+ T cells. The validated CREB5-associated prognostic model reliably predicted the prognosis and drug response of glioma patients. The in vitro experiments showed that CREB5 promoted glioma cell proliferation, invasion, migration, and gap phase 2/mitotic (G2/M) phase arrest and recruited M2 macrophages into glioma cells. CONCLUSION: CREB5 has the potential to act as an oncogene and a biological marker in multiple cancers, particularly glioma.


Asunto(s)
Proteína de Unión al Elemento de Respuesta al AMP Cíclico , Glioma , Multiómica , Humanos , Biomarcadores , Glioma/diagnóstico , Glioma/genética , Inmunoterapia , Pronóstico
2.
Reprod Sci ; 31(7): 1983-2000, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38424407

RESUMEN

BACKGROUND: Clinically, recurrent spontaneous abortion (RSA) is a pregnancy illness that is difficult to treat. Impaired decidualization is a documented cause of RSA, but the etiology and mechanism are still unknown. cAMP-responsive element binding protein 5 (CREB5) is a member of the ATF/CREB family. CREB5 has been reported to be related to pathological pregnancy, but there are few related studies on this topic in patients with RSA, and the underlying mechanism is unclear. METHODS: We collected decidual tissues from RSA patients and healthy pregnant women to measure the expression level of CREB5, PRL, IGFBP1, ATG5, LC3B, and SQSTM/p62. Then, the changes in CREB5 expression and autophagy levels were measured in human endometrial stromal cells (hESCs) during decidualization. The expression levels of PRL and IGFBP1 were tested in sh-CREB5/ov-CREB5 hESCs after decidualization induction, and the autophagy level in sh-CREB5/ov-CREB5 hESCs was measured without decidualization induction. The decidualization ability of sh-CREB5 and ov-CREB5 hESCs treated with an autophagy inducer or inhibitor was measured. To investigate the effect of CREB5 in hESCs on the invasion and migration of HTR8/SVneo cells, we performed a coculture experiment. Finally, we examined the expression of CREB5 and autophagy key proteins in mouse decidual tissues by constructing an abortion mouse model. RESULTS: In our study, we found that the expression of CREB5 was unusually elevated in the uterine decidua of RSA patients, but the expression of PRL, IGFBP1, and autophagy were decreased. During the decidualization of hESCs, the expression of CREB5 gradually decreases in a time-dependent manner with increasing autophagy. Moreover, by knocking down or overexpressing CREB5 in hESCs, it was found that CREB5 can impair decidualization and reduce autophagy in hESCs. Furthermore, the damage caused by CREB5 in terms of decidualization can be reversed by the addition of an autophagy inducer (rapamycin). In addition, CREB5 can increase the secretion of proteins (IL-1ß and TGF-ß1) in hESCs to inhibit trophoblast invasion and migration. CONCLUSIONS: Our data support the supposition that CREB5 disturbs the decidualization of endometrial stromal cells and interactions at the maternal-fetal interface by inhibiting autophagy and that its abnormal upregulation and dysfunction may lead to RSA. It may function as a diagnostic and therapeutic target for RSA. Similarly, we found that in the spontaneous abortion mouse model, the expression of CREB5 in the decidual tissue of the abortion group was significantly increased, and autophagy was decreased.


Asunto(s)
Aborto Habitual , Autofagia , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Decidua , Femenino , Autofagia/fisiología , Humanos , Embarazo , Decidua/metabolismo , Decidua/patología , Aborto Habitual/metabolismo , Aborto Habitual/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Animales , Adulto , Ratones , Células del Estroma/metabolismo , Relaciones Materno-Fetales/fisiología , Intercambio Materno-Fetal/fisiología , Endometrio/metabolismo , Endometrio/patología , Proteína de Unión al Elemento de Respuesta al AMP Cíclico
3.
Sci Rep ; 14(1): 3800, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360836

RESUMEN

Alopecia areata (AA) is a common non-scarring hair loss condition driven by the collapse of immune privilege and oxidative stress. The role of ferroptosis, a type of cell death linked to oxidative stress, in AA is yet to be explored, even though it's implicated in various diseases. Using transcriptome data from AA patients and controls from datasets GSE68801 and GSE80342, we aimed to identify AA diagnostic marker genes linked to ferroptosis. We employed Single-sample gene set enrichment analysis (ssGSEA) for immune cell infiltration evaluation. Correlations between ferroptosis-related differentially expressed genes (FRDEGs) and immune cells/functions were identified using Spearman analysis. Feature selection was done through Support vector machine-recursive feature elimination (SVM-RFE) and LASSO regression models. Validation was performed using the GSE80342 dataset, followed by hierarchical internal validation. We also constructed a nomogram to assess the predictive ability of FRDEGs in AA. Furthermore, the expression and distribution of these molecules were confirmed through immunofluorescence. Four genes, namely SLC40A1, LCN2, CREB5, and SLC7A11, were identified as markers for AA. A prediction model based on these genes showed high accuracy (AUC = 0.9052). Immunofluorescence revealed reduced expression of these molecules in AA patients compared to normal controls (NC), with SLC40A1 and CREB5 showing significant differences. Notably, they were primarily localized to the outer root sheath and in proximity to the sebaceous glands. Our study identified several ferroptosis-related genes associated with AA. These findings, emerging from the integration of immune cell infiltration analysis and machine learning, contribute to the evolving understanding of diagnostic and therapeutic strategies in AA. Importantly, this research lays a solid foundation for subsequent studies exploring the intricate relationship between AA and ferroptosis.


Asunto(s)
Alopecia Areata , Ferroptosis , Humanos , Alopecia Areata/genética , Sistema de Transporte de Aminoácidos y+/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico , Ferroptosis/genética , Lipocalina 2 , Aprendizaje Automático , Marcadores Genéticos
4.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119642, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37996058

RESUMEN

Liver cancer is ranked as the sixth most prevalent from of malignancy globally and stands as the third primary contributor to cancer-related mortality. Metastasis is the main reason for liver cancer treatment failure and patient deaths. Speckle-type POZ protein (SPOP) serves as a crucial substrate junction protein within the cullin-RING E3 ligase complex, acting as a significant tumor suppressor in liver cancer. Nevertheless, the precise molecular mechanism underlying the role of SPOP in liver cancer metastasis remain elusive. In the current study, we identified cAMP response element binding 5 (CREB5) as a novel SPOP substrate in liver cancer. SPOP facilitates non-degradative K63-polyubiquitination of CREB5 on K432 site, consequently hindering its capacity to activate receptor tyrosine kinase MET. Moreover, liver cancer-associated SPOP mutant S119N disrupts the SPOP-CREB5 interactions and impairs the ubiquitination of CREB5.This disruption ultimately leads to the activation of the MET signaling pathway and enhances metastatic properties of hepatoma cells both in vitro and in vivo. In conclusion, our findings highlight the functional significance of the SPOP-CREB5-MET axis in liver cancer metastasis.


Asunto(s)
Neoplasias Hepáticas , Humanos , Ubiquitinación , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Núcleo Celular , Línea Celular , Transducción de Señal , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico
5.
Commun Biol ; 6(1): 1026, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816820

RESUMEN

Various miRNAs have been shown to participate in the tumor progression and development of colorectal cancer (CRC). However, the role of miR-3913-5p in CRC are yet to be clearly defined. In the present study, we determine that miR-3913-5p is downregulated in CRC cell lines and CRC tissues. Exogenous miR-3913-5p expression weakens the CRC cells growth, migration and invasion. Mechanistically, miR-3913-5p directly targets the 3'UTR of CREB5. Overexpression of CREB5 reverses the suppression of CRC cells proliferation, migration and invasion induced by miR-3913-5p. Furthermore, ATF2 negatively regulates the transcription of miR-3913-5p by binding to its promoter. CREB5 can cooperate with ATF2. CREB5 is required for ATF2 in regulating miR-3913-5p. Finally, inverse correlations can be found between the expressions of miR-3913-5p and CREB5 or ATF2 in CRC tissues. Thus, a plausible mechanism of ATF2/miR-3913-5p/CREB5 axis regulating CRC progression is elucidated. Our findings suggest that miR-3913-5p functions as a tumor suppressor in CRC. ATF2/miR-3913-5p/CREB5 axis might be a potential therapeutic target against CRC progression.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Neoplasias Colorrectales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular , Proliferación Celular/genética , Factor de Transcripción Activador 2/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico
6.
Neoplasia ; 36: 100875, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36603462

RESUMEN

Neoadjuvant hormonal therapy (NHT) prior to radical prostatectomy (RP) is an approach that can potentially maximize survival outcomes in prostate cancer (PCa) patients with high-risk disease. Unfortunately, subsets of patients do not respond well to such hormonal therapy. We previously identified several pathological parameters in predicting differences in response to NHT of PCa. However, little is known about the potential role and mechanism of miRNAs mediated NHT resistance (NHT-R) in PCa. Here we demonstrate that miR-l42-3p, miR-150-5p and miR-342-3p are the top downregulated miRNAs in PCa tissues with NHT-R. Functional analysis reveals that the three miRNAs inhibit cell proliferation in vitro. Transfection of miRNAs mimics strengthens the inhibitory effects of bicalutamide and enzalutamide to PCa cells. Luciferase reporter assay reveals that CREB5 is the common target of these three miRNAs. Clinically, high expression level of CREB5 correlates with high Gleason score, advanced tumor stage and NHT-R in PCa tissues. CREB5 expression promotes antiandrogen therapy resistance in LNCaP cells and IL6 signaling pathway may be involved in this process. In all, our findings highlight an important role of miR-142-3p, miR-150-5p, and miR-342-3p in contributing NHT-R by targeting CREB5 in PCa.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , MicroARNs/genética , Terapia Neoadyuvante , Genes Supresores de Tumor , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Próstata/patología , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética
7.
Cancer Med ; 12(7): 8388-8402, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36565037

RESUMEN

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is one of the main death-leading malignant tumors which deserve in-depth explorations to uncover the underlying molecular mechanisms. Plenty of proofs have revealed that long noncoding RNAs (lncRNAs) participate in malignancy and progression of HCC. Nevertheless, the definite role of lncRNA-SNHG4 in HCC remains vague. METHODS: To figure out the role of SNHG4 in HCC, the bioinformatics analysis and functional assays and in vivo assay were performed. RESULTS: Our findings demonstrated that the data from The Cancer Genome Atlas (TCGA) displayed that the higher expression of lncRNA SNHG4 was detected in HCC tissues, which predicted the poor prognosis. The upregulation of SNHG4 was positively associated with worse clinicopathological characteristics. The functional experiments were performed to identify the role of SNHG4 in HCC. We found that SNHG4 enhanced the proliferative, migratory and invasive capacities of HCC cell line, and facilitated the tumor growth in vivo. A series of follow-up studies have shown that SNHG4 promoted the progression and malignancy of HCC through upregulating CREB5 via sponging miR-211-5p. CONCLUSION: Collectively, the above findings suggest that SNHG4 promotes HCC malignancy through the SNHG4/miR-211-5p/CREB5 axis, providing potential therapeutic targets and prognostic factors for HCC. Highlights SNHG4 is overexpressed in HCC and correlated with the poor clinical characteristics SNHG4 promotes the malignant progression of HCC by reducing miR-211-5p expression MiR-211-5p inhibits CREB5 expression in HCC The oncogenic effect of SNHG4 in HCC can be reversed by CREB5 silencing.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo
8.
Cell Cycle ; 21(24): 2651-2663, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36003063

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common cancers and has continued to increase in incidence worldwide. Moreover, the involvement of microRNAs (miRs) has been reported in the development and progression of HCC. Here, we investigated the role of miR-206 in HCC growth and metastasis. HCC-related microarray datasets were harvested to screen differentially expressed miRNAs in HCC samples followed by prediction of downstream target genes. The dual-luciferase reporter assay verified the target-binding relationship between miR-206 and CREB5. The human HCC cell line MHCC97-H was cultured in vitro and transfected with miR-206 mimic/inhibitor or sh-/oe-CREB5 for analyzing MHCC97-H cell biological functions. The orthotopic xenograft model of HCC mice was constructed to observe the tumorigenic ability of HCC cells in vivo. Bioinformatics analysis found that miR-206 may be involved in HCC growth and metastasis by targeting CREB5 and regulating PI3K/AKT signaling pathway. In vivo animal experiments found that CREB5 was significantly overexpressed in mouse HCC tissues. In HCC cells, miR-206 can target down-regulate the expression of CREB5, thereby inhibiting the activation of PI3K/AKT signaling pathway. Furthermore, in vitro cell experiments confirmed that overexpression of miR-206 could inhibit the PI3K/AKT signaling pathway by down-regulating CREB5 expression, thereby inhibiting the proliferation, migration and invasion of HCC cells. In conclusion, our results revealed that miR-206 could down-regulate the expression of CREB5 and inhibit the activation of PI3K/AKT signaling pathway, thereby preventing HCC growth and metastasis.Abbreviations: HCC: hepatocellular carcinoma; HBV or HCV: hepatitis B or C virus; miRNAs: microRNAs; CREB: cAMP response element-binding protein; CRE: cAMP response elements.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Ratones , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Regulación Neoplásica de la Expresión Génica/genética , Proliferación Celular/genética , Línea Celular Tumoral , Transducción de Señal/genética , MicroARNs/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo
9.
Cancer Biomark ; 35(1): 47-56, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662106

RESUMEN

BACKGROUND: Vasculogenic mimicry (VM) is characterized by formation of three-dimensional (3D) channels-like structures by tumor cells, supplying the nutrients needed for tumor growth. VM is stimulated by hypoxic tumor microenvironment, and it has been associated with increased metastasis and clinical poor outcome in cancer patients. cAMP responsive element (CRE)-binding protein 5 (CREB5) is a hypoxia-activated transcription factor involved in tumorigenesis. However, CREB5 functions in VM and if its regulated by microRNAs remains unknown in breast cancer. OBJECTIVE: We aim to study the functional relationships between VM, CREB5 and microRNA-204-5p (miR-204) in breast cancer cells. METHODS: CREB5 expression was evaluated by mining the public databases, and using RT-qPCR and Western blot assays. CREB5 expression was silenced using short-hairpin RNAs in MDA-MB-231 and MCF-7 breast cancer cells. VM formation was analyzed using matrigel-based cultures in hypoxic conditions. MiR-204 expression was restored in cancer cells by transfection of RNA mimics. Luciferase reporter assays were performed to evaluate the binding of miR-204 to 3'UTR of CREB5. RESULTS: Our data showed that CREB5 mRNA expression was upregulated in a set of breast cancer cell lines and clinical tumors, and it was positively associated with poor prognosis in lymph nodes positive and grade 3 basal breast cancer patients. Silencing of CREB5 impaired the hypoxia-induced formation of 3D channels-like structures representative of the early stages of VM in MDA-MB-231 cells. In contrast, VM formation was not observed in MCF-7 cells. Interestingly, we found that CREB5 expression was negatively regulated by miR-204 mimics in breast cancer cells. Functional analysis confirmed that miR-204 binds to CREB5 3'-UTR indicating that it's an ulterior effector. CONCLUSIONS: Our findings suggested that CREB5 could be a potential biomarker of disease progression in basal subtype of breast cancer, and that perturbations of the miR-204/CREB5 axis plays an important role in VM development in breast cancer cells.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Regiones no Traducidas 3' , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia/genética , MicroARNs/genética , MicroARNs/metabolismo , Neovascularización Patológica/genética , Factores de Transcripción/genética , Microambiente Tumoral
10.
BMC Med ; 20(1): 231, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35773668

RESUMEN

BACKGROUND: Cisplatin resistance is one of the main causes of treatment failure and death in head and neck squamous cell carcinoma (HNSCC). A more comprehensive understanding of the cisplatin resistance mechanism and the development of effective treatment strategies are urgent. METHODS: RNA sequencing, RT-PCR, and immunoblotting were used to identify differentially expressed genes associated with cisplatin resistance. Gain- and loss-of-function experiments were performed to detect the effect of CREB5 on cisplatin resistance and mitochondrial apoptosis in HNSCC. Chromatin immunoprecipitation (ChIP) assay, dual-luciferase reporter assay, and immunoblotting experiments were performed to explore the underlying mechanisms of CREB5. RESULTS: CREB5 was significantly upregulated in cisplatin-resistant HNSCC (CR-HNSCC) patients, which was correlated with poor prognosis. CREB5 overexpression strikingly facilitated the cisplatin resistance of HNSCC cells in vitro and in vivo, while CREB5 knockdown enhanced cisplatin sensitivity in CR-HNSCC cells. Interestingly, the activation of AKT signaling induced by cisplatin promoted nucleus translocation of CREB5 in CR-HNSCC cells. Furthermore, CREB5 transcriptionally activated TOP1MT expression depending on the canonical motif. Moreover, CREB5 silencing could trigger mitochondrial apoptosis and overcome cisplatin resistance in CR-HNSCC cells, which could be reversed by TOP1MT overexpression. Additionally, double-targeting of CREB5 and TOP1MT could combat cisplatin resistance of HNSCC in vivo. CONCLUSIONS: Our findings reveal a novel CREB5/TOP1MT axis conferring cisplatin resistance in HNSCC, which provides a new basis to develop effective strategies for overcoming cisplatin resistance.


Asunto(s)
Antineoplásicos , Cisplatino , Proteína de Unión al Elemento de Respuesta al AMP Cíclico , ADN-Topoisomerasas de Tipo I , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/farmacología , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Resistencia a Antineoplásicos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
11.
Elife ; 112022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550030

RESUMEN

Metastatic castration-resistant prostate cancers (mCRPCs) are treated with therapies that antagonize the androgen receptor (AR). Nearly all patients develop resistance to AR-targeted therapies (ARTs). Our previous work identified CREB5 as an upregulated target gene in human mCRPC that promoted resistance to all clinically approved ART. The mechanisms by which CREB5 promotes progression of mCRPC or other cancers remains elusive. Integrating ChIP-seq and rapid immunoprecipitation and mass spectroscopy of endogenous proteins, we report that cells overexpressing CREB5 demonstrate extensive reprogramming of nuclear protein-protein interactions in response to the ART agent enzalutamide. Specifically, CREB5 physically interacts with AR, the pioneering actor FOXA1, and other known co-factors of AR and FOXA1 at transcription regulatory elements recently found to be active in mCRPC patients. We identified a subset of CREB5/FOXA1 co-interacting nuclear factors that have critical functions for AR transcription (GRHL2, HOXB13) while others (TBX3, NFIC) regulated cell viability and ART resistance and were amplified or overexpressed in mCRPC. Upon examining the nuclear protein interactions and the impact of CREB5 expression on the mCRPC patient transcriptome, we found that CREB5 was associated with Wnt signaling and epithelial to mesenchymal transitions, implicating these pathways in CREB5/FOXA1-mediated ART resistance. Overall, these observations define the molecular interactions among CREB5, FOXA1, and pathways that promote ART resistance.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
12.
J Microbiol Immunol Infect ; 54(5): 845-857, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34176764

RESUMEN

BACKGROUND: Pathogenic coronaviruses include Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. These viruses have induced outbreaks worldwide, and there are currently no effective medications against them. Therefore, there is an urgent need to develop potential drugs against coronaviruses. METHODS: High-throughput technology is widely used to explore differences in messenger (m)RNA and micro (mi)RNA expression profiles, especially to investigate protein-protein interactions and search for new therapeutic compounds. We integrated miRNA and mRNA expression profiles in MERS-CoV-infected cells and compared them to mock-infected controls from public databases. RESULTS: Through the bioinformatics analysis, there were 251 upregulated genes and eight highly differentiated miRNAs that overlapped in the two datasets. External validation verified that these genes had high expression in MERS-CoV-infected cells, including RC3H1, NF-κB, CD69, TNFAIP3, LEAP-2, DUSP10, CREB5, CXCL2, etc. We revealed that immune, olfactory or sensory system-related, and signal-transduction networks were discovered from upregulated mRNAs in MERS-CoV-infected cells. In total, 115 genes were predicted to be related to miRNAs, with the intersection of upregulated mRNAs and miRNA-targeting prediction genes such as TCF4, NR3C1, and POU2F2. Through the Connectivity Map (CMap) platform, we suggested potential compounds to use against MERS-CoV infection, including diethylcarbamazine, harpagoside, bumetanide, enalapril, and valproic acid. CONCLUSIONS: The present study illustrates the crucial roles of miRNA-mRNA interacting networks in MERS-CoV-infected cells. The genes we identified are potential targets for treating MERS-CoV infection; however, these could possibly be extended to other coronavirus infections.


Asunto(s)
Adenocarcinoma del Pulmón/virología , Infecciones por Coronavirus , Células Epiteliales/virología , Neoplasias Pulmonares/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , COVID-19 , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Brotes de Enfermedades , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2 , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
13.
J Bone Joint Surg Am ; 103(14): 1259-1267, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-33979311

RESUMEN

BACKGROUND: While evidence indicates that familial predisposition influences the risk of developing degenerative rotator cuff disease (RCD), knowledge of specific genetic markers is limited. We conducted a genome-wide association study of RCD surgery using the UK Biobank, a prospective cohort of 500,000 people (40 to 69 years of age at enrollment) with genotype data. METHODS: Cases with surgery for degenerative RCD were identified using linked hospital records. The cases were defined as an International Classification of Diseases, Tenth Revision (ICD-10) code of M75.1 determined by a trauma/orthopaedic specialist and surgery consistent with RCD treatment. Cases were excluded if a diagnosis of traumatic injury had been made during the same hospital visit. For each case, up to 5 controls matched by age, sex, and follow-up time were chosen from the UK Biobank. Analyses were limited to European-ancestry individuals who were not third-degree or closer relations. We used logistic regression to test for genetic association of 674,405 typed and >10 million imputed markers, after adjusting for age, sex, population principal components, and follow-up. RESULTS: We identified 2,917 RCD surgery cases and 14,158 matched controls. We observed 1 genome-wide significant signal (p < 5 × 10-8) for a novel locus tagged by rs2237352 in the CREB5 gene on chromosome 7 (odds ratio [OR] = 1.17, 95% confidence interval [CI] = 1.11 to 1.24). The single-nucleotide polymorphism (SNP) rs2237352 was imputed with a high degree of confidence (info score = 0.9847) and is common, with a minor allele frequency of 47%. After expanding the control sample to include additional unmatched non-cases, rs2237352 and another SNP in the CREB5 gene, rs12700903, were genome-wide significant. We did not detect genome-wide significant signals at loci associated with RCD in previous studies. CONCLUSIONS: We identified a novel association between a variant in the CREB5 gene and RCD surgery. Validation of this finding in studies with imaging data to confirm diagnoses will be an important next step. CLINICAL RELEVANCE: Identification of genetic RCD susceptibility markers can guide understanding of biological processes in rotator cuff degeneration and help inform disease risk in the clinical setting. LEVEL OF EVIDENCE: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.


Asunto(s)
Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Predisposición Genética a la Enfermedad , Procedimientos Ortopédicos/estadística & datos numéricos , Lesiones del Manguito de los Rotadores/genética , Manguito de los Rotadores/patología , Adulto , Anciano , Bancos de Muestras Biológicas/estadística & datos numéricos , Biomarcadores/análisis , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/epidemiología , Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/cirugía , Reino Unido
14.
Epigenomics ; 13(9): 699-713, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33876672

RESUMEN

Aim: Although studies on lncRNAs in renal fibrosis have focused on target genes and functions of lncRNAs, a comprehensive interaction analysis of lncRNAs is lacking. Materials & methods: Differentially expressed genes in renal fibrosis were screened, and the interaction between lncRNAs and miRNAs was searched. Results: We constructed a ceRNA network associated with renal fibrosis, by which we found the transcription factor Creb5, a target gene of lncRNA Gas5 that might regulate extracellular Fn1 deposition. Conclusion: Our study not only provides a theoretical basis for the ceRNA regulation mechanism of Gas5 but also provides experimental evidence supporting the use of Gas5 targeting in the treatment of renal fibrosis.


Asunto(s)
Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Fibronectinas/metabolismo , Riñón/patología , ARN Largo no Codificante/genética , Animales , Línea Celular , Fibrosis , Masculino , Ratones Endogámicos C57BL , Regulación hacia Arriba
15.
Commun Biol ; 4(1): 332, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712729

RESUMEN

A hallmark of cells comprising the superficial zone of articular cartilage is their expression of lubricin, encoded by the Prg4 gene, that lubricates the joint and protects against the development of arthritis. Here, we identify Creb5 as a transcription factor that is specifically expressed in superficial zone articular chondrocytes and is required for TGF-ß and EGFR signaling to induce Prg4 expression. Notably, forced expression of Creb5 in chondrocytes derived from the deep zone of the articular cartilage confers the competence for TGF-ß and EGFR signals to induce Prg4 expression. Chromatin-IP and ATAC-Seq analyses have revealed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, that display an open chromatin conformation specifically in superficial zone articular chondrocytes; and which work in combination with a more distal regulatory element to drive induction of Prg4 by TGF-ß. Our results indicate that Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage.


Asunto(s)
Cartílago Articular/metabolismo , Condrocitos/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Proteoglicanos/metabolismo , Animales , Sitios de Unión , Cartílago Articular/efectos de los fármacos , Bovinos , Células Cultivadas , Condrocitos/efectos de los fármacos , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Regulación de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Proteoglicanos/genética , Factor de Crecimiento Transformador alfa/farmacología , Factor de Crecimiento Transformador beta2/farmacología
16.
Hepatology ; 74(3): 1357-1370, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33709535

RESUMEN

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer and a highly lethal malignancy. Chemotherapeutic options are limited, but a considerable subset of patients harbors genetic lesions for which targeted agents exist. Fibroblast growth factor receptor 2 (FGFR2) fusions belong to the most frequent and therapeutically relevant alterations in ICC, and the first FGFR inhibitor was recently approved for the treatment of patients with progressed, fusion-positive ICC. Response rates of up to 35% indicate that FGFR-targeted therapies are beneficial in many but not all patients. Thus far, no established biomarkers exist that predict resistance or response to FGFR-targeted therapies in patients with ICC. APPROACH AND RESULTS: In this study, we use an autochthonous murine model of ICC to demonstrate that FGFR2 fusions are potent drivers of malignant transformation. Furthermore, we provide preclinical evidence that the co-mutational spectrum acts not only as an accelerator of tumor development, but also modifies the response to targeted FGFR inhibitors. Using pharmacologic approaches and RNA-interference technology, we delineate that Kirsten rat sarcoma oncogene (KRAS)-activated mitogen-activated protein kinase signaling causes primary resistance to FGFR inhibitors in FGFR2 fusion-positive ICC. The translational relevance is supported by the observation that a subset of human FGFR2 fusion patients exhibits transcriptome profiles reminiscent of KRAS mutant ICC. Moreover, we demonstrate that combination therapy has the potential to overcome primary resistance and to sensitize tumors to FGFR inhibition. CONCLUSIONS: Our work highlights the importance of the co-mutational spectrum as a significant modifier of response in tumors that harbor potent oncogenic drivers. A better understanding of the genetic underpinnings of resistance will be pivotal to improve biomarker-guided patient selection and to design clinically relevant combination strategies.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Transformación Celular Neoplásica/genética , Colangiocarcinoma/genética , Fusión Génica/genética , Neoplasias Hepáticas Experimentales/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Adenosilhomocisteinasa/genética , Animales , Antígenos de Neoplasias/genética , Antimetabolitos Antineoplásicos/farmacología , Neoplasias de los Conductos Biliares/patología , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Colangiocarcinoma/patología , Proteínas Co-Represoras/genética , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Proteínas Fetales/genética , Ratones , Proteínas Asociadas a Microtúbulos/genética , Mutación , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Proteínas de Transporte Vesicular/genética , Gemcitabina
17.
J Cell Biol ; 220(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33464298

RESUMEN

Genome-wide CRISPR screens have transformed our ability to systematically interrogate human gene function, but are currently limited to a subset of cellular phenotypes. We report a novel pooled screening approach for a wider range of cellular and subtle subcellular phenotypes. Machine learning and convolutional neural network models are trained on the subcellular phenotype to be queried. Genome-wide screening then utilizes cells stably expressing dCas9-KRAB (CRISPRi), photoactivatable fluorescent protein (PA-mCherry), and a lentiviral guide RNA (gRNA) pool. Cells are screened by using microscopy and classified by artificial intelligence (AI) algorithms, which precisely identify the genetically altered phenotype. Cells with the phenotype of interest are photoactivated and isolated via flow cytometry, and the gRNAs are identified by sequencing. A proof-of-concept screen accurately identified PINK1 as essential for Parkin recruitment to mitochondria. A genome-wide screen identified factors mediating TFEB relocation from the nucleus to the cytosol upon prolonged starvation. Twenty-one of the 64 hits called by the neural network model were independently validated, revealing new effectors of TFEB subcellular localization. This approach, AI-photoswitchable screening (AI-PS), offers a novel screening platform capable of classifying a broad range of mammalian subcellular morphologies, an approach largely unattainable with current methodologies at genome-wide scale.


Asunto(s)
Sistemas CRISPR-Cas/genética , Pruebas Genéticas , Genoma , Imagenología Tridimensional , Inteligencia Artificial , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Aprendizaje Profundo , Proteínas Fluorescentes Verdes , Células HEK293 , Humanos , Modelos Biológicos , Redes Neurales de la Computación , Fenotipo , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Máquina de Vectores de Soporte , Ubiquitina-Proteína Ligasas/metabolismo , ARN Guía de Sistemas CRISPR-Cas
18.
J Exp Clin Cancer Res ; 39(1): 168, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843066

RESUMEN

BACKGROUND: cAMP responsive element binding protein 5 (CREB5) is a transcriptional activator in eukaryotic cells that can regulate gene expression. Previously, we found that CREB5 was involved in the occurrence and development of colorectal cancer (CRC) using bioinformatics analysis. However, the biological roles and underlying regulatory mechanism of CREB5 in CRC remain unclear. METHODS: Real-time PCR, western blotting, and immunohistochemistry were used to examine CREB5 expression. In vitro experiments including migration assay, wound-healing assay, chicken chorioallantoic membrane assay, and human umbilical vein endothelial cells tube formation assay were used to investigate the effects of CREB5 on CRC cell migration and tumor angiogenesis ability. Additionally, an orthotopic implantation assay was performed in nude mice to confirm the effects of CREB5 in vivo. Furthermore, gene set enrichment analysis was performed to explore the potential mechanism of CREB5 in CRC. RESULTS: We found that CREB5 expression was highly upregulated in CRC. CREB5 overexpression was positively correlated with advanced WHO stages and TNM stages and shorter survival in CRC patients. Moreover, CREB5 overexpression promoted while CREB5 silencing reduced the invasiveness and metastatic capacity of CRC cells both in vitro and in vivo. Furthermore, CREB5 directly interacted with the MET promoter and activated the hepatocyte growth factor-MET signalling pathway. Importantly, inhibition of MET reduced the invasion and metastasis of CREB5-overexpressing CRC cells, suggesting that CREB5 promotes metastasis mainly through activation of MET signalling. CONCLUSION: Our study demonstrates a crucial role for CREB5 in CRC metastasis by directly upregulating MET expression. CREB5 may be both a potential prognostic marker and a therapeutic target to effectively overcome metastasis in CRC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/secundario , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Pronóstico , Proteínas Proto-Oncogénicas c-met/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Virol J ; 17(1): 21, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024541

RESUMEN

BACKGROUND: Human enterovirus 71 (EV-A71) is a non-enveloped virus that has a single stranded positive sense RNA genome. In a previous study, we showed that miR-876-5p upregulation was observed in the serum of patients with severe EV-A71 infection. Micro-876-5p (miR-876-5p) is a circulating miRNA that can be identified to modulate EV-A71 infections through both in vitro and in vivo studies. However, the regulatory mechanisms that involve miR-876-5p in the EV-A71 infection cycle remain unclear. METHODS: We demonstrated that miR-876-5p facilitated EV-A71 replication and expression by overexpression and knocking-down of miR-876-5p through the transfection of miR-876-5p plasmid and miR-876-5p inhibitor. Although miR-876-5p suppressed CREB5 expression, luciferase reporter assay confirmed this. We also evaluated the role of miR-876-5p in the EV-A71 infection cycle by CREB5 mediated by transfection with an anti-miR-876-5P inhibitor or in combination with an si-CREB5 plasmid. RESULTS: MicroR-876-5p was upregulated in EV-A71-infected neuroblastoma cells. Overexpression of miR-876-5p or knockdown of cyclic-AMP responsive element binding protein 5 (CREB5) promoted EV-A71 replication. The downregulation of miR-876-5p inhibited the accumulation of viral RNA and the production of viral proteins. Interestingly, CREB5 overexpression also suppressed EV-A71 replication. Our in vitro studies reveal that miR-876-5p directly targets CREB5. Finally, downregulation of CREB5 protein abated the inhibitory effect of anti-miR-876-5p and induced inhibitory effect of EV-A71 replication. CONCLUSIONS: Our results suggest that intracellular miR-876-5p promotes EV-A71 replication indirectly by targeting the host CREB5 protein.


Asunto(s)
Enterovirus Humano A/fisiología , Interacciones Microbiota-Huesped/genética , MicroARNs/genética , Replicación Viral , Animales , Antivirales , Línea Celular Tumoral , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Regulación hacia Abajo , Enterovirus Humano A/genética , Humanos , Ratones , Ratones Endogámicos ICR , Neuroblastoma , Organismos Libres de Patógenos Específicos
20.
BMB Rep ; 53(3): 142-147, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31401979

RESUMEN

Lipid accumulation in white adipose tissue is the key contributor to the obesity and orchestrates numerous metabolic health problems such as type 2 diabetes, hypertension, atherosclerosis, and cancer. Nonetheless, the prevention and treatment of obesity are still inadequate. Recently, scientists found that brown adipose tissue (BAT) in adult humans has functions that are diametrically opposite to those of white adipose tissue and that BAT holds promise for a new strategy to counteract obesity. In this study, we evaluated the potential of sinapic acid (SA) to promote the thermogenic program and lipolysis in BAT. SA treatment of brown adipocytes induced the expression of brown-adipocyte activation-related genes such as Ucp1, Pgc-1α, and Prdm16. Furthermore, structural analysis and western blot revealed that SA upregulates protein kinase A (PKA) phosphorylation with competitive inhibition by a pan-PKA inhibitor, H89. SA binds to the adenosine triphosphate (ATP) site on the PKA catalytic subunit where H89 binds specifically. PKA-cat-α1 gene-silencing experiments confirmed that SA activates the thermogenic program via a mechanism involving PKA and cyclic AMP response element-binding protein (CREB) signaling. Moreover, SA treatment promoted lipolysis via a PKA/p38-mediated pathway. Our findings may allow us to open a new avenue of strategies against obesity and need further investigation. [BMB Reports 2020; 53(3): 142-147].


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Ácidos Cumáricos/metabolismo , Termogénesis/genética , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/fisiología , Línea Celular , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lipólisis/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación , Transducción de Señal/efectos de los fármacos , Proteína Desacopladora 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA