Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.332
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 327-332, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38710517

RESUMEN

Objective To investigate the liver injury induced by chronic intermittent hypoxia (CIH) activation of NOD-like receptor pyrin domain containing protein 1 (NLRP1) inflammasome. Methods C57BL/6 male mice were randomly divided into control group and CIH group. Mice in CIH group were put into CIH chamber for molding (8 hours a day for 4 weeks). After 4 weeks of molding, liver tissue cells was observed by HE staining, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of mice were detected by kit. The levels of reactive oxygen species (ROS) in liver tissue were detected by dihydroethidine (DHE). The expression and localization of NLRP1, apoptosis speck-like protein containing a caspase activation and recruiting domain (ASC) and caspase-1 were detected by immunohistochemical staining. The protein expressions of NLRP1, ASC, caspase-1, interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were detected by Western blot analysis. The serum levels of IL-1ß and TNF-α were detected by ELISA. Results Compared with the control group, the CIH group exhibited significant pathological changes in hepatocytes. Hepatocytes showed signs of rupture and necrosis, accompanied by inflammatory cell aggregation. Furthermore, the levels of ALT, AST, ROS, IL-1ß and TNF-α were elevated, along with increased protein expressions of NLRP1, ASC, caspase-1, IL-1ß and TNF-α. Conclusion CIH causes liver injury by activating NLRP1 inflammasome.


Asunto(s)
Caspasa 1 , Hipoxia , Inflamasomas , Interleucina-1beta , Hígado , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno , Animales , Masculino , Inflamasomas/metabolismo , Hipoxia/metabolismo , Hipoxia/complicaciones , Especies Reactivas de Oxígeno/metabolismo , Hígado/metabolismo , Hígado/patología , Caspasa 1/metabolismo , Interleucina-1beta/metabolismo , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Alanina Transaminasa/sangre , Proteínas Adaptadoras de Señalización CARD/metabolismo , Aspartato Aminotransferasas/sangre , Hepatopatías/etiología , Hepatopatías/metabolismo , Hepatopatías/patología
2.
Artículo en Chino | MEDLINE | ID: mdl-38802305

RESUMEN

Objective: To explore the effect of the absent in melanoma 2 (AIM2) -mediated neuroinflammation in noise-induced cognitive dysfunction in rats. Methods: In April 2023, sixteen male Wistar rats were randomly divided into control group and noise group, with 8 rats in each group. The rats in the noise group were placed in 50 cm×50 cm×40 cm transparent boxes and exposed to 100 dB (A) white noise with a sound pressure level of 100 dB (A) (4 h/d for 30 d) . At the same time, rats in the control group were kept in similar boxes with environmental noise less than 60 dB (A) . After 30 days of noise exposure, the Morris water maze experiment was applied to test the learning and memory abilities of the rats; the pathological morphology of hippocampal tissues was observed by Hematoxylin-Eosin (HE) staining. Western blot was used to detect the protein expression levels of AIM2, cysteinyl aspartate specific proteinase-1 (caspase-1) , apoptosis-associated speck-like protein (ASC) , interleukin-1ß (IL-1ß) , IL-18, ionic calcium-binding articulation molecule-1 (Iba-1) , and glial fibrillary acidic protein (GFAP) . The expression of both Iba-1 and GFAP in hippocampal tissue was assessed by immunohistochemical staining. The co-localization of AIM2 with Iba-1 or GFAP was determined by immunofluorescence double staining. Results: Compared with the control group, the escape latency of rats in the noise group was increased by 16.29 s, 17.71 s, and 20.26 s on days 3, 4, and 5, respectively. On day 6, the noise-exposed rats spent shorter time in the target quadrant and had fewer times in crossing the platform[ (7.25±2.27) s and (1.13±0.64) times] than the control group[ (15.64±3.99) s and (4.25±2.12) times] (P<0.05) . After noise exposure, hippocampal neurons of rats displayed marked nuclear hyperchromatic and pyknosis phenomenon. The noise-exposed rats had higher numbers of both microglia and astrocytes (27.00±2.65 and 43.33±5.51) in the DG area of the hippocampus relative to the control group (14.67±3.06 and 20.00±4.58) (P<0.05) . Moreover, the glial cells in the noise group had larger cell cytosol with more and thicker branches. The protein expression levels of inflammatory cytokines Cleaved-IL-1ß and Cleaved-IL-18 in the hippocampus of rats in the noise group (1.55±0.19 and 1.74±0.12) were significantly higher than the control group (1.00±0.11 and 1.00±0.13) (P<0.05) . After noise exposure, the protein expression levels of AIM2, Cleaved-Caspase-1 and ASC (1.19±0.09, 1.34±0.07 and 1.14±0.01) were higher than the control group (1.00±0.07, 1.00±0.14 and 1.00±0.06) and differences between the two groups were statistically significant (P<0.05) . A significant increase in the number of cells co-localizing AIM2 with Iba-1 or GFAP in the noise group (28.67±4.04 and 40.67±5.13) compared with the control group (15.67±4.04 and 17.67±3.79) , and statistically significant differences were observed between the two groups (P<0.05) . Conclusion: Noise exposure may activate the AIM2 inflammasome in hippocampal glial cells of rats, releasing excessive inflammatory cytokines and causing neuroinflammation that damages neurons.


Asunto(s)
Disfunción Cognitiva , Hipocampo , Inflamasomas , Interleucina-18 , Ruido , Ratas Wistar , Animales , Ratas , Masculino , Ruido/efectos adversos , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Inflamasomas/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Proteínas de Unión al ADN/metabolismo , Caspasa 1/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Aprendizaje por Laberinto
3.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734816

RESUMEN

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Caspasa 1 , Dermatitis Atópica , Inflamasomas , Interleucina-18 , Interleucina-1beta , Péptidos y Proteínas de Señalización Intracelular , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión a Fosfato , Humanos , Inflamasomas/metabolismo , Inflamasomas/inmunología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Dermatitis Atópica/inmunología , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Interleucina-1beta/metabolismo , Masculino , Femenino , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Adulto , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/metabolismo , Caspasa 1/metabolismo , Piel/patología , Piel/inmunología , Piel/metabolismo , Índice de Severidad de la Enfermedad , Persona de Mediana Edad , Antígenos de Diferenciación Mielomonocítica/metabolismo , Adulto Joven , Proteínas Reguladoras de la Apoptosis/metabolismo , Antígenos CD/metabolismo , Proteínas NLR/metabolismo , Estudios de Casos y Controles , Epidermis/inmunología , Epidermis/metabolismo , Epidermis/patología , Gasderminas , Molécula CD68 , Proteínas de Unión al ADN
5.
Eur J Med Res ; 29(1): 218, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576041

RESUMEN

BACKGROUND: The objective of this investigation is to analyze the levels and clinical relevance of serum PYCARD (Pyrin and CARD domain-containing protein, commonly known as ASC-apoptosis-associated speck-like protein containing a caspase activation and recruitment domain), interleukin-38 (IL-38), and interleukin-6 (IL-6) in individuals afflicted with rheumatoid arthritis (RA). METHODS: Our study comprised 88 individuals diagnosed with RA who sought medical attention at the Affiliated Hospital of Chengde Medical University during the period spanning November 2021 to June 2023, constituting the test group. Additionally, a control group of 88 individuals who underwent health assessments at the same hospital during the aforementioned timeframe was included for comparative purposes. The study involved the assessment of IL-38, IL-6, PYCARD, anti-cyclic citrullinated peptide antibody (anti-CCP), and erythrocyte sedimentation rate (ESR) levels in both groups. The research aimed to explore the correlations and diagnostic efficacy of these markers, employing pertinent statistical analyses for comprehensive evaluation. RESULTS: The test group had higher expression levels of PYCARD, IL-6, and IL-38 than the control group (P < 0.05). Based on the correlation analysis, there was a strong relationship between PYCARD and IL-38 (P < 0.01). The receiver operating characteristic (ROC) curve analysis revealed area under the curve (AUC) values of 0.97, 0.96, and 0.96 when using combinations of PYCARD and anti-CCP, IL-38 and anti-CCP, and IL-6 and anti-CCP for predicting RA, respectively. Importantly, all three of these pairs demonstrated superior AUC values compared to PYCARD, IL-38, IL-6, ESR, or anti-CCP used as standalone diagnostic indicators. CONCLUSION: PYCARD, IL-6, and IL-38 exhibit promising potential as novel diagnostic markers and may constitute valuable tools for supporting the diagnosis of RA.


Asunto(s)
Anticuerpos Antiproteína Citrulinada , Artritis Reumatoide , Humanos , Interleucina-6 , Artritis Reumatoide/diagnóstico , Autoanticuerpos , Curva ROC , Péptidos Cíclicos , Biomarcadores , Proteínas Adaptadoras de Señalización CARD/genética , Interleucinas
6.
Cell Commun Signal ; 22(1): 237, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649988

RESUMEN

BACKGROUND: A water-soluble ingredient of mature leaves of the tropical mahogany 'Neem' (Azadirachta indica), was identified as glycoprotein, thus being named as 'Neem Leaf Glycoprotein' (NLGP). This non-toxic leaf-component regressed cancerous murine tumors (melanoma, carcinoma, sarcoma) recurrently in different experimental circumstances by boosting prime antitumor immune attributes. Such antitumor immunomodulation, aid cytotoxic T cell (Tc)-based annihilation of tumor cells. This study focused on identifying and characterizing the signaling gateway that initiate this systemic immunomodulation. In search of this gateway, antigen-presenting cells (APCs) were explored, which activate and induce the cytotoxic thrust in Tc cells. METHODS: Six glycoprotein-binding C-type lectins found on APCs, namely, MBR, Dectin-1, Dectin-2, DC-SIGN, DEC205 and DNGR-1 were screened on bone marrow-derived dendritic cells from C57BL/6 J mice. Fluorescence microscopy, RT-PCR, flow cytometry and ELISA revealed Dectin-1 as the NLGP-binding receptor, followed by verifications through RNAi. Following detection of ß-Glucans in NLGP, their interactions with Dectin-1 were explored in silico. Roles of second messengers and transcription factors in the downstream signal were studied by co-immunoprecipitation, western blotting, and chromatin-immunoprecipitation. Intracellularization of FITC-coupled NLGP was observed by processing confocal micrographs of DCs. RESULTS: Considering extents of hindrance in NLGP-driven transcription rates of the cytokines IL-10 and IL-12p35 by receptor-neutralization, Dectin-1 receptors on dendritic cells were found to bind NLGP through the ligand's peripheral ß-Glucan chains. The resulting signal phosphorylates PKCδ, forming a trimolecular complex of CARD9, Bcl10 and MALT1, which in turn activates the canonical NFκB-pathway of transcription-regulation. Consequently, the NFκB-heterodimer p65:p50 enhances Il12a transcription and the p50:p50 homodimer represses Il10 transcription, bringing about a cytokine-based systemic-bias towards type-1 immune environment. Further, NLGP gets engulfed within dendritic cells, possibly through endocytic activities of Dectin-1. CONCLUSION: NLGP's binding to Dectin-1 receptors on murine dendritic cells, followed by the intracellular signal, lead to NFκB-mediated contrasting regulation of cytokine-transcriptions, initiating a pro-inflammatory immunopolarization, which amplifies further by the responding immune cells including Tc cells, alongside their enhanced cytotoxicity. These insights into the initiation of mammalian systemic immunomodulation by NLGP at cellular and molecular levels, may help uncovering its mode of action as a novel immunomodulator against human cancers, following clinical trials.


Asunto(s)
Azadirachta , Proteínas Adaptadoras de Señalización CARD , Células Dendríticas , Lectinas Tipo C , Ratones Endogámicos C57BL , FN-kappa B , Hojas de la Planta , Transducción de Señal , Animales , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Azadirachta/química , Ratones , Proteínas Adaptadoras de Señalización CARD/metabolismo , FN-kappa B/metabolismo , Unión Proteica
7.
PLoS Biol ; 22(4): e3002597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38684033

RESUMEN

Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.


Asunto(s)
Proteínas de Unión al Calcio , Citosol , Flagelina , Interacciones Huésped-Patógeno , Inflamasomas , Salmonella typhimurium , Sistemas de Secreción Tipo III , Citosol/metabolismo , Citosol/microbiología , Animales , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Inflamasomas/metabolismo , Ratones , Flagelina/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/genética , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Ratones Endogámicos C57BL , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Análisis de la Célula Individual/métodos , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo
8.
J Clin Invest ; 134(11)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652550

RESUMEN

The immune system can control cancer progression. However, even though some innate immune sensors of cellular stress are expressed intrinsically in epithelial cells, their potential role in cancer aggressiveness and subsequent overall survival in humans is mainly unknown. Here, we show that nucleotide-binding oligomerization domain-like receptor (NLR) family CARD domain-containing 4 (NLRC4) is downregulated in epithelial tumor cells of patients with colorectal cancer (CRC) by using spatial tissue imaging. Strikingly, only the loss of tumor NLRC4, but not stromal NLRC4, was associated with poor immune infiltration (mainly DCs and CD4+ and CD8+ T cells) and accurately predicted progression to metastatic stage IV and decrease in overall survival. By combining multiomics approaches, we show that restoring NLRC4 expression in human CRC cells triggered a broad inflammasome-independent immune reprogramming consisting of type I interferon (IFN) signaling genes and the release of chemokines and myeloid growth factors involved in the tumor infiltration and activation of DCs and T cells. Consistently, such reprogramming in cancer cells was sufficient to directly induce maturation of human DCs toward a Th1 antitumor immune response through IL-12 production in vitro. In multiple human carcinomas (colorectal, lung, and skin), we confirmed that NLRC4 expression in patient tumors was strongly associated with type I IFN genes, immune infiltrates, and high microsatellite instability. Thus, we shed light on the epithelial innate immune sensor NLRC4 as a therapeutic target to promote an efficient antitumor immune response against the aggressiveness of various carcinomas.


Asunto(s)
Proteínas de Unión al Calcio , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Interferón Tipo I , Transducción de Señal , Humanos , Proteínas de Unión al Calcio/genética , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Interferón Tipo I/genética , Transducción de Señal/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Femenino , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Masculino , Línea Celular Tumoral , Linfocitos Infiltrantes de Tumor/inmunología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología
9.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612539

RESUMEN

The most critical forms of coronavirus disease 2019 (COVID-19) are associated with excessive activation of the inflammasome. Despite the COVID-19 impact on public health, we still do not fully understand the mechanisms by which the inflammatory response influences disease prognosis. Accordingly, we aimed to elucidate the role of polymorphisms in the key genes of the formation and signaling of the inflammasome as biomarkers of COVID-19 severity. For this purpose, a large and well-defined cohort of 377 COVID-19 patients with mild (n = 72), moderate (n = 84), severe (n = 100), and critical (n = 121) infections were included. A total of 24 polymorphisms located in inflammasome-related genes (NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, IL18, NFKB1, ATG16L1, and MIF) were genotyped in all of the patients and in the 192 healthy controls (HCs) (who were without COVID-19 at the time of and before the study) by RT-qPCR. Our results showed that patients with mild, moderate, severe, and critical COVID-19 presented similar allelic and genotypic distribution in all the variants studied. No statistically significant differences in the haplotypic distribution of NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, and ATG16L1 were observed between COVID-19 patients, who were stratified by disease severity. Each stratified group of patients presented a similar genetic distribution to the HCs. In conclusion, our results suggest that the inflammasome polymorphisms studied are not associated with the worsening of COVID-19.


Asunto(s)
COVID-19 , Inflamasomas , Humanos , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , COVID-19/genética , Biomarcadores , Caspasa 1/genética , Polimorfismo Genético , Proteínas de Neoplasias , Proteínas Adaptadoras de Señalización CARD/genética
11.
Phytomedicine ; 128: 155515, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484624

RESUMEN

BACKGROUND: Vulvovaginal candidiasis (VVC) is a common infection that affects the female reproductive tract. Pulsatilla decoction (PD), a traditional Chinese herbal medicine, is a classic and effective prescription for VVC. However, its mechanism of action remains unclear. PURPOSE: This study aimed to evaluate the efficacy and potential mechanism of action of the n-butanol extract of Pulsatilla decoction (BEPD) in VVC treatment. METHODS: High performance liquid chromatography (HPLC) was used to detect the main active ingredients in BEPD. A VVC-mouse model was constructed using an estrogen-dependent method to evaluate the efficacy of BEPD in VVC treatment. Fungal burden and morphology in the vaginal cavity were comprehensively assessed. Candida albicans-induced inflammation was examined in vivo and in vitro. The effects of BEPD on the Protein kinase Cδ (PKCδ) /NLR family CARD domain-containing protein 4 (NLRC4)/Interleukin-1 receptor antagonist (IL-1Ra) axis were analyzed using by immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), and reverse transcription-quantitative polymerase chain reaction (qRT-PCR). RESULTS: BEPD inhibited fungal growth in the vagina of VVC mice, preserved the integrity of the vaginal mucosa, and suppressed inflammatory responses. Most importantly, BEPD activated the "silent" PKCδ/NLRC4/IL-1Ra axis and negatively regulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, thereby exerting a therapeutic efficacy on VVC. CONCLUSIONS: BEPD effects on mice with VVC were dose-dependent. BEPD protects against VVC by inhibiting inflammatory response and NLRP3 inflammasome via the activation of the PKCδ/NLRC4/IL-1Ra axis. This study revealed the pharmacological mechanism of BEPD in VVC treatment and provided further evidence for the application of BEPD in VVC treatment.


Asunto(s)
Candidiasis Vulvovaginal , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Pulsatilla , Animales , Femenino , Ratones , Candida albicans/efectos de los fármacos , Candidiasis Vulvovaginal/tratamiento farmacológico , Proteínas Adaptadoras de Señalización CARD/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Quinasa C-delta/metabolismo , Pulsatilla/química , Vagina/microbiología , Vagina/efectos de los fármacos
12.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473845

RESUMEN

The caspase recruitment domain-containing protein 9 (CARD9) is an intracellular adaptor protein that is abundantly expressed in cells of the myeloid lineage, such as neutrophils, macrophages, and dendritic cells. CARD9 plays a critical role in host immunity against infections caused by fungi, bacteria, and viruses. A CARD9 deficiency impairs the production of inflammatory cytokines and chemokines as well as migration and infiltration, thereby increasing susceptibility to infections. However, CARD9 signaling varies depending on the pathogen causing the infection. Furthermore, different studies have reported altered CARD9-mediated signaling even with the same pathogen. Therefore, this review focuses on and elucidates the current literature on varied CARD9 signaling in response to various infectious stimuli in humans and experimental mice models.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Citocinas , Humanos , Animales , Ratones , Citocinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inmunidad , Transducción de Señal , Macrófagos/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo
13.
Cell ; 187(5): 1223-1237.e16, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428396

RESUMEN

While CD4+ T cell depletion is key to disease progression in people living with HIV and SIV-infected macaques, the mechanisms underlying this depletion remain incompletely understood, with most cell death involving uninfected cells. In contrast, SIV infection of "natural" hosts such as sooty mangabeys does not cause CD4+ depletion and AIDS despite high-level viremia. Here, we report that the CARD8 inflammasome is activated immediately after HIV entry by the viral protease encapsulated in incoming virions. Sensing of HIV protease activity by CARD8 leads to rapid pyroptosis of quiescent cells without productive infection, while T cell activation abolishes CARD8 function and increases permissiveness to infection. In humanized mice reconstituted with CARD8-deficient cells, CD4+ depletion is delayed despite high viremia. Finally, we discovered loss-of-function mutations in CARD8 from "natural hosts," which may explain the peculiarly non-pathogenic nature of these infections. Our study suggests that CARD8 drives CD4+ T cell depletion during pathogenic HIV/SIV infections.


Asunto(s)
Infecciones por VIH , Inflamasomas , Síndrome de Inmunodeficiencia Adquirida del Simio , Animales , Humanos , Ratones , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Progresión de la Enfermedad , Infecciones por VIH/patología , Inflamasomas/metabolismo , Proteínas de Neoplasias/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/fisiología , Viremia , VIH/fisiología
14.
Nature ; 626(7999): 626-634, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326614

RESUMEN

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Asunto(s)
Evolución Molecular , Inmunoterapia Adoptiva , Linfoma Cutáneo de Células T , Mutación , Linfocitos T , Humanos , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/biosíntesis , Citocinas/inmunología , Citocinas/metabolismo , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Inmunoterapia Adoptiva/métodos , Linfoma Cutáneo de Células T/genética , Linfoma Cutáneo de Células T/inmunología , Linfoma Cutáneo de Células T/patología , Linfoma Cutáneo de Células T/terapia , Fosfatidilinositol 3-Quinasas , Transducción de Señal/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/trasplante
16.
BMC Cardiovasc Disord ; 24(1): 103, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350853

RESUMEN

BACKGROUND: The Caspase activation and recruitment domain 8 (CARD8) protein is a component of innate immunity as a negative regulator of NF- ĸB, and has been associated with regulation of proteins involved in inflammation. Expression of CARD8 mRNA and protein has been identified in human atherosclerotic lesions, and the truncated T30A variant (rs2043211) of CARD8 has been associated with lower C-reactive (CRP) and MCP-1 levels in myocardial infarction patients. The present study examines the role of a genetic variation in the CARD8 gene in relation to a selection of markers of inflammation. METHODS: In a cross-sectional study of young healthy individuals (18.0-25.9 yrs, n = 744) the association between the rs2043211 variant in the CARD8 gene and protein markers of inflammation was assessed. Genotyping of the CARD8 C10X (rs2043211) polymorphism was performed with TaqMan real time PCR on DNA from blood samples. Protein levels were studied via Olink inflammation panel ( https://olink.com/ ). Using linear models, we analyzed men and two groups of women with and without estrogen containing contraceptives separately, due to previous findings indicating differences between estrogen users and non-estrogen using women. Genotypes were analyzed by additive, recessive and dominant models. RESULTS: The minor (A) allele of the rs2043211 polymorphism in the CARD8 gene was associated with lower levels of CCL20 and IL-6 in men (CCL20, Additive model: p = 0.023; Dominant model: p = 0.016. IL-6, Additive model: p = 0.042; Dominant model: p = 0.039). The associations remained significant also after adjustment for age and potential intermediate variables. CONCLUSIONS: Our data indicate that CARD8 may be involved in the regulation of CCL20 and IL-6 in men. No such association was observed in women. These findings strengthen and support previous in vitro data on IL-6 and CCL20 and highlight the importance of CARD8 as a factor in the regulation of inflammatory proteins. The reason to the difference between sexes is however not clear, and the influence of estrogen as a possible factor important for the inflammatory response needs to be further explored.


Asunto(s)
Dominio de Reclutamiento y Activación de Caspasas , Predisposición Genética a la Enfermedad , Masculino , Humanos , Femenino , Factores de Riesgo , Estudios Transversales , Interleucina-6/genética , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Proteínas Adaptadoras de Señalización CARD/genética , Genotipo , Inflamación/diagnóstico , Inflamación/genética , Estrógenos , Proteínas de Neoplasias/genética
17.
J Cutan Med Surg ; 28(2): 158-166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38174859

RESUMEN

Pityriasis rubra pilaris (PRP) is a rare, inflammatory papulosquamous skin disease with unknown exact etiology. Historically, PRP has been challenging to diagnose, especially during the acute phase, and to treat, due to its unclear pathogenesis. To better inform clinical practice, a literature review was conducted employing a broad search strategy to capture PRP-related published studies between January 1, 2012 to October 31, 2022. Two hundred twenty-one studies were identified, which were categorized into 9 themes: (1) potential causes and triggering factors, (2) comorbidities, (3) diagnostic difficulties, (4) genetics, (5) clinical manifestations and laboratory values, (6) treatment, (7) treatment-related adverse events, (8) quality of life, and (9) other. COVID-19 infection, COVID-19 vaccination, and malignancy were the most commonly reported potential triggering factors. Misdiagnosis is very common during the early acute stages. Pathogenesis and genetic studies have further implicated caspase recruitment domain family member 14 (CARD14) mutations in the development of familial PRP (Type V) and have underlined the overlap between psoriasis and PRP. To date, there are currently no specific and validated scoring systems or tools to assess the severity of PRP. While large, randomized trials are still lacking, biologic agents remain the most effective therapy.


Asunto(s)
COVID-19 , Pitiriasis Rubra Pilaris , Psoriasis , Humanos , Pitiriasis Rubra Pilaris/diagnóstico , Pitiriasis Rubra Pilaris/tratamiento farmacológico , Vacunas contra la COVID-19 , Calidad de Vida , Psoriasis/genética , Guanilato Ciclasa/uso terapéutico , Proteínas de la Membrana/uso terapéutico , Proteínas Adaptadoras de Señalización CARD/genética
18.
Curr Opin HIV AIDS ; 19(2): 56-61, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38169429

RESUMEN

PURPOSE OF REVIEW: HIV requires lifelong antiviral treatment due to the persistence of a reservoir of latently infected cells. Multiple strategies have been pursued to promote the death of infected cells. RECENT FINDINGS: Several groups have focused on multipronged approaches to induce apoptosis of infected cells. One approach is to combine latency reversal agents with proapoptotic compounds and cytotoxic T cells to first reactivate and then clear infected cells. Other strategies include using natural killer cells or chimeric antigen receptor cells to decrease the size of the reservoir.A novel strategy is to promote cell death by pyroptosis. This mechanism relies on the activation of the caspase recruitment domain-containing protein 8 (CARD8) inflammasome by the HIV protease and can be potentiated by nonnucleoside reverse transcriptase inhibitors. SUMMARY: The achievement of a clinically significant reduction in the size of the reservoir will likely require a combination strategy since none of the approaches pursued so far has been successful on its own in clinical trials. This discrepancy between promising in vitro findings and modest in vivo results highlights the hurdles of identifying a universally effective strategy given the wide heterogeneity of the HIV reservoirs in terms of tissue location, capability to undergo latency reversal and susceptibility to cell death.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Latencia del Virus , Linfocitos T CD4-Positivos , VIH-1/fisiología , Muerte Celular , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacología , Proteínas de Neoplasias/uso terapéutico , Proteínas Adaptadoras de Señalización CARD/metabolismo
19.
Nat Struct Mol Biol ; 31(1): 82-91, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177670

RESUMEN

The NLR family caspase activation and recruitment domain-containing 4 (NLRC4) inflammasome is a critical cytosolic innate immune machine formed upon the direct sensing of bacterial infection and in response to cell stress during sterile chronic inflammation. Despite its major role in instigating the subsequent host immune response, a more complete understanding of the molecular events in the formation of the NLRC4 inflammasome in humans is lacking. Here we identify Bacillus thailandensis type III secretion system needle protein (Needle) as a potent trigger of the human NLR family apoptosis inhibitory protein (NAIP)/NLRC4 inflammasome complex formation and determine its structural features by cryogenic electron microscopy. We also provide a detailed understanding of how type III secretion system pathogen components are sensed by human NAIP to form a cascade of NLRC4 protomer through a critical lasso-like motif, a 'lock-key' activation model and large structural rearrangement, ultimately forming the full human NLRC4 inflammasome. These results shed light on key regulatory mechanisms specific to the NLRC4 inflammasome assembly, and the innate immune modalities of pathogen sensing in humans.


Asunto(s)
Inflamasomas , Sistemas de Secreción Tipo III , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Flagelina/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras de Señalización CARD , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo
20.
BMC Cancer ; 24(1): 28, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166691

RESUMEN

This study aimed to identify new pyroptosis-associated tumor antigens for use in mRNA vaccines and the screening of sensitive LUAD populations suitable for vaccination. The association between tumor immune infiltrating cell abundance and potential tumor antigens was investigated and visualized using the analysis modules of gene expression, clinical outcomes, and somatic copy number variation. In addition, the pyroptosis-related genes (PRGs) were clustered, the relative pyroptosis subtypes (PSs) and gene modules were identified, and the prognostic value of the PSs was examined. The expression of key PRGs in two lung adenocarcinoma cell lines was verified by RT-qPCR. Four tumor pyroptosis-associated antigens, CARD8, NAIP, NLRP1, and NLRP3, were screened as potential candidates for LUAD mRNA vaccine development. In the construction of consensus clusters for PRGs, two PSs, PS1 and PS2, were classified, in which patients with PS1 LUAD had a better prognosis. In contrast, patients with PS2 LUAD may have better responsiveness to mRNA vaccine treatment. The key PRGs can be regarded as biomarkers to predict the LUAD prognosis and identify patients suitable for mRNA vaccines. The RT-qPCR results showed that the expression levels of CSMD3, LRP1B, MUC16 and TTN were significantly increased in the two lung adenocarcinoma cell lines, while the expression levels of CARD8, TP53 and ZFHX4 were significantly reduced. The antigens CARD8, NAIP, NLRP1, and NLRP3, which are associated with tumor pyroptosis, could be candidate molecules for LUAD mRNA vaccine development. Patients with PS2 LUAD may be suitable candidates for mRNA vaccine treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Vacunas de ARNm , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis/genética , Variaciones en el Número de Copia de ADN , Adenocarcinoma del Pulmón/genética , Adenocarcinoma/genética , Fenotipo , Neoplasias Pulmonares/genética , Antígenos de Neoplasias/genética , Pronóstico , Microambiente Tumoral , Proteínas de Neoplasias , Proteínas Adaptadoras de Señalización CARD
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA