Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.263
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 19(6): e0304876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848336

RESUMEN

We have identified an acyl-carrier protein, Rv0100, that is up-regulated in a dormancy model. This protein plays a critical role in the fatty acid biosynthesis pathway, which is important for energy storage and cell wall synthesis in Mycobacterium tuberculosis (MTB). Knocking out the Rv0100 gene resulted in a significant reduction of growth compared to wild-type MTB in the Wayne model of non-replicating persistence. We have also shown that Rv0100 is essential for the growth and survival of this pathogen during infection in mice and a macrophage model. Furthermore, knocking out Rv0100 disrupted the synthesis of phthiocerol dimycocerosates, the virulence-enhancing lipids produced by MTB and Mycobacterium bovis. We hypothesize that this essential gene contributes to MTB virulence in the state of latent infection. Therefore, inhibitors targeting this gene could prove to be potent antibacterial agents against this pathogen.


Asunto(s)
Proteína Transportadora de Acilo , Proteínas Bacterianas , Mycobacterium tuberculosis , Animales , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Ratones , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteína Transportadora de Acilo/metabolismo , Proteína Transportadora de Acilo/genética , Macrófagos/microbiología , Macrófagos/metabolismo , Virulencia , Regulación Bacteriana de la Expresión Génica , Tuberculosis/microbiología , Lípidos/química
2.
Arch Microbiol ; 206(7): 319, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907853

RESUMEN

Arazyme is an extracellular metalloprotease which is secreted by a Gram-negative symbiotic bacterium called Serratia proteomaculans. There are limited studies on various biological activities of arazyme. This preliminary study was designed to investigate the anti-cancer and anti-inflammatory capacities of recombinant arazyme (rAra) in vitro and in vivo. Arazyme gene, araA was cloned and expressed in E. coli BL21 (DE3) using pET-28a as a vector. Nickel column purification was used to obtain pure rAra. SDS-PAGE and protein assay were used to identify the product and to measure protein content, respectively. Skimmed milk test and casein assay were carried out to assess protease activity. MCF7 cells as a breast cancer cell model were exposed to different concentrations of rAra to study anti-breast cancer potentials using MTT assay. The anti-inflammatory property of rAra was investigated using a murine air-pouch model. PCR and SDS-PAGE data showed that cloning and expression of rAra was successful and the enzyme of interest was observed at 52 KDa. Protein assay indicated that 1 mg/ml of rAra was obtained through purification. A clear zone around the enzyme on skimmed milk agar confirmed the proteolytic activity of rAra and the enzymatic activity was 320 U/mg protein in the casein assay. Cytotoxic effects of rAra reported as IC50 were 16.2 µg/ml and 13.2 mg/ml after 24 h and 48 h, respectively. In the air-pouch model, both the neutrophil count and myeloperoxidase activity, which are measures of inflammation, were significantly reduced. The results showed that rAra can be used in future mechanistic studies and R&D activities in the pharmaceutical industry to investigate the safety and efficacy of the recombinant arazyme.


Asunto(s)
Antiinflamatorios , Neoplasias de la Mama , Clonación Molecular , Escherichia coli , Proteínas Recombinantes , Serratia , Humanos , Animales , Femenino , Antiinflamatorios/farmacología , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Células MCF-7 , Neoplasias de la Mama/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Serratia/genética , Serratia/enzimología , Metaloproteasas/genética , Metaloproteasas/metabolismo , Metaloproteasas/aislamiento & purificación , Antineoplásicos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Nat Commun ; 15(1): 4926, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858371

RESUMEN

Chlamydia invasion of epithelial cells is a pathogen-driven process involving two functionally distinct effectors - TarP and TmeA. They collaborate to promote robust actin dynamics at sites of entry. Here, we extend studies on the molecular mechanism of invasion by implicating the host GTPase dynamin 2 (Dyn2) in the completion of pathogen uptake. Importantly, Dyn2 function is modulated by TarP and TmeA at the levels of recruitment and activation through oligomerization, respectively. TarP-dependent recruitment requires phosphatidylinositol 3-kinase and the small GTPase Rac1, while TmeA has a post-recruitment role related to Dyn2 oligomerization. This is based on the rescue of invasion duration and efficiency in the absence of TmeA by the Dyn2 oligomer-stabilizing small molecule activator Ryngo 1-23. Notably, Dyn2 also regulated turnover of TarP- and TmeA-associated actin networks, with disrupted Dyn2 function resulting in aberrant turnover dynamics, thus establishing the interdependent functional relationship between Dyn2 and the effectors TarP and TmeA.


Asunto(s)
Actinas , Chlamydia trachomatis , Dinamina II , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/fisiología , Humanos , Dinamina II/metabolismo , Dinamina II/genética , Células HeLa , Actinas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/metabolismo , Interacciones Huésped-Patógeno , Células Epiteliales/microbiología , Células Epiteliales/metabolismo
4.
ACS Synth Biol ; 13(6): 1893-1905, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38825826

RESUMEN

Gas-fermenting Clostridium species hold tremendous promise for one-carbon biomanufacturing. To unlock their full potential, it is crucial to unravel and optimize the intricate regulatory networks that govern these organisms; however, this aspect is currently underexplored. In this study, we employed pooled CRISPR interference (CRISPRi) screening to uncover a wide range of functional transcription factors (TFs) in Clostridium ljungdahlii, a representative species of gas-fermenting Clostridium, with a special focus on TFs associated with the utilization of carbon resources. Among the 425 TF candidates, we identified 75 and 68 TF genes affecting the heterotrophic and autotrophic growth of C. ljungdahlii, respectively. We focused our attention on two of the screened TFs, NrdR and DeoR, and revealed their pivotal roles in the regulation of deoxyribonucleoside triphosphates (dNTPs) supply, carbon fixation, and product synthesis in C. ljungdahlii, thereby influencing the strain performance in gas fermentation. Based on this, we proceeded to optimize the expression of deoR in C. ljungdahlii by adjusting its promoter strength, leading to an improved growth rate and ethanol synthesis of C. ljungdahlii when utilizing syngas. This study highlights the effectiveness of pooled CRISPRi screening in gas-fermenting Clostridium species, expanding the horizons for functional genomic research in these industrially important bacteria.


Asunto(s)
Sistemas CRISPR-Cas , Clostridium , Fermentación , Factores de Transcripción , Clostridium/genética , Clostridium/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regiones Promotoras Genéticas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ingeniería Metabólica/métodos , Gases/metabolismo
5.
Mikrochim Acta ; 191(7): 403, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888689

RESUMEN

An efficient PEC biosensor is proposed for ATP detection based on exciton energy transfer from CdTe quantum dots (CdTe QDs) to Au nanoparticles (AuNPs), integrating CRISPR/Cas12a trans-cleavage activity and specific recognition of ZIF-67 to ATP. Exciton energy transfer between CdTe QDs and AuNPs system is firstly constructed as photoelectrochemical (PEC) sensing substrate. Then, the activator DNAs, used to activate CRISPR/Cas12a, are absorbed on the surface of ZIF-67. In the presence of ATP, the activator DNAs are released due to more efficient adsorption of ZIF-67 to ATP. The released activator DNA activates trans-cleavage activity of CRISPR/Cas12a to degrade ssDNA on the electrode, leading to the recovery of photocurrent due to the interrupted energy transfer. Benefiting from the specific recognition of ZIF-67 to ATP and CRISPR/Cas12a-modulated amplification strategy, the sensor is endowed with excellent specificity and high sensitivity.


Asunto(s)
Adenosina Trifosfato , Técnicas Biosensibles , Sistemas CRISPR-Cas , Compuestos de Cadmio , Técnicas Electroquímicas , Oro , Nanopartículas del Metal , Puntos Cuánticos , Técnicas Biosensibles/métodos , Adenosina Trifosfato/análisis , Adenosina Trifosfato/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Compuestos de Cadmio/química , Puntos Cuánticos/química , Oro/química , Nanopartículas del Metal/química , Telurio/química , Imidazoles/química , Proteínas Asociadas a CRISPR/química , Límite de Detección , Zeolitas/química , Endodesoxirribonucleasas/química , Estructuras Metalorgánicas/química , Procesos Fotoquímicos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética
6.
Mol Cell ; 84(12): 2368-2381.e6, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38834067

RESUMEN

The Tn7 family of transposons is notable for its highly regulated integration mechanisms, including programmable RNA-guided transposition. The targeting pathways rely on dedicated target selection proteins from the TniQ family and the AAA+ adaptor TnsC to recruit and activate the transposase at specific target sites. Here, we report the cryoelectron microscopy (cryo-EM) structures of TnsC bound to the TniQ domain of TnsD from prototypical Tn7 and unveil key regulatory steps stemming from unique behaviors of ATP- versus ADP-bound TnsC. We show that TnsD recruits ADP-bound dimers of TnsC and acts as an exchange factor to release one protomer with exchange to ATP. This loading process explains how TnsC assembles a heptameric ring unidirectionally from the target site. This unique loading process results in functionally distinct TnsC protomers within the ring, providing a checkpoint for target immunity and explaining how insertions at programmed sites precisely occur in a specific orientation across Tn7 elements.


Asunto(s)
Adenosina Difosfato , Adenosina Trifosfato , Microscopía por Crioelectrón , Elementos Transponibles de ADN , Transposasas , Elementos Transponibles de ADN/genética , Adenosina Trifosfato/metabolismo , Transposasas/metabolismo , Transposasas/genética , Transposasas/química , Adenosina Difosfato/metabolismo , Unión Proteica , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Modelos Moleculares , Multimerización de Proteína , Sitios de Unión
7.
Arch Microbiol ; 206(7): 299, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861015

RESUMEN

Chaperonins from psychrophilic bacteria have been shown to exist as single-ring complexes. This deviation from the standard double-ring structure has been thought to be a beneficial adaptation to the cold environment. Here we show that Cpn60 from the psychrophile Pseudoalteromonas haloplanktis (Ph) maintains its double-ring structure also in the cold. A strongly reduced ATPase activity keeps the chaperonin in an energy-saving dormant state, until binding of client protein activates it. Ph Cpn60 in complex with co-chaperonin Ph Cpn10 efficiently assists in protein folding up to 55 °C. Moreover, we show that recombinant expression of Ph Cpn60 can provide its host Escherichia coli with improved viability under low temperature growth conditions. These properties of the Ph chaperonin may make it a valuable tool in the folding and stabilization of psychrophilic proteins.


Asunto(s)
Proteínas Bacterianas , Frío , Escherichia coli , Pliegue de Proteína , Pseudoalteromonas , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonina 60/metabolismo , Chaperonina 60/genética , Chaperonina 60/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Chaperoninas/metabolismo , Chaperoninas/genética , Chaperoninas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética
8.
Environ Microbiol ; 26(6): e16632, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861374

RESUMEN

This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical ß-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by G. bivora in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation.


Asunto(s)
Proteínas Bacterianas , Hierro , Oxidación-Reducción , Proteómica , Hierro/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Crecimiento Quimioautotrófico , Familia de Multigenes , Regulación Bacteriana de la Expresión Génica , Agua de Mar/microbiología
9.
Nat Commun ; 15(1): 5123, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879612

RESUMEN

Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-ß-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.


Asunto(s)
Proteínas Bacterianas , Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Polisacáridos , Polisacáridos/metabolismo , Humanos , Bacteroides thetaiotaomicron/metabolismo , Bacteroides thetaiotaomicron/enzimología , Bacteroides thetaiotaomicron/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Especificidad por Sustrato , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Manosa/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/genética , Familia de Multigenes
10.
Genomics ; 116(4): 110880, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857812

RESUMEN

The implementation of several global microbiome studies has yielded extensive insights into the biosynthetic potential of natural microbial communities. However, studies on the distribution of several classes of ribosomally synthesized and post-translationally modified peptides (RiPPs), non-ribosomal peptides (NRPs) and polyketides (PKs) in different large microbial ecosystems have been very limited. Here, we collected a large set of metagenome-assembled bacterial genomes from marine, freshwater and terrestrial ecosystems to investigate the biosynthetic potential of these bacteria. We demonstrate the utility of public dataset collections for revealing the different secondary metabolite biosynthetic potentials among these different living environments. We show that there is a higher occurrence of RiPPs in terrestrial systems, while in marine systems, we found relatively more terpene-, NRP-, and PK encoding gene clusters. Among the many new biosynthetic gene clusters (BGCs) identified, we analyzed various Nif-11-like and nitrile hydratase leader peptide (NHLP) containing gene clusters that would merit further study, including promising products, such as mersacidin-, LAP- and proteusin analogs. This research highlights the significance of public datasets in elucidating the biosynthetic potential of microbes in different living environments and underscores the wide bioengineering opportunities within the RiPP family.


Asunto(s)
Bacterias , Productos Biológicos , Familia de Multigenes , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Productos Biológicos/metabolismo , Péptidos/metabolismo , Péptidos/genética , Procesamiento Proteico-Postraduccional , Metagenoma , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ecosistema , Genoma Bacteriano , Microbiota , Policétidos/metabolismo
11.
Sci Rep ; 14(1): 12876, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834612

RESUMEN

This study investigates quercetin complexes as potential synergistic agents against the important respiratory pathogen Streptococcus pneumoniae. Six quercetin complexes (QCX1-6) were synthesized by reacting quercetin with various metal salts and boronic acids and characterized using FTIR spectroscopy. Their antibacterial activity alone and in synergism with antibiotics was evaluated against S. pneumoniae ATCC 49619 using disc diffusion screening, broth microdilution MIC determination, and checkerboard assays. Complexes QCX-3 and QCX-4 demonstrated synergy when combined with levofloxacin via fractional inhibitory concentration indices ≤ 0.5 as confirmed by time-kill kinetics. Molecular docking elucidated interactions of these combinations with virulence enzymes sortase A and sialidase. A biofilm inhibition assay found the synergistic combinations more potently reduced biofilm formation versus monotherapy. Additionally, gene-gene interaction networks, biological activity predictions and in-silico toxicity profiling provided insights into potential mechanisms of action and safety.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Quercetina , Streptococcus pneumoniae , Streptococcus pneumoniae/efectos de los fármacos , Quercetina/farmacología , Quercetina/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Sinergismo Farmacológico , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/antagonistas & inhibidores , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/química , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo
12.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38845374

RESUMEN

AIMS: Carbapenemase-producing Klebsiella pneumoniae is categorized as a "critical global priority-one" pathogen by WHO and new and efficient treatment options are warranted. This study aims to assess the antibacterial and antibiofilm potential of N-acetyl cysteine (NAC), against clinical isolates of extensively drug resistant (XDR) K. pneumoniae and elucidate the mechanism of killing. METHODS AND RESULTS: XDR-K. pneumoniae were isolated from patients admitted to Madras Medical Mission Hospital, India. Antibiofilm activity of NAC was checked using in vitro continuous flow model and RNA sequencing was done using Illumina Novoseq. Data quality was checked using FastQC and MultiQC software. Our findings revealed that NAC at a concentration of 100 mg/ml was safe, and could inhibit the growth and completely eradicate mature biofilms of all XDR-K. pneumoniae isolates. Transcriptomic responses in XDR-K. pneumoniae to NAC showed significant downregulation of the genes associated with crucial biogenesis pathways, including electron transport chain and oxidoreductase activity besides a specific cluster of genes linked to ribosomal proteins. CONCLUSIONS: Our results indicate that NAC kills the XDR- K. pneumoniae clinical isolates by shutting the overall metabolism and, hence, successfully eradicate in vitro biofilms formed on catheters.


Asunto(s)
Acetilcisteína , Antibacterianos , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Klebsiella pneumoniae , Transcriptoma , Biopelículas/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Antibacterianos/farmacología , Acetilcisteína/farmacología , Humanos , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Klebsiella/microbiología , Pruebas de Sensibilidad Microbiana , India , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
13.
Nat Commun ; 15(1): 4740, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834545

RESUMEN

Mitophagy is critical for mitochondrial quality control and function to clear damaged mitochondria. Here, we found that Burkholderia pseudomallei maneuvered host mitophagy for its intracellular survival through the type III secretion system needle tip protein BipD. We identified BipD, interacting with BTB-containing proteins KLHL9 and KLHL13 by binding to the Back and Kelch domains, recruited NEDD8 family RING E3 ligase CUL3 in response to B. pseudomallei infection. Although evidently not involved in regulation of infectious diseases, KLHL9/KLHL13/CUL3 E3 ligase complex was essential for BipD-dependent ubiquitination of mitochondria in mouse macrophages. Mechanistically, we discovered the inner mitochondrial membrane IMMT via host ubiquitome profiling as a substrate of KLHL9/KLHL13/CUL3 complex. Notably, K63-linked ubiquitination of IMMT K211 was required for initiating host mitophagy, thereby reducing mitochondrial ROS production. Here, we show a unique mechanism used by bacterial pathogens that hijacks host mitophagy for their survival.


Asunto(s)
Proteínas Bacterianas , Burkholderia pseudomallei , Macrófagos , Mitocondrias , Mitofagia , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidad , Burkholderia pseudomallei/fisiología , Burkholderia pseudomallei/genética , Animales , Ratones , Mitocondrias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Macrófagos/microbiología , Macrófagos/metabolismo , Ubiquitinación , Melioidosis/microbiología , Melioidosis/metabolismo , Interacciones Huésped-Patógeno , Especies Reactivas de Oxígeno/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Ratones Endogámicos C57BL , Membranas Mitocondriales/metabolismo , Células HEK293 , Células RAW 264.7
14.
Front Cell Infect Microbiol ; 14: 1411333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854658

RESUMEN

Mycobacterium abscessus (Mab) is an opportunistic pathogen afflicting individuals with underlying lung disease such as Cystic Fibrosis (CF) or immunodeficiencies. Current treatment strategies for Mab infections are limited by its inherent antibiotic resistance and limited drug access to Mab in its in vivo niches resulting in poor cure rates of 30-50%. Mab's ability to survive within macrophages, granulomas and the mucus laden airways of the CF lung requires adaptation via transcriptional remodeling to counteract stresses like hypoxia, increased levels of nitrate, nitrite, and reactive nitrogen intermediates. Mycobacterium tuberculosis (Mtb) is known to coordinate hypoxic adaptation via induction of respiratory nitrate assimilation through the nitrate reductase narGHJI. Mab, on the other hand, does not encode a respiratory nitrate reductase. In addition, our recent study of the transcriptional responses of Mab to hypoxia revealed marked down-regulation of a locus containing putative nitrate assimilation genes, including the orphan response regulator nnaR (nitrate/nitrite assimilation regulator). These putative nitrate assimilation genes, narK3 (nitrate/nitrite transporter), nirBD (nitrite reductase), nnaR, and sirB (ferrochelatase) are arranged contiguously while nasN (assimilatory nitrate reductase identified in this work) is encoded in a different locus. Absence of a respiratory nitrate reductase in Mab and down-regulation of nitrogen metabolism genes in hypoxia suggest interplay between hypoxia adaptation and nitrate assimilation are distinct from what was previously documented in Mtb. The mechanisms used by Mab to fine-tune the transcriptional regulation of nitrogen metabolism in the context of stresses e.g. hypoxia, particularly the role of NnaR, remain poorly understood. To evaluate the role of NnaR in nitrate metabolism we constructed a Mab nnaR knockout strain (MabΔnnaR ) and complement (MabΔnnaR+C ) to investigate transcriptional regulation and phenotypes. qRT-PCR revealed NnaR is necessary for regulating nitrate and nitrite reductases along with a putative nitrate transporter. Loss of NnaR compromised the ability of Mab to assimilate nitrate or nitrite as sole nitrogen sources highlighting its necessity. This work provides the first insights into the role of Mab NnaR setting a foundation for future work investigating NnaR's contribution to pathogenesis.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Mycobacterium abscessus , Nitratos , Nitritos , Mycobacterium abscessus/metabolismo , Mycobacterium abscessus/genética , Nitratos/metabolismo , Nitritos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Nitrito Reductasas/metabolismo , Nitrito Reductasas/genética , Nitrato-Reductasa/metabolismo , Nitrato-Reductasa/genética
15.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891956

RESUMEN

Regulatory cystathionine ß-synthase (CBS) domains are widespread in proteins; however, difficulty in structure determination prevents a comprehensive understanding of the underlying regulation mechanism. Tetrameric microbial inorganic pyrophosphatase containing such domains (CBS-PPase) is allosterically inhibited by AMP and ADP and activated by ATP and cell alarmones diadenosine polyphosphates. Each CBS-PPase subunit contains a pair of CBS domains but binds cooperatively to only one molecule of the mono-adenosine derivatives. We used site-directed mutagenesis of Desulfitobacterium hafniense CBS-PPase to identify the key elements determining the direction of the effect (activation or inhibition) and the "half-of-the-sites" ligand binding stoichiometry. Seven amino acid residues were selected in the CBS1 domain, based on the available X-ray structure of the regulatory domains, and substituted by alanine and other residues. The interaction of 11 CBS-PPase variants with the regulating ligands was characterized by activity measurements and isothermal titration calorimetry. Lys100 replacement reversed the effect of ADP from inhibition to activation, whereas Lys95 and Gly118 replacements made ADP an activator at low concentrations but an inhibitor at high concentrations. Replacement of these residues for alanine increased the stoichiometry of mono-adenosine phosphate binding by twofold. These findings identified several key protein residues and suggested a "two non-interacting pairs of interacting regulatory sites" concept in CBS-PPase regulation.


Asunto(s)
Cistationina betasintasa , Cistationina betasintasa/metabolismo , Cistationina betasintasa/química , Cistationina betasintasa/genética , Mutación , Unión Proteica , Mutagénesis Sitio-Dirigida , Nucleótidos de Adenina/metabolismo , Nucleótidos de Adenina/química , Dominios Proteicos , Pirofosfatasas/metabolismo , Pirofosfatasas/química , Pirofosfatasas/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Pirofosfatasa Inorgánica/metabolismo , Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/genética , Modelos Moleculares , Sitios de Unión
16.
Cells ; 13(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38920649

RESUMEN

Mycobacterium tuberculosis causes 6.4 million cases of tuberculosis and claims 1.6 million lives annually. Mycobacterial adhesion, invasion of host cells, and subsequent intracellular survival are crucial for the infection and dissemination process, yet the cellular mechanisms underlying these phenomena remain poorly understood. This study created a Bacillus Calmette-Guérin (BCG) transposon library using a MycomarT7 phage carrying a Himar1 Mariner transposon to identify genes related to mycobacteria adhesion and invasion. Using adhesion and invasion model screening, we found that the mutant strain B2909 lacked adhesion and invasion abilities because of an inactive fadD18 gene, which encodes a fatty-acyl CoA ligase, although the specific function of this gene remains unclear. To investigate the role of FadD18, we constructed a complementary strain and observed that fadD18 expression enhanced the colony size and promoted the formation of a stronger cord-like structure; FadD18 expression also inhibited BCG growth and reduced BCG intracellular survival in macrophages. Furthermore, FadD18 expression elevated levels of the proinflammatory cytokines IL-6, IL-1ß, and TNF-α in infected macrophages by stimulating the NF-κB and MAPK signaling pathways. Overall, the FadD18 plays a key role in the adhesion and invasion abilities of mycobacteria while modulating the intracellular survival of BCG by influencing the production of proinflammatory cytokines.


Asunto(s)
Citocinas , Mycobacterium tuberculosis , Citocinas/metabolismo , Macrófagos/microbiología , Macrófagos/metabolismo , Mycobacterium bovis , Ratones , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Humanos , FN-kappa B/metabolismo , Viabilidad Microbiana , Adhesión Bacteriana
17.
J Agric Food Chem ; 72(25): 14433-14447, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38866717

RESUMEN

JHBp2 is a peptide purified from Jinhua ham broth with antibacterial activity against Salmonella typhimurium. Untargeted metabolomics and label-free quantitative proteomics were used to analyze metabolic and protein expression changes in S. typhimurium after JHBp2 treatment. Cell wall and membrane damage results indicate that JHBp2 has membrane-disruptive properties, causing leakage of intracellular nucleic acids and proteins. Metabolomics revealed 516 differentially expressed metabolites, involving cofactor biosynthesis, purine metabolism, ABC transporters, glutathione metabolism, pyrimidine metabolism, etc. Proteomics detected 735 differentially expressed proteins, involving pyruvate metabolism, amino acid biosynthesis, purine metabolism, carbon metabolism, glycolysis/gluconeogenesis, etc. RT-qPCR and proteomics results showed a positive correlation, and molecular docking demonstrated stable binding of JHBp2 to some differentially expressed proteins. In summary, JHBp2 could disrupt the S. typhimurium cell wall and membrane structure, interfere with synthesis of membrane-related proteins, trigger intracellular substance leak, and reduce levels of enzymes and metabolites involved in energy metabolism, amino acid anabolism, and nucleotide anabolism.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Metabolómica , Simulación del Acoplamiento Molecular , Proteómica , Salmonella typhimurium , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Porcinos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Productos de la Carne/microbiología , Productos de la Carne/análisis
18.
mSphere ; 9(6): e0031724, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38837389

RESUMEN

The emerging prevalence of drug-resistant Staphylococcus aureus isolates underscores the urgent need for alternative therapeutic strategies due to the declining effectiveness of traditional antibiotics in clinical settings. MgrA, a key virulence regulator in S. aureus, orchestrates the expression of numerous virulence factors. Here, we report the discovery of isorhapontigenin, a methoxylated analog of resveratrol, as a potential anti-virulence agent against S. aureus. Isorhapontigenin effectively inhibits the hemolytic activity of S. aureus in a non-bactericidal manner. Additionally, it significantly reduces the cytotoxicity of S. aureus and impairs its ability to survive in macrophages. Mechanistically, isorhapontigenin modulates the expression of virulence factors, dose-dependently downregulating hla and upregulating the MgrA-regulated gene spa. Electrophoretic mobility shift assays demonstrated that isorhapontigenin inhibits the binding of MgrA to the hla promoter in a dose-dependent manner. Thermal shift assays confirmed the direct interaction between isorhapontigenin and the MgrA protein. The in vivo experiments demonstrated that isorhapontigenin significantly reduced the area of skin abscesses and improved survival in a pneumonia model while decreasing bacterial burden and inflammation in the lungs. In conclusion, isorhapontigenin holds potential as a candidate drug for further development as an anti-virulence agent for treating S. aureus infections. IMPORTANCE: The emergence of antibiotic-resistant Staphylococcus aureus strains presents a formidable challenge to public health, necessitating novel approaches in combating these pathogens. Traditional antibiotics are becoming increasingly ineffective, leading to a pressing need for innovative therapeutic strategies. In this study, targeting virulence factors that play a crucial role in the pathogenesis of bacterial infections offers a promising alternative to circumvent resistance mechanisms. The discovery of isorhapontigenin as an inhibitor of S. aureus virulence represents a significant advance in anti-virulence therapy.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Infecciones Estafilocócicas , Staphylococcus aureus , Factores de Virulencia , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/genética , Factores de Virulencia/genética , Antibacterianos/farmacología , Virulencia/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Animales , Ratones , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Estilbenos/farmacología , Humanos , Macrófagos/microbiología , Macrófagos/efectos de los fármacos , Femenino , Ratones Endogámicos BALB C , Células RAW 264.7
19.
Anal Chem ; 96(25): 10443-10450, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38864271

RESUMEN

Due to their ability to selectively target pathogen-specific nucleic acids, CRISPR-Cas systems are increasingly being employed as diagnostic tools. "One-pot" assays that combine nucleic acid amplification and CRISPR-Cas systems (NAAT-CRISPR-Cas) in a single step have emerged as one of the most popular CRISPR-Cas biosensing formats. However, operational simplicity comes at a cost, with one-pot assays typically being less sensitive than corresponding two-step NAAT-CRISPR-Cas assays and often failing to detect targets at low concentrations. It is thought that these performance reductions result from the competition between the two enzymatic processes driving the assay, namely, Cas-mediated cis-cleavage and polymerase-mediated amplification of the target DNA. Herein, we describe a novel one-pot RPA-Cas12a assay that circumvents this issue by leveraging in situ complexation of the target-specific sgRNA and Cas12a to purposefully limit the concentration of active Cas12a during the early stages of the assay. Using a clinically relevant assay against a DNA target for HPV-16, we show how this in situ format reduces competition between target cleavage and amplification and engenders significant improvements in detection limit when compared to the traditional one-pot assay format, even in patient-derived samples. Finally, to gain further insight into the assay, we use experimental data to formulate a mechanistic model describing the competition between the Cas enzyme and nucleic acid amplification. These findings suggest that purposefully limiting cis-cleavage rates of Cas proteins is a viable strategy for improving the performance of one-pot NAAT-CRISPR-Cas assays.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Proteínas Asociadas a CRISPR/metabolismo , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Humanos , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Técnicas de Amplificación de Ácido Nucleico , Proteína de Replicación A/metabolismo , Técnicas Biosensibles/métodos
20.
Sci Rep ; 14(1): 14185, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902391

RESUMEN

Helicobacter pylori (H. pylori), together with its CagA, has been implicated in causing DNA damage, cell cycle arrest, apoptosis, and the development of gastric cancer. Although lncRNA H19 is abundantly expressed in gastric cancer and functions as a pro-oncogene, it remains unclear whether lncRNA H19 contributes to the oncogenic process of H. pylori CagA. This study investigates the role of H19 in the DNA damage response and malignancy induced by H. pylori. It was observed that cells infected with CagA+ H. pylori strain (GZ7/cagA) showed significantly higher H19 expression, resulting in increased γH2A.X and p-ATM expression and decreased p53 and Rad51 expression. Faster cell migration and invasion was also observed, which was reversed by H19 knockdown in H. pylori. YWHAZ was identified as an H19 target protein, and its expression was increased in H19 knockdown cells. GZ7/cagA infection responded to the increased YWHAZ expression induced by H19 knockdown. In addition, H19 knockdown stimulated cells to enter the G2-phase and attenuated the effect of GZ7/cagA infection on the cellular S-phase barrier. The results suggest that H. pylori CagA can upregulate H19 expression, participate in the DNA damage response and promote cell migration and invasion, and possibly affect cell cycle arrest via regulation of YWHAZ.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Movimiento Celular , Daño del ADN , Helicobacter pylori , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Helicobacter pylori/genética , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Movimiento Celular/genética , Línea Celular Tumoral , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Histonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA