Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 327-332, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38710517

RESUMEN

Objective To investigate the liver injury induced by chronic intermittent hypoxia (CIH) activation of NOD-like receptor pyrin domain containing protein 1 (NLRP1) inflammasome. Methods C57BL/6 male mice were randomly divided into control group and CIH group. Mice in CIH group were put into CIH chamber for molding (8 hours a day for 4 weeks). After 4 weeks of molding, liver tissue cells was observed by HE staining, and the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of mice were detected by kit. The levels of reactive oxygen species (ROS) in liver tissue were detected by dihydroethidine (DHE). The expression and localization of NLRP1, apoptosis speck-like protein containing a caspase activation and recruiting domain (ASC) and caspase-1 were detected by immunohistochemical staining. The protein expressions of NLRP1, ASC, caspase-1, interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were detected by Western blot analysis. The serum levels of IL-1ß and TNF-α were detected by ELISA. Results Compared with the control group, the CIH group exhibited significant pathological changes in hepatocytes. Hepatocytes showed signs of rupture and necrosis, accompanied by inflammatory cell aggregation. Furthermore, the levels of ALT, AST, ROS, IL-1ß and TNF-α were elevated, along with increased protein expressions of NLRP1, ASC, caspase-1, IL-1ß and TNF-α. Conclusion CIH causes liver injury by activating NLRP1 inflammasome.


Asunto(s)
Caspasa 1 , Hipoxia , Inflamasomas , Interleucina-1beta , Hígado , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno , Animales , Masculino , Inflamasomas/metabolismo , Hipoxia/metabolismo , Hipoxia/complicaciones , Especies Reactivas de Oxígeno/metabolismo , Hígado/metabolismo , Hígado/patología , Caspasa 1/metabolismo , Interleucina-1beta/metabolismo , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Alanina Transaminasa/sangre , Proteínas Adaptadoras de Señalización CARD/metabolismo , Aspartato Aminotransferasas/sangre , Hepatopatías/etiología , Hepatopatías/metabolismo , Hepatopatías/patología
2.
Artículo en Chino | MEDLINE | ID: mdl-38802305

RESUMEN

Objective: To explore the effect of the absent in melanoma 2 (AIM2) -mediated neuroinflammation in noise-induced cognitive dysfunction in rats. Methods: In April 2023, sixteen male Wistar rats were randomly divided into control group and noise group, with 8 rats in each group. The rats in the noise group were placed in 50 cm×50 cm×40 cm transparent boxes and exposed to 100 dB (A) white noise with a sound pressure level of 100 dB (A) (4 h/d for 30 d) . At the same time, rats in the control group were kept in similar boxes with environmental noise less than 60 dB (A) . After 30 days of noise exposure, the Morris water maze experiment was applied to test the learning and memory abilities of the rats; the pathological morphology of hippocampal tissues was observed by Hematoxylin-Eosin (HE) staining. Western blot was used to detect the protein expression levels of AIM2, cysteinyl aspartate specific proteinase-1 (caspase-1) , apoptosis-associated speck-like protein (ASC) , interleukin-1ß (IL-1ß) , IL-18, ionic calcium-binding articulation molecule-1 (Iba-1) , and glial fibrillary acidic protein (GFAP) . The expression of both Iba-1 and GFAP in hippocampal tissue was assessed by immunohistochemical staining. The co-localization of AIM2 with Iba-1 or GFAP was determined by immunofluorescence double staining. Results: Compared with the control group, the escape latency of rats in the noise group was increased by 16.29 s, 17.71 s, and 20.26 s on days 3, 4, and 5, respectively. On day 6, the noise-exposed rats spent shorter time in the target quadrant and had fewer times in crossing the platform[ (7.25±2.27) s and (1.13±0.64) times] than the control group[ (15.64±3.99) s and (4.25±2.12) times] (P<0.05) . After noise exposure, hippocampal neurons of rats displayed marked nuclear hyperchromatic and pyknosis phenomenon. The noise-exposed rats had higher numbers of both microglia and astrocytes (27.00±2.65 and 43.33±5.51) in the DG area of the hippocampus relative to the control group (14.67±3.06 and 20.00±4.58) (P<0.05) . Moreover, the glial cells in the noise group had larger cell cytosol with more and thicker branches. The protein expression levels of inflammatory cytokines Cleaved-IL-1ß and Cleaved-IL-18 in the hippocampus of rats in the noise group (1.55±0.19 and 1.74±0.12) were significantly higher than the control group (1.00±0.11 and 1.00±0.13) (P<0.05) . After noise exposure, the protein expression levels of AIM2, Cleaved-Caspase-1 and ASC (1.19±0.09, 1.34±0.07 and 1.14±0.01) were higher than the control group (1.00±0.07, 1.00±0.14 and 1.00±0.06) and differences between the two groups were statistically significant (P<0.05) . A significant increase in the number of cells co-localizing AIM2 with Iba-1 or GFAP in the noise group (28.67±4.04 and 40.67±5.13) compared with the control group (15.67±4.04 and 17.67±3.79) , and statistically significant differences were observed between the two groups (P<0.05) . Conclusion: Noise exposure may activate the AIM2 inflammasome in hippocampal glial cells of rats, releasing excessive inflammatory cytokines and causing neuroinflammation that damages neurons.


Asunto(s)
Disfunción Cognitiva , Hipocampo , Inflamasomas , Interleucina-18 , Ruido , Ratas Wistar , Animales , Ratas , Masculino , Ruido/efectos adversos , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Inflamasomas/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Proteínas de Unión al ADN/metabolismo , Caspasa 1/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Aprendizaje por Laberinto
3.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734816

RESUMEN

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Caspasa 1 , Dermatitis Atópica , Inflamasomas , Interleucina-18 , Interleucina-1beta , Péptidos y Proteínas de Señalización Intracelular , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión a Fosfato , Humanos , Inflamasomas/metabolismo , Inflamasomas/inmunología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Dermatitis Atópica/inmunología , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Interleucina-1beta/metabolismo , Masculino , Femenino , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Adulto , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-18/metabolismo , Caspasa 1/metabolismo , Piel/patología , Piel/inmunología , Piel/metabolismo , Índice de Severidad de la Enfermedad , Persona de Mediana Edad , Antígenos de Diferenciación Mielomonocítica/metabolismo , Adulto Joven , Proteínas Reguladoras de la Apoptosis/metabolismo , Antígenos CD/metabolismo , Proteínas NLR/metabolismo , Estudios de Casos y Controles , Epidermis/inmunología , Epidermis/metabolismo , Epidermis/patología , Gasderminas , Molécula CD68 , Proteínas de Unión al ADN
4.
Cell Commun Signal ; 22(1): 237, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649988

RESUMEN

BACKGROUND: A water-soluble ingredient of mature leaves of the tropical mahogany 'Neem' (Azadirachta indica), was identified as glycoprotein, thus being named as 'Neem Leaf Glycoprotein' (NLGP). This non-toxic leaf-component regressed cancerous murine tumors (melanoma, carcinoma, sarcoma) recurrently in different experimental circumstances by boosting prime antitumor immune attributes. Such antitumor immunomodulation, aid cytotoxic T cell (Tc)-based annihilation of tumor cells. This study focused on identifying and characterizing the signaling gateway that initiate this systemic immunomodulation. In search of this gateway, antigen-presenting cells (APCs) were explored, which activate and induce the cytotoxic thrust in Tc cells. METHODS: Six glycoprotein-binding C-type lectins found on APCs, namely, MBR, Dectin-1, Dectin-2, DC-SIGN, DEC205 and DNGR-1 were screened on bone marrow-derived dendritic cells from C57BL/6 J mice. Fluorescence microscopy, RT-PCR, flow cytometry and ELISA revealed Dectin-1 as the NLGP-binding receptor, followed by verifications through RNAi. Following detection of ß-Glucans in NLGP, their interactions with Dectin-1 were explored in silico. Roles of second messengers and transcription factors in the downstream signal were studied by co-immunoprecipitation, western blotting, and chromatin-immunoprecipitation. Intracellularization of FITC-coupled NLGP was observed by processing confocal micrographs of DCs. RESULTS: Considering extents of hindrance in NLGP-driven transcription rates of the cytokines IL-10 and IL-12p35 by receptor-neutralization, Dectin-1 receptors on dendritic cells were found to bind NLGP through the ligand's peripheral ß-Glucan chains. The resulting signal phosphorylates PKCδ, forming a trimolecular complex of CARD9, Bcl10 and MALT1, which in turn activates the canonical NFκB-pathway of transcription-regulation. Consequently, the NFκB-heterodimer p65:p50 enhances Il12a transcription and the p50:p50 homodimer represses Il10 transcription, bringing about a cytokine-based systemic-bias towards type-1 immune environment. Further, NLGP gets engulfed within dendritic cells, possibly through endocytic activities of Dectin-1. CONCLUSION: NLGP's binding to Dectin-1 receptors on murine dendritic cells, followed by the intracellular signal, lead to NFκB-mediated contrasting regulation of cytokine-transcriptions, initiating a pro-inflammatory immunopolarization, which amplifies further by the responding immune cells including Tc cells, alongside their enhanced cytotoxicity. These insights into the initiation of mammalian systemic immunomodulation by NLGP at cellular and molecular levels, may help uncovering its mode of action as a novel immunomodulator against human cancers, following clinical trials.


Asunto(s)
Azadirachta , Proteínas Adaptadoras de Señalización CARD , Células Dendríticas , Lectinas Tipo C , Ratones Endogámicos C57BL , FN-kappa B , Hojas de la Planta , Transducción de Señal , Animales , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Azadirachta/química , Ratones , Proteínas Adaptadoras de Señalización CARD/metabolismo , FN-kappa B/metabolismo , Unión Proteica
5.
PLoS Biol ; 22(4): e3002597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38684033

RESUMEN

Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.


Asunto(s)
Proteínas de Unión al Calcio , Citosol , Flagelina , Interacciones Huésped-Patógeno , Inflamasomas , Salmonella typhimurium , Sistemas de Secreción Tipo III , Citosol/metabolismo , Citosol/microbiología , Animales , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Inflamasomas/metabolismo , Ratones , Flagelina/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/genética , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Ratones Endogámicos C57BL , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Análisis de la Célula Individual/métodos , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo
6.
J Clin Invest ; 134(11)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652550

RESUMEN

The immune system can control cancer progression. However, even though some innate immune sensors of cellular stress are expressed intrinsically in epithelial cells, their potential role in cancer aggressiveness and subsequent overall survival in humans is mainly unknown. Here, we show that nucleotide-binding oligomerization domain-like receptor (NLR) family CARD domain-containing 4 (NLRC4) is downregulated in epithelial tumor cells of patients with colorectal cancer (CRC) by using spatial tissue imaging. Strikingly, only the loss of tumor NLRC4, but not stromal NLRC4, was associated with poor immune infiltration (mainly DCs and CD4+ and CD8+ T cells) and accurately predicted progression to metastatic stage IV and decrease in overall survival. By combining multiomics approaches, we show that restoring NLRC4 expression in human CRC cells triggered a broad inflammasome-independent immune reprogramming consisting of type I interferon (IFN) signaling genes and the release of chemokines and myeloid growth factors involved in the tumor infiltration and activation of DCs and T cells. Consistently, such reprogramming in cancer cells was sufficient to directly induce maturation of human DCs toward a Th1 antitumor immune response through IL-12 production in vitro. In multiple human carcinomas (colorectal, lung, and skin), we confirmed that NLRC4 expression in patient tumors was strongly associated with type I IFN genes, immune infiltrates, and high microsatellite instability. Thus, we shed light on the epithelial innate immune sensor NLRC4 as a therapeutic target to promote an efficient antitumor immune response against the aggressiveness of various carcinomas.


Asunto(s)
Proteínas de Unión al Calcio , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Interferón Tipo I , Transducción de Señal , Humanos , Proteínas de Unión al Calcio/genética , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Interferón Tipo I/genética , Transducción de Señal/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Femenino , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Masculino , Línea Celular Tumoral , Linfocitos Infiltrantes de Tumor/inmunología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología
7.
Phytomedicine ; 128: 155515, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484624

RESUMEN

BACKGROUND: Vulvovaginal candidiasis (VVC) is a common infection that affects the female reproductive tract. Pulsatilla decoction (PD), a traditional Chinese herbal medicine, is a classic and effective prescription for VVC. However, its mechanism of action remains unclear. PURPOSE: This study aimed to evaluate the efficacy and potential mechanism of action of the n-butanol extract of Pulsatilla decoction (BEPD) in VVC treatment. METHODS: High performance liquid chromatography (HPLC) was used to detect the main active ingredients in BEPD. A VVC-mouse model was constructed using an estrogen-dependent method to evaluate the efficacy of BEPD in VVC treatment. Fungal burden and morphology in the vaginal cavity were comprehensively assessed. Candida albicans-induced inflammation was examined in vivo and in vitro. The effects of BEPD on the Protein kinase Cδ (PKCδ) /NLR family CARD domain-containing protein 4 (NLRC4)/Interleukin-1 receptor antagonist (IL-1Ra) axis were analyzed using by immunohistochemistry (IHC), immunofluorescence (IF), western blot (WB), and reverse transcription-quantitative polymerase chain reaction (qRT-PCR). RESULTS: BEPD inhibited fungal growth in the vagina of VVC mice, preserved the integrity of the vaginal mucosa, and suppressed inflammatory responses. Most importantly, BEPD activated the "silent" PKCδ/NLRC4/IL-1Ra axis and negatively regulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, thereby exerting a therapeutic efficacy on VVC. CONCLUSIONS: BEPD effects on mice with VVC were dose-dependent. BEPD protects against VVC by inhibiting inflammatory response and NLRP3 inflammasome via the activation of the PKCδ/NLRC4/IL-1Ra axis. This study revealed the pharmacological mechanism of BEPD in VVC treatment and provided further evidence for the application of BEPD in VVC treatment.


Asunto(s)
Candidiasis Vulvovaginal , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Pulsatilla , Animales , Femenino , Ratones , Candida albicans/efectos de los fármacos , Candidiasis Vulvovaginal/tratamiento farmacológico , Proteínas Adaptadoras de Señalización CARD/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Quinasa C-delta/metabolismo , Pulsatilla/química , Vagina/microbiología , Vagina/efectos de los fármacos
8.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473845

RESUMEN

The caspase recruitment domain-containing protein 9 (CARD9) is an intracellular adaptor protein that is abundantly expressed in cells of the myeloid lineage, such as neutrophils, macrophages, and dendritic cells. CARD9 plays a critical role in host immunity against infections caused by fungi, bacteria, and viruses. A CARD9 deficiency impairs the production of inflammatory cytokines and chemokines as well as migration and infiltration, thereby increasing susceptibility to infections. However, CARD9 signaling varies depending on the pathogen causing the infection. Furthermore, different studies have reported altered CARD9-mediated signaling even with the same pathogen. Therefore, this review focuses on and elucidates the current literature on varied CARD9 signaling in response to various infectious stimuli in humans and experimental mice models.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Citocinas , Humanos , Animales , Ratones , Citocinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inmunidad , Transducción de Señal , Macrófagos/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo
9.
Cell ; 187(5): 1223-1237.e16, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428396

RESUMEN

While CD4+ T cell depletion is key to disease progression in people living with HIV and SIV-infected macaques, the mechanisms underlying this depletion remain incompletely understood, with most cell death involving uninfected cells. In contrast, SIV infection of "natural" hosts such as sooty mangabeys does not cause CD4+ depletion and AIDS despite high-level viremia. Here, we report that the CARD8 inflammasome is activated immediately after HIV entry by the viral protease encapsulated in incoming virions. Sensing of HIV protease activity by CARD8 leads to rapid pyroptosis of quiescent cells without productive infection, while T cell activation abolishes CARD8 function and increases permissiveness to infection. In humanized mice reconstituted with CARD8-deficient cells, CD4+ depletion is delayed despite high viremia. Finally, we discovered loss-of-function mutations in CARD8 from "natural hosts," which may explain the peculiarly non-pathogenic nature of these infections. Our study suggests that CARD8 drives CD4+ T cell depletion during pathogenic HIV/SIV infections.


Asunto(s)
Infecciones por VIH , Inflamasomas , Síndrome de Inmunodeficiencia Adquirida del Simio , Animales , Humanos , Ratones , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Progresión de la Enfermedad , Infecciones por VIH/patología , Inflamasomas/metabolismo , Proteínas de Neoplasias/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/fisiología , Viremia , VIH/fisiología
10.
Nature ; 626(7999): 626-634, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326614

RESUMEN

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Asunto(s)
Evolución Molecular , Inmunoterapia Adoptiva , Linfoma Cutáneo de Células T , Mutación , Linfocitos T , Humanos , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/biosíntesis , Citocinas/inmunología , Citocinas/metabolismo , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Inmunoterapia Adoptiva/métodos , Linfoma Cutáneo de Células T/genética , Linfoma Cutáneo de Células T/inmunología , Linfoma Cutáneo de Células T/patología , Linfoma Cutáneo de Células T/terapia , Fosfatidilinositol 3-Quinasas , Transducción de Señal/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/trasplante
11.
Curr Opin HIV AIDS ; 19(2): 56-61, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38169429

RESUMEN

PURPOSE OF REVIEW: HIV requires lifelong antiviral treatment due to the persistence of a reservoir of latently infected cells. Multiple strategies have been pursued to promote the death of infected cells. RECENT FINDINGS: Several groups have focused on multipronged approaches to induce apoptosis of infected cells. One approach is to combine latency reversal agents with proapoptotic compounds and cytotoxic T cells to first reactivate and then clear infected cells. Other strategies include using natural killer cells or chimeric antigen receptor cells to decrease the size of the reservoir.A novel strategy is to promote cell death by pyroptosis. This mechanism relies on the activation of the caspase recruitment domain-containing protein 8 (CARD8) inflammasome by the HIV protease and can be potentiated by nonnucleoside reverse transcriptase inhibitors. SUMMARY: The achievement of a clinically significant reduction in the size of the reservoir will likely require a combination strategy since none of the approaches pursued so far has been successful on its own in clinical trials. This discrepancy between promising in vitro findings and modest in vivo results highlights the hurdles of identifying a universally effective strategy given the wide heterogeneity of the HIV reservoirs in terms of tissue location, capability to undergo latency reversal and susceptibility to cell death.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Latencia del Virus , Linfocitos T CD4-Positivos , VIH-1/fisiología , Muerte Celular , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacología , Proteínas de Neoplasias/uso terapéutico , Proteínas Adaptadoras de Señalización CARD/metabolismo
12.
Front Immunol ; 14: 1282856, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124741

RESUMEN

Inflammasomes are large protein complexes that, once activated, initiate inflammatory responses by activating the caspase-1 protease. They play pivotal roles in host defense against pathogens. The well-established role of NAIP/NLRC4 inflammasome in bacterial infections involves NAIP proteins functioning as sensors for their ligands. However, recent reports have indicated the involvement of NLRC4 in non-bacterial infections and sterile inflammation, even though the role of NAIP proteins and the exact molecular mechanisms underlying inflammasome activation in these contexts remain to be elucidated. In this study, we investigated the activation of the NAIP/NLRC4 inflammasome in response to Trypanosoma cruzi, the protozoan parasite responsible for causing Chagas disease. This parasite has been previously demonstrated to activate NLRP3 inflammasomes. Here we found that NAIP and NLRC4 proteins are also required for IL-1ß and Nitric Oxide (NO) release in response to T. cruzi infection, with their absence rendering macrophages permissive to parasite replication. Moreover, Nlrc4 -/- and Nlrp3 -/- macrophages presented similar impaired responses to T. cruzi, underscoring the non-redundant roles played by these inflammasomes during infection. Notably, it was the live trypomastigotes rather than soluble antigens or extracellular vesicles (EVs) secreted by them, that activated inflammasomes in a cathepsins-dependent manner. The inhibition of cathepsins effectively abrogated caspase-1 cleavage, IL-1ß and NO release, mirroring the phenotype observed in Nlrc4 -/-/Nlrp3 -/- double knockout macrophages. Collectively, our findings shed light on the pivotal role of the NAIP/NLRC4 inflammasome in macrophage responses to T. cruzi infection, providing new insights into its broader functions that extend beyond bacterial infections.


Asunto(s)
Infecciones Bacterianas , Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trypanosoma cruzi/metabolismo , Caspasa 1/metabolismo , Catepsinas/metabolismo , Macrófagos , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo
13.
Med Oncol ; 41(1): 37, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38155268

RESUMEN

Non-Hodgkin lymphoma (NHL) is one of the most common cancer types. Deregulated signaling pathways can trigger certain NHL subtypes, including Diffuse Large B-cell lymphoma. NF-ĸB signaling pathway, which is responsible for the proliferation, growth, and survival of cells, has an essential role in lymphoma development. Although different signals control NF-ĸB activation in various lymphoid malignancies, the characteristic one is the CARD11-BCL10-MALT1 (CBM) complex. The CBM complex is responsible for the initiation of adaptive immune response. Our study is focused on the molecular docking of ten polyphenols as potential CARD11-BCL10-MALT1 complex inhibitors, essentially through MALT1 inhibition. Molecular docking was performed by Auto Dock Tools and AutoDock Vina tool, while SwissADME was used for drug-likeness and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of the ligands. Out of 66 ligands that were used in this study, we selected and visualized five. Selection criteria were based on the binding energy score and position of the ligands on the used protein. 2D and 3D visualizations showed interactions of ligands with the protein. Five ligands are considered potential inhibitors of MALT1, thus affecting NF-ĸB signaling pathway. However, additional in vivo and in vitro studies are required to confirm their mechanism of inhibition.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Linfoma de Células B Grandes Difuso , Humanos , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/química , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , FN-kappa B/metabolismo , Guanilato Ciclasa/metabolismo , Simulación del Acoplamiento Molecular
14.
Cell Mol Immunol ; 20(12): 1513-1526, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38008850

RESUMEN

Inflammasomes are important sentinels of innate immune defense; they sense pathogens and induce the cell death of infected cells, playing key roles in inflammation, development, and cancer. Several inflammasome sensors detect and respond to specific pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) by forming a multiprotein complex with the adapters ASC and caspase-1. During disease, cells are exposed to several PAMPs and DAMPs, leading to the concerted activation of multiple inflammasomes. However, the molecular mechanisms that integrate multiple inflammasome sensors to facilitate optimal host defense remain unknown. Here, we discovered that simultaneous inflammasome activation by multiple ligands triggered multiple types of programmed inflammatory cell death, and these effects could not be mimicked by treatment with a pure ligand of any single inflammasome. Furthermore, NLRP3, AIM2, NLRC4, and Pyrin were determined to be members of a large multiprotein complex, along with ASC, caspase-1, caspase-8, and RIPK3, and this complex drove PANoptosis. Furthermore, this multiprotein complex was released into the extracellular space and retained as multiple inflammasomes. Multiple extracellular inflammasome particles could induce inflammation after their engulfment by neighboring macrophages. Collectively, our findings define a previously unknown regulatory connection and molecular interaction between inflammasome sensors, which drives the assembly of a multiprotein complex that includes multiple inflammasome sensors and cell death regulators. The discovery of critical interactions among NLRP3, AIM2, NLRC4, and Pyrin represents a new paradigm in understanding the functions of these molecules in innate immunity and inflammasome biology as well as identifying new therapeutic targets for NLRP3-, AIM2-, NLRC4- and Pyrin-mediated diseases.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pirina/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos , Inflamación , Caspasas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al ADN/metabolismo
15.
Mediators Inflamm ; 2023: 3224708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885469

RESUMEN

Immune complexes (ICs) skew immune responses toward either a pro- or anti-inflammatory direction based on the type of stimulation. Immunoglobulin E (IgE) is associated with Th2 immune responses and known to activate innate immune cells. However, roles of antigen (Ag)-specific-IgE ICs in regulating human eosinophil responses remain elusive; therefore, this study builts upon the mechanism of which ovalbumin (Ova)-IgE ICs affects eosinophilic responses utilizing human EoL-1 cell line as a model. Eosinophils are granulocytes functioning through pattern recognition receptors (PRRs) and destructive granule contents in allergic inflammation and parasitic infections. One of the PRRs that eosinophils express is NLRC4, a member of the CARD domain containing nucleotide-binding oligomerization (NOD)-like receptor (NLR) family. Upon recognition of its specific ligand flagellin, NLRC4 inflammasome is formed and leads to the release of interleukin-1ß (IL-1ß). We exhibited that Ova-IgE ICs induced the NLRC4-inflammasome components, including NLRC4, caspase-1, intracellular IL-1ß, and secretion of IL-1ß, as well as the granule contents MMP9, TIMP1, and TIMP2 proteins via TLR2 signaling; these responses were suppressed, when NLRC4 inflammasome got actived in the presence of ICs. Furthermore, Ova-IgE ICs induced mRNA expressions of MMP9, TIMP2, and ECP and protein expressions of MMP9 and TIMP2 in EoL-1 through FcɛRII. Interestingly, TLR2 ligand and Ova-IgE ICs costimulation elevated the number of CD63+ cells, a degranulation marker, as compared to the native IgE. Collectively, our findings provide a mechanism for the impacts of Ova-IgE ICs on eosinophilic responses via NLRC4-inflammasome and may help understand eosinophil-associated diseases, including chronic eosinophilic pneumonia, eosinophilic esophagitis, eosinophilic granulomatosis, parasitic infections, allergy, and asthma.


Asunto(s)
Inflamasomas , Enfermedades Parasitarias , Humanos , Inflamasomas/metabolismo , Complejo Antígeno-Anticuerpo/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inmunoglobulina E/metabolismo , Ligandos , Receptor Toll-Like 2/metabolismo , Inmunidad Innata , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo
16.
Zhonghua Nan Ke Xue ; 29(1): 31-37, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-37846829

RESUMEN

OBJECTIVE: To explore the clinical value of the inflammasomes NLRP1 and NLRC4 in the diagnosis and treatment of PCa. METHODS: Using immunohistochemical staining, we detected the expressions of the inflammasomes NLRP1 and NLRC4 and the inflammatory cytokines IL-18 and IL-1ß in 54 cases of BPH and 58 cases of PCa treated in Pinghu First People's Hospital from January 2022 to May 2022. We analyzed the characteristics of their expressions in the two groups of patients and the correlation of NLRP1 and NLRC4 expressions with tPSA, fPSA and Gleason scores in the PCa patients. Based on the Cancer Genome Atlas dataset, we compared the expressions of NLRP1 and NLRC4 in different stages of PCa. RESULTS: The NLRP1 and NLRC4 expressions were significantly increased in the PCa patients (P < 0.001). The expression of NLRP1 was linearly correlated with those of IL-1ß and IL-18 (P < 0.05), and so was the expression of NLRC4 with that of IL-18 (P < 0.05). The expressions of NLRP1 and NLRC4 were positively correlated with the Gleason scores of the PCa patients (P < 0.05), the former remarkably higher in T3 and T4 than in T1 (P > 0.05), and the latter markedly higher in T2, T3 and T4 than in T1 (P < 0.05). CONCLUSION: The inflammasomes NLRP1 and NLRC4 are highly expressed in PCa and facilitate tumorgenesis by promoting the maturation and release of the inflammatory cytokines IL-1ß and IL-18, which indicates their important role in the progression of tumors and clinical value in the risk assessment and prognosis of PCa.


Asunto(s)
Inflamasomas , Neoplasias de la Próstata , Masculino , Humanos , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Citocinas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas NLR/metabolismo
17.
Nat Commun ; 14(1): 4622, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528097

RESUMEN

Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1ß production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.


Asunto(s)
Aterosclerosis , Humanos , Animales , Ratones , Aterosclerosis/metabolismo , Autofagia/genética , Apolipoproteínas E/genética , Lípidos , Proteínas Adaptadoras de Señalización CARD/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
18.
J Adv Res ; 52: 219-232, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586642

RESUMEN

INTRODUCTION: The perturbations of gut microbiota could interact with excessively activated immune responses and play key roles in the etiopathogenesis of ulcerative colitis (UC). Desulfovibrio, the most predominant sulfate reducing bacteria (SRB) resided in the human gut, was observed to overgrow in patients with UC. The interactions between specific gut microbiota and drugs and their impacts on UC treatment have not been demonstrated well. OBJECTIVES: This study aimed to elucidate whether Desulfovibrio vulgaris (D. vulgaris, DSV) and its flagellin could activate nucleotide-binding oligomerization domain-like receptors (NLR) family of apoptosis inhibitory proteins (NAIP) / NLR family caspase activation and recruitment domain-containing protein 4 (NLRC4) inflammasome and promote colitis, and further evaluate the efficacy of eugeniin targeting the interaction interface of D. vulgaris flagellin (DVF) and NAIP to attenuate UC. METHODS: The abundance of DSV and the occurrence of macrophage pyroptosis in human UC tissues were investigated. Colitis in mice was established by dextran sulfate sodium (DSS) and gavaged with DSV or its purified flagellin. NAIP/NLRC4 inflammasome activation and macrophage pyroptosis were evaluated in vivo and in vitro. The effects of eugeniin on blocking the interaction of DVF and NAIP/NLRC4 and relieving colitis were also assessed. RESULTS: The abundance of DSV increased in the feces of patients with UC and was found to be associated with disease activity. DSV and its flagellin facilitated DSS-induced colitis in mice. Mechanistically, RNA sequencing showed that gene expression associated with inflammasome complex and pyroptosis was upregulated after DVF treatment in macrophages. DVF was further demonstrated to induce significant macrophage pyroptosis in vitro, depending on NAIP/NLRC4 inflammasome activation. Furthermore, eugeniin was screened as an inhibitor of the interface between DVF and NAIP and successfully alleviated the proinflammatory effect of DVF in colitis. CONCLUSION: Targeting DVF-induced NAIP/NLRC4 inflammasome activation and macrophage pyroptosis ameliorates UC. This finding is of great significance for exploring the gut microbiota-host interactions in UC development and providing new insights for precise treatment.


Asunto(s)
Colitis Ulcerosa , Desulfovibrio vulgaris , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Flagelina/metabolismo , Desulfovibrio vulgaris/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Macrófagos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo
19.
Blood ; 142(18): 1543-1555, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37562004

RESUMEN

A strategy combining targeted therapies is effective in B-cell lymphomas (BCL), such as mantle cell lymphoma (MCL), but acquired resistances remain a recurrent issue. In this study, we performed integrative longitudinal genomic and single-cell RNA-sequencing analyses of patients with MCL who were treated with targeted therapies against CD20, BCL2, and Bruton tyrosine kinase (OAsIs trial). We revealed the emergence of subclones with a selective advantage against OAsIs combination in vivo and showed that resistant cells were characterized by B-cell receptor (BCR)-independent overexpression of NF-κB1 target genes, especially owing to CARD11 mutations. Functional studies demonstrated that CARD11 gain of function not only resulted in BCR independence but also directly increased the transcription of the antiapoptotic BCL2A1, leading to resistance against venetoclax and OAsIs combination. Based on the transcriptional profile of OAsIs-resistant subclones, we designed a 16-gene resistance signature that was also predictive for patients with MCL who were treated with conventional chemotherapy, underlying a common escape mechanism. Among druggable strategies to inhibit CARD11-dependent NF-κB1 transduction, we evaluated the selective inhibition of its essential partner MALT1. We demonstrated that MALT1 protease inhibition led to a reduction in the expression of genes involved in OAsIs resistance, including BCL2A1. Consequently, MALT1 inhibition induced synergistic cell death in combination with BCL2 inhibition, irrespective of CARD11 mutational status, both in vitro and in vivo. Taken together, our study identified mechanisms of resistance to targeted therapies and provided a novel strategy to overcome resistance in aggressive BCL. The OAsIs trial was registered at www.clinicaltrials.gov #NCT02558816.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfoma de Células del Manto , Adulto , Humanos , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Línea Celular Tumoral , Mutación con Ganancia de Función , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células del Manto/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
20.
Elife ; 122023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37417868

RESUMEN

Inflammasomes are cytosolic innate immune complexes that assemble upon detection of diverse pathogen-associated cues and play a critical role in host defense and inflammatory pathogenesis. Here, we find that the human inflammasome-forming sensor CARD8 senses HIV-1 infection via site-specific cleavage of the CARD8 N-terminus by the HIV protease (HIV-1PR). HIV-1PR cleavage of CARD8 induces pyroptotic cell death and the release of pro-inflammatory cytokines from infected cells, processes regulated by Toll-like receptor stimulation prior to viral infection. In acutely infected cells, CARD8 senses the activity of both de novo translated HIV-1PR and packaged HIV-1PR that is released from the incoming virion. Moreover, our evolutionary analyses reveal that the HIV-1PR cleavage site in human CARD8 arose after the divergence of chimpanzees and humans. Although chimpanzee CARD8 does not recognize proteases from HIV or simian immunodeficiency viruses from chimpanzees (SIVcpz), SIVcpz does cleave human CARD8, suggesting that SIVcpz was poised to activate the human CARD8 inflammasome prior to its cross-species transmission into humans. Our findings suggest a unique role for CARD8 inflammasome activation in response to lentiviral infection of humans.


Asunto(s)
Infecciones por VIH , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Inflamasomas/metabolismo , Pan troglodytes/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA