Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.295
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 19(6): e0304876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848336

RESUMEN

We have identified an acyl-carrier protein, Rv0100, that is up-regulated in a dormancy model. This protein plays a critical role in the fatty acid biosynthesis pathway, which is important for energy storage and cell wall synthesis in Mycobacterium tuberculosis (MTB). Knocking out the Rv0100 gene resulted in a significant reduction of growth compared to wild-type MTB in the Wayne model of non-replicating persistence. We have also shown that Rv0100 is essential for the growth and survival of this pathogen during infection in mice and a macrophage model. Furthermore, knocking out Rv0100 disrupted the synthesis of phthiocerol dimycocerosates, the virulence-enhancing lipids produced by MTB and Mycobacterium bovis. We hypothesize that this essential gene contributes to MTB virulence in the state of latent infection. Therefore, inhibitors targeting this gene could prove to be potent antibacterial agents against this pathogen.


Asunto(s)
Proteína Transportadora de Acilo , Proteínas Bacterianas , Mycobacterium tuberculosis , Animales , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Ratones , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteína Transportadora de Acilo/metabolismo , Proteína Transportadora de Acilo/genética , Macrófagos/microbiología , Macrófagos/metabolismo , Virulencia , Regulación Bacteriana de la Expresión Génica , Tuberculosis/microbiología , Lípidos/química
2.
J Am Chem Soc ; 146(23): 15941-15954, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38832917

RESUMEN

The pathogen Staphylococcus epidermidis uses a chemical signaling process, i.e., quorum sensing (QS), to form robust biofilms and cause human infection. Many questions remain about QS in S. epidermidis, as it uses this intercellular communication pathway to both negatively and positively regulate virulence traits. Herein, we report synthetic multigroup agonists and antagonists of the S. epidermidis accessory gene regulator (agr) QS system capable of potent superactivation and complete inhibition, respectively. These macrocyclic peptides maintain full efficacy across the three major agr specificity groups, and their activity can be "mode-switched" from agonist to antagonist via subtle residue-specific structural changes. We describe the design and synthesis of these non-native peptides and demonstrate that they can appreciably decrease biofilm formation on abiotic surfaces, underscoring the potential for agr agonism as a route to block S. epidermidis virulence. Additionally, we show that both the S. epidermidis agonists and antagonists are active in S. aureus, another common pathogen with a related agr system, yet only as antagonists. This result not only revealed one of the most potent agr inhibitors known in S. aureus but also highlighted differences in the mechanisms of agr agonism and antagonism between these related bacteria. Finally, our investigations reveal unexpected inhibitory behavior for certain S. epidermidis agr agonists at sub-activating concentrations, an observation that can be leveraged for the design of future probes with enhanced potencies. Together, these peptides provide a powerful tool set to interrogate the role of QS in S. epidermidis infections and in Staphylococcal pathogenicity in general.


Asunto(s)
Biopelículas , Percepción de Quorum , Staphylococcus epidermidis , Percepción de Quorum/efectos de los fármacos , Biopelículas/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química
3.
Environ Microbiol ; 26(6): e16632, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861374

RESUMEN

This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical ß-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by G. bivora in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation.


Asunto(s)
Proteínas Bacterianas , Hierro , Oxidación-Reducción , Proteómica , Hierro/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Crecimiento Quimioautotrófico , Familia de Multigenes , Regulación Bacteriana de la Expresión Génica , Agua de Mar/microbiología
4.
Appl Microbiol Biotechnol ; 108(1): 360, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836914

RESUMEN

In the fight against hospital-acquired infections, the challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) necessitates the development of novel treatment methods. This study focused on undermining the virulence of S. aureus, especially by targeting surface proteins crucial for bacterial adherence and evasion of the immune system. A primary aspect of our approach involves inhibiting sortase A (SrtA), a vital enzyme for attaching microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to the bacterial cell wall, thereby reducing the pathogenicity of S. aureus. Verbascoside, a phenylethanoid glycoside, was found to be an effective SrtA inhibitor in our research. Advanced fluorescence quenching and molecular docking studies revealed a specific interaction between verbascoside and SrtA, pinpointing the critical active sites involved in this interaction. This molecular interaction significantly impedes the SrtA-mediated attachment of MSCRAMMs, resulting in a substantial reduction in bacterial adhesion, invasion, and biofilm formation. The effectiveness of verbascoside has also been demonstrated in vivo, as shown by its considerable protective effects on pneumonia and Galleria mellonella (wax moth) infection models. These findings underscore the potential of verbascoside as a promising component in new antivirulence therapies for S. aureus infections. By targeting crucial virulence factors such as SrtA, agents such as verbascoside constitute a strategic and potent approach for tackling antibiotic resistance worldwide. KEY POINTS: • Verbascoside inhibits SrtA, reducing S. aureus adhesion and biofilm formation. • In vivo studies demonstrated the efficacy of verbascoside against S. aureus infections. • Targeting virulence factors such as SrtA offers new avenues against antibiotic resistance.


Asunto(s)
Aminoaciltransferasas , Antibacterianos , Adhesión Bacteriana , Proteínas Bacterianas , Biopelículas , Cisteína Endopeptidasas , Glucósidos , Staphylococcus aureus Resistente a Meticilina , Simulación del Acoplamiento Molecular , Fenoles , Infecciones Estafilocócicas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Cisteína Endopeptidasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Glucósidos/farmacología , Animales , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Fenoles/farmacología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Mariposas Nocturnas/microbiología , Virulencia/efectos de los fármacos , Modelos Animales de Enfermedad , Factores de Virulencia/metabolismo , Inhibidores Enzimáticos/farmacología , Polifenoles
5.
Sci Rep ; 14(1): 12876, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834612

RESUMEN

This study investigates quercetin complexes as potential synergistic agents against the important respiratory pathogen Streptococcus pneumoniae. Six quercetin complexes (QCX1-6) were synthesized by reacting quercetin with various metal salts and boronic acids and characterized using FTIR spectroscopy. Their antibacterial activity alone and in synergism with antibiotics was evaluated against S. pneumoniae ATCC 49619 using disc diffusion screening, broth microdilution MIC determination, and checkerboard assays. Complexes QCX-3 and QCX-4 demonstrated synergy when combined with levofloxacin via fractional inhibitory concentration indices ≤ 0.5 as confirmed by time-kill kinetics. Molecular docking elucidated interactions of these combinations with virulence enzymes sortase A and sialidase. A biofilm inhibition assay found the synergistic combinations more potently reduced biofilm formation versus monotherapy. Additionally, gene-gene interaction networks, biological activity predictions and in-silico toxicity profiling provided insights into potential mechanisms of action and safety.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Quercetina , Streptococcus pneumoniae , Streptococcus pneumoniae/efectos de los fármacos , Quercetina/farmacología , Quercetina/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Sinergismo Farmacológico , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/antagonistas & inhibidores , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/química , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo
6.
Front Cell Infect Microbiol ; 14: 1411333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854658

RESUMEN

Mycobacterium abscessus (Mab) is an opportunistic pathogen afflicting individuals with underlying lung disease such as Cystic Fibrosis (CF) or immunodeficiencies. Current treatment strategies for Mab infections are limited by its inherent antibiotic resistance and limited drug access to Mab in its in vivo niches resulting in poor cure rates of 30-50%. Mab's ability to survive within macrophages, granulomas and the mucus laden airways of the CF lung requires adaptation via transcriptional remodeling to counteract stresses like hypoxia, increased levels of nitrate, nitrite, and reactive nitrogen intermediates. Mycobacterium tuberculosis (Mtb) is known to coordinate hypoxic adaptation via induction of respiratory nitrate assimilation through the nitrate reductase narGHJI. Mab, on the other hand, does not encode a respiratory nitrate reductase. In addition, our recent study of the transcriptional responses of Mab to hypoxia revealed marked down-regulation of a locus containing putative nitrate assimilation genes, including the orphan response regulator nnaR (nitrate/nitrite assimilation regulator). These putative nitrate assimilation genes, narK3 (nitrate/nitrite transporter), nirBD (nitrite reductase), nnaR, and sirB (ferrochelatase) are arranged contiguously while nasN (assimilatory nitrate reductase identified in this work) is encoded in a different locus. Absence of a respiratory nitrate reductase in Mab and down-regulation of nitrogen metabolism genes in hypoxia suggest interplay between hypoxia adaptation and nitrate assimilation are distinct from what was previously documented in Mtb. The mechanisms used by Mab to fine-tune the transcriptional regulation of nitrogen metabolism in the context of stresses e.g. hypoxia, particularly the role of NnaR, remain poorly understood. To evaluate the role of NnaR in nitrate metabolism we constructed a Mab nnaR knockout strain (MabΔnnaR ) and complement (MabΔnnaR+C ) to investigate transcriptional regulation and phenotypes. qRT-PCR revealed NnaR is necessary for regulating nitrate and nitrite reductases along with a putative nitrate transporter. Loss of NnaR compromised the ability of Mab to assimilate nitrate or nitrite as sole nitrogen sources highlighting its necessity. This work provides the first insights into the role of Mab NnaR setting a foundation for future work investigating NnaR's contribution to pathogenesis.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Mycobacterium abscessus , Nitratos , Nitritos , Mycobacterium abscessus/metabolismo , Mycobacterium abscessus/genética , Nitratos/metabolismo , Nitritos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Nitrito Reductasas/metabolismo , Nitrito Reductasas/genética , Nitrato-Reductasa/metabolismo , Nitrato-Reductasa/genética
7.
Arch Microbiol ; 206(7): 299, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861015

RESUMEN

Chaperonins from psychrophilic bacteria have been shown to exist as single-ring complexes. This deviation from the standard double-ring structure has been thought to be a beneficial adaptation to the cold environment. Here we show that Cpn60 from the psychrophile Pseudoalteromonas haloplanktis (Ph) maintains its double-ring structure also in the cold. A strongly reduced ATPase activity keeps the chaperonin in an energy-saving dormant state, until binding of client protein activates it. Ph Cpn60 in complex with co-chaperonin Ph Cpn10 efficiently assists in protein folding up to 55 °C. Moreover, we show that recombinant expression of Ph Cpn60 can provide its host Escherichia coli with improved viability under low temperature growth conditions. These properties of the Ph chaperonin may make it a valuable tool in the folding and stabilization of psychrophilic proteins.


Asunto(s)
Proteínas Bacterianas , Frío , Escherichia coli , Pliegue de Proteína , Pseudoalteromonas , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonina 60/metabolismo , Chaperonina 60/genética , Chaperonina 60/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Chaperoninas/metabolismo , Chaperoninas/genética , Chaperoninas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética
8.
Nat Commun ; 15(1): 4740, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834545

RESUMEN

Mitophagy is critical for mitochondrial quality control and function to clear damaged mitochondria. Here, we found that Burkholderia pseudomallei maneuvered host mitophagy for its intracellular survival through the type III secretion system needle tip protein BipD. We identified BipD, interacting with BTB-containing proteins KLHL9 and KLHL13 by binding to the Back and Kelch domains, recruited NEDD8 family RING E3 ligase CUL3 in response to B. pseudomallei infection. Although evidently not involved in regulation of infectious diseases, KLHL9/KLHL13/CUL3 E3 ligase complex was essential for BipD-dependent ubiquitination of mitochondria in mouse macrophages. Mechanistically, we discovered the inner mitochondrial membrane IMMT via host ubiquitome profiling as a substrate of KLHL9/KLHL13/CUL3 complex. Notably, K63-linked ubiquitination of IMMT K211 was required for initiating host mitophagy, thereby reducing mitochondrial ROS production. Here, we show a unique mechanism used by bacterial pathogens that hijacks host mitophagy for their survival.


Asunto(s)
Proteínas Bacterianas , Burkholderia pseudomallei , Macrófagos , Mitocondrias , Mitofagia , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidad , Burkholderia pseudomallei/fisiología , Burkholderia pseudomallei/genética , Animales , Ratones , Mitocondrias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Macrófagos/microbiología , Macrófagos/metabolismo , Ubiquitinación , Melioidosis/microbiología , Melioidosis/metabolismo , Interacciones Huésped-Patógeno , Especies Reactivas de Oxígeno/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Ratones Endogámicos C57BL , Membranas Mitocondriales/metabolismo , Células HEK293 , Células RAW 264.7
9.
Elife ; 132024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857064

RESUMEN

Enterococcus faecium is a microbiota species in humans that can modulate host immunity (Griffin and Hang, 2022), but has also acquired antibiotic resistance and is a major cause of hospital-associated infections (Van Tyne and Gilmore, 2014). Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity (Rangan et al., 2016; Pedicord et al., 2016; Kim et al., 2019) and immune checkpoint inhibitor antitumor activity (Griffin et al., 2021). However, the functions of SagA in E. faecium were unknown. Here, we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, ΔsagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, the plasmid-based expression of SagA, but not its catalytically inactive mutant, restored ΔsagA growth, production of active muropeptides, and NOD2 activation. SagA is, therefore, essential for E. faecium growth, stress resistance, and activation of host immunity.


Asunto(s)
Enterococcus faecium , Inhibidores de Puntos de Control Inmunológico , N-Acetil Muramoil-L-Alanina Amidasa , Enterococcus faecium/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Humanos , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Peptidoglicano/metabolismo , Ratones
10.
Nat Commun ; 15(1): 4926, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858371

RESUMEN

Chlamydia invasion of epithelial cells is a pathogen-driven process involving two functionally distinct effectors - TarP and TmeA. They collaborate to promote robust actin dynamics at sites of entry. Here, we extend studies on the molecular mechanism of invasion by implicating the host GTPase dynamin 2 (Dyn2) in the completion of pathogen uptake. Importantly, Dyn2 function is modulated by TarP and TmeA at the levels of recruitment and activation through oligomerization, respectively. TarP-dependent recruitment requires phosphatidylinositol 3-kinase and the small GTPase Rac1, while TmeA has a post-recruitment role related to Dyn2 oligomerization. This is based on the rescue of invasion duration and efficiency in the absence of TmeA by the Dyn2 oligomer-stabilizing small molecule activator Ryngo 1-23. Notably, Dyn2 also regulated turnover of TarP- and TmeA-associated actin networks, with disrupted Dyn2 function resulting in aberrant turnover dynamics, thus establishing the interdependent functional relationship between Dyn2 and the effectors TarP and TmeA.


Asunto(s)
Actinas , Chlamydia trachomatis , Dinamina II , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/fisiología , Humanos , Dinamina II/metabolismo , Dinamina II/genética , Células HeLa , Actinas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/metabolismo , Interacciones Huésped-Patógeno , Células Epiteliales/microbiología , Células Epiteliales/metabolismo
11.
BMC Plant Biol ; 24(1): 393, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741080

RESUMEN

BACKGROUND: 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease, exerts influence on its host plant through various effector proteins, including SAP11CaPm which interacts with different TEOSINTE BRANCHED1/ CYCLOIDEA/ PROLIFERATING CELL FACTOR 1 and 2 (TCP) transcription factors. This study examines the transcriptional response of the plant upon early expression of SAP11CaPm. For that purpose, leaves of Nicotiana occidentalis H.-M. Wheeler were Agrobacterium-infiltrated to induce transient expression of SAP11CaPm and changes in the transcriptome were recorded until 5 days post infiltration. RESULTS: The RNA-seq analysis revealed that presence of SAP11CaPm in leaves leads to downregulation of genes involved in defense response and related to photosynthetic processes, while expression of genes involved in energy production was enhanced. CONCLUSIONS: The results indicate that early SAP11CaPm expression might be important for the colonization of the host plant since phytoplasmas lack many metabolic genes and are thus dependent on metabolites from their host plant.


Asunto(s)
Proteínas Bacterianas , Regulación de la Expresión Génica de las Plantas , Nicotiana , Fotosíntesis , Phytoplasma , Enfermedades de las Plantas , Hojas de la Planta , Nicotiana/genética , Nicotiana/microbiología , Phytoplasma/fisiología , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Fotosíntesis/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo Energético/genética
12.
Cell Mol Biol Lett ; 29(1): 70, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741147

RESUMEN

BACKGROUND: Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) is a peptide antigen released from the mycobacterial cytoplasm into the supernatant of Mycobacterium tuberculosis (Mtb) attenuated H37Ra strain after autoclaving at 121 °C for 20 min. Mtb-HAg can specifically induce γδ T-cell proliferation in vitro. However, the exact composition of Mtb-HAg and the protein antigens that are responsible for its function are currently unknown. METHODS: Mtb-HAg extracted from the Mtb H37Ra strain was subjected to LC‒MS mass spectrometry. Twelve of the identified protein fractions were recombinantly expressed in Escherichia coli by genetic engineering technology using pET-28a as a plasmid and purified by Ni-NTA agarose resin to stimulate peripheral blood mononuclear cells (PBMCs) from different healthy individuals. The proliferation of γδ T cells and major γδ T-cell subset types as well as the production of TNF-α and IFN-γ were determined by flow cytometry. Their proliferating γδ T cells were isolated and purified using MACS separation columns, and Mtb H37Ra-infected THP-1 was co-cultured with isolated and purified γδ T cells to quantify Mycobacterium viability by counting CFUs. RESULTS: In this study, Mtb-HAg from the attenuated Mtb H37Ra strain was analysed by LC‒MS mass spectrometry, and a total of 564 proteins were identified. Analysis of the identified protein fractions revealed that the major protein components included heat shock proteins and Mtb-specific antigenic proteins. Recombinant expression of 10 of these proteins in by Escherichia coli genetic engineering technology was used to successfully stimulate PBMCs from different healthy individuals, but 2 of the proteins, EsxJ and EsxA, were not expressed. Flow cytometry results showed that, compared with the IL-2 control, HspX, GroEL1, and GroES specifically induced γδ T-cell expansion, with Vγ2δ2 T cells as the main subset, and the secretion of the antimicrobial cytokines TNF-α and IFN-γ. In contrast, HtpG, DnaK, GroEL2, HbhA, Mpt63, EsxB, and EsxN were unable to promote γδ T-cell proliferation and the secretion of TNF-α and IFN-γ. None of the above recombinant proteins were able to induce the secretion of TNF-α and IFN-γ by αß T cells. In addition, TNF-α, IFN-γ-producing γδ T cells inhibit the growth of intracellular Mtb. CONCLUSION: Activated γδ T cells induced by Mtb-HAg components HspX, GroES, GroEL1 to produce TNF-α, IFN-γ modulate macrophages to inhibit intracellular Mtb growth. These data lay the foundation for subsequent studies on the mechanism by which Mtb-HAg induces γδ T-cell proliferation in vitro, as well as the development of preventive and therapeutic vaccines and rapid diagnostic reagents.


Asunto(s)
Antígenos Bacterianos , Proliferación Celular , Mycobacterium tuberculosis , Linfocitos T , Humanos , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Interferón gamma/metabolismo , Interferón gamma/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Factor de Necrosis Tumoral alfa/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología
13.
J Cell Mol Med ; 28(9): e18358, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693868

RESUMEN

Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H. pylori and its associated gastric cancer due to drug resistance. This research gap had led our research team to investigate a potential drug candidate targeting the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. In this study, a total of 45 daidzein derivatives were investigated and the best 10 molecules were comprehensively investigated using in silico approaches for drug development, namely pass prediction, quantum calculations, molecular docking, molecular dynamics simulations, Lipinski rule evaluation, and prediction of pharmacokinetics. The molecular docking study was performed to evaluate the binding affinity between the target protein and the ligands. In addition, the stability of ligand-protein complexes was investigated by molecular dynamics simulations. Various parameters were analysed, including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM). The results has confirmed that the ligand-protein complex CID: 129661094 (07) and 129664277 (08) formed stable interactions with the target protein. It was also found that CID: 129661094 (07) has greater hydrogen bond occupancy and stability, while the ligand-protein complex CID 129664277 (08) has greater conformational flexibility. Principal component analysis revealed that the ligand-protein complex CID: 129661094 (07) is more compact and stable. Hydrogen bond analysis revealed favourable interactions with the reported amino acid residues. Overall, this study suggests that daidzein derivatives in particular show promise as potential inhibitors of H. pylori.


Asunto(s)
Helicobacter pylori , Isoflavonas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/metabolismo , Isoflavonas/farmacología , Isoflavonas/química , Isoflavonas/metabolismo , Humanos , Enlace de Hidrógeno , Ligandos , Unión Proteica , Análisis de Componente Principal , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/tratamiento farmacológico , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/antagonistas & inhibidores , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/tratamiento farmacológico
14.
Plant Mol Biol ; 114(3): 60, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758412

RESUMEN

Pyruvate kinase (Pyk, EC 2.7.1.40) is a glycolytic enzyme that generates pyruvate and adenosine triphosphate (ATP) from phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP), respectively. Pyk couples pyruvate and tricarboxylic acid metabolisms. Synechocystis sp. PCC 6803 possesses two pyk genes (encoded pyk1, sll0587 and pyk2, sll1275). A previous study suggested that pyk2 and not pyk1 is essential for cell viability; however, its biochemical analysis is yet to be performed. Herein, we biochemically analyzed Synechocystis Pyk2 (hereafter, SyPyk2). The optimum pH and temperature of SyPyk2 were 7.0 and 55 °C, respectively, and the Km values for PEP and ADP under optimal conditions were 1.5 and 0.053 mM, respectively. SyPyk2 is activated in the presence of glucose-6-phosphate (G6P) and ribose-5-phosphate (R5P); however, it remains unaltered in the presence of adenosine monophosphate (AMP) or fructose-1,6-bisphosphate. These results indicate that SyPyk2 is classified as PykA type rather than PykF, stimulated by sugar monophosphates, such as G6P and R5P, but not by AMP. SyPyk2, considering substrate affinity and effectors, can play pivotal roles in sugar catabolism under nonphotosynthetic conditions.


Asunto(s)
Glucosa-6-Fosfato , Fosfoenolpiruvato , Piruvato Quinasa , Ribosamonofosfatos , Synechocystis , Synechocystis/metabolismo , Synechocystis/genética , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Fosfoenolpiruvato/metabolismo , Glucosa-6-Fosfato/metabolismo , Ribosamonofosfatos/metabolismo , Especificidad por Sustrato , Concentración de Iones de Hidrógeno , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cinética , Temperatura
15.
Sci Rep ; 14(1): 12416, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816440

RESUMEN

Klebsiella pneumoniae releases the peptides AKTIKITQTR and FNEMQPIVDRQ, which bind the pneumococcal proteins AmiA and AliA respectively, two substrate-binding proteins of the ABC transporter Ami-AliA/AliB oligopeptide permease. Exposure to these peptides alters pneumococcal phenotypes such as growth. Using a mutant in which a permease domain of the transporter was disrupted, by growth analysis and epifluorescence microscopy, we confirmed peptide uptake via the Ami permease and intracellular location in the pneumococcus. By RNA-sequencing we found that the peptides modulated expression of genes involved in metabolism, as pathways affected were mostly associated with energy or synthesis and transport of amino acids. Both peptides downregulated expression of genes involved in branched-chain amino acid metabolism and the Ami permease; and upregulated fatty acid biosynthesis genes but differed in their regulation of genes involved in purine and pyrimidine biosynthesis. The transcriptomic changes are consistent with growth suppression by peptide treatment. The peptides inhibited growth of pneumococcal isolates of serotypes 3, 8, 9N, 12F and 19A, currently prevalent in Switzerland, and caused no detectable toxic effect to primary human airway epithelial cells. We conclude that pneumococci take up K. pneumoniae peptides from the environment via binding and transport through the Ami permease. This changes gene expression resulting in altered phenotypes, particularly reduced growth.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae , Streptococcus pneumoniae , Transcriptoma , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Ligandos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Péptidos/metabolismo , Péptidos/farmacología
16.
Arch Microbiol ; 206(6): 285, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38816572

RESUMEN

Intracellular pathogens like Brucella face challenges during the intraphagocytic adaptation phase, where the modulation of gene expression plays an essential role in taking advantage of stressors to persist inside the host cell. This study aims to explore the expression of antisense virB2 RNA strand and related genes under intracellular simulation media. Sense and antisense virB2 RNA strands increased expression when nutrient deprivation and acidification were higher, being starvation more determinative. Meanwhile, bspB, one of the T4SS effector genes, exhibited the highest expression during the exposition to pH 4.5 and nutrient abundance. Based on RNA-seq analysis and RACE data, we constructed a regional map depicting the 5' and 3' ends of virB2 and the cis-encoded asRNA_0067. Without affecting the CDS or a possible autonomous RBS, we generate the deletion mutant ΔasRNA_0067, significantly reducing virB2 mRNA expression and survival rate. These results suggest that the antisense asRNA_0067 expression is promoted under exposure to the intraphagocytic adaptation phase stressors, and its deletion is associated with a lower transcription of the virB2 gene. Our findings illuminate the significance of these RNA strands in modulating the survival strategy of Brucella within the host and emphasize the role of nutrient deprivation in gene expression.


Asunto(s)
Brucella abortus , Regulación Bacteriana de la Expresión Génica , Brucella abortus/genética , Brucella abortus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Transcripción Genética , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , Estrés Fisiológico , Animales , Macrófagos/microbiología
17.
Microbiol Spectr ; 12(6): e0034624, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38709084

RESUMEN

Across the Burkholderia genus O-linked protein glycosylation is highly conserved. While the inhibition of glycosylation has been shown to be detrimental for virulence in Burkholderia cepacia complex species, such as Burkholderia cenocepacia, little is known about how specific glycosylation sites impact protein functionality. Within this study, we sought to improve our understanding of the breadth, dynamics, and requirement for glycosylation across the B. cenocepacia O-glycoproteome. Assessing the B. cenocepacia glycoproteome across different culture media using complementary glycoproteomic approaches, we increase the known glycoproteome to 141 glycoproteins. Leveraging this repertoire of glycoproteins, we quantitively assessed the glycoproteome of B. cenocepacia using Data-Independent Acquisition (DIA) revealing the B. cenocepacia glycoproteome is largely stable across conditions with most glycoproteins constitutively expressed. Examination of how the absence of glycosylation impacts the glycoproteome reveals that the protein abundance of only five glycoproteins (BCAL1086, BCAL2974, BCAL0525, BCAM0505, and BCAL0127) are altered by the loss of glycosylation. Assessing ΔfliF (ΔBCAL0525), ΔmotB (ΔBCAL0127), and ΔBCAM0505 strains, we demonstrate the loss of FliF, and to a lesser extent MotB, mirror the proteomic effects observed in the absence of glycosylation in ΔpglL. While both MotB and FliF are essential for motility, we find loss of glycosylation sites in MotB or FliF does not impact motility supporting these sites are dispensable for function. Combined this work broadens our understanding of the B. cenocepacia glycoproteome supporting that the loss of glycoproteins in the absence of glycosylation is not an indicator of the requirement for glycosylation for protein function. IMPORTANCE: Burkholderia cenocepacia is an opportunistic pathogen of concern within the Cystic Fibrosis community. Despite a greater appreciation of the unique physiology of B. cenocepacia gained over the last 20 years a complete understanding of the proteome and especially the O-glycoproteome, is lacking. In this study, we utilize systems biology approaches to expand the known B. cenocepacia glycoproteome as well as track the dynamics of glycoproteins across growth phases, culturing media and in response to the loss of glycosylation. We show that the glycoproteome of B. cenocepacia is largely stable across conditions and that the loss of glycosylation only impacts five glycoproteins including the motility associated proteins FliF and MotB. Examination of MotB and FliF shows, while these proteins are essential for motility, glycosylation is dispensable. Combined this work supports that B. cenocepacia glycosylation can be dispensable for protein function and may influence protein properties beyond stability.


Asunto(s)
Proteínas Bacterianas , Burkholderia cenocepacia , Glicoproteínas , Proteómica , Glicosilación , Burkholderia cenocepacia/metabolismo , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Proteoma/metabolismo
18.
mSphere ; 9(5): e0021024, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38712943

RESUMEN

Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in homeostasis and protection against heavy metal toxicity and oxidative stress. The opportunistic pathogen, Pseudomonas aeruginosa, expresses a bacterial MT known as PmtA. Utilizing genetically modified P. aeruginosa PAO1 strains (a human clinical wound isolate), we show that inducing pmtA increases levels of pyocyanin and biofilm compared to other PAO1 isogenic strains, supporting previous results that pmtA is important for pyocyanin and biofilm production. We also show that overexpression of pmtA in vitro provides protection for cells exposed to oxidants, which is a characteristic of inflammation, indicating a role for PmtA as an antioxidant in inflammation. We found that a pmtA clean deletion mutant is phagocytized faster than other PAO1 isogenic strains in THP-1 human macrophage cells, indicating that PmtA provides protection from the phagocytic attack. Interestingly, we observed that monoclonal anti-PmtA antibody binds to PmtA, which is accessible on the surface of PAO1 strains using both flow cytometry and enzyme-linked immunosorbent assay techniques. Finally, we investigated intracellular persistence of these PAO1 strains within THP-1 macrophages cells and found that the phagocytic endurance of PAO1 strains is affected by pmtA expression. These data show for the first time that a bacterial MT (pmtA) can play a role in the phagocytic process and can be found on the outer surface of PAO1. Our results suggest that PmtA plays a role both in protection from oxidative stress and in the resistance to the host's innate immune response, identifying PmtA as a potential therapeutic target in P. aeruginosa infection. IMPORTANCE: The pathogen Pseudomonas aeruginosa is a highly problematic multidrug-resistant (MDR) pathogen with complex virulence networks. MDR P. aeruginosa infections have been associated with increased clinical visits, very poor healthcare outcomes, and these infections are ranked as critical on priority lists of both the Centers for Disease Control and Prevention and the World Health Organization. Known P. aeruginosa virulence factors have been extensively studied and are implicated in counteracting host defenses, causing direct damage to the host tissues, and increased microbial competitiveness. Targeting virulence factors has emerged as a new line of defense in the battle against MDR P. aeruginosa strains. Bacterial metallothionein is a newly recognized virulence factor that enables evasion of the host immune response. The studies described here identify mechanisms in which bacterial metallothionein (PmtA) plays a part in P. aeruginosa pathogenicity and identifies PmtA as a potential therapeutic target.


Asunto(s)
Proteínas Bacterianas , Biopelículas , Macrófagos , Metalotioneína , Estrés Oxidativo , Fagocitosis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/metabolismo , Humanos , Metalotioneína/genética , Metalotioneína/metabolismo , Macrófagos/microbiología , Macrófagos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Células THP-1 , Piocianina/metabolismo
19.
Nat Commun ; 15(1): 3850, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719864

RESUMEN

The K+ uptake system KtrAB is essential for bacterial survival in low K+ environments. The activity of KtrAB is regulated by nucleotides and Na+. Previous studies proposed a putative gating mechanism of KtrB regulated by KtrA upon binding to ATP or ADP. However, how Na+ activates KtrAB and the Na+ binding site remain unknown. Here we present the cryo-EM structures of ATP- and ADP-bound KtrAB from Bacillus subtilis (BsKtrAB) both solved at 2.8 Å. A cryo-EM density at the intra-dimer interface of ATP-KtrA was identified as Na+, as supported by X-ray crystallography and ICP-MS. Thermostability assays and functional studies demonstrated that Na+ binding stabilizes the ATP-bound BsKtrAB complex and enhances its K+ flux activity. Comparing ATP- and ADP-BsKtrAB structures suggests that BsKtrB Arg417 and Phe91 serve as a channel gate. The synergism of ATP and Na+ in activating BsKtrAB is likely applicable to Na+-activated K+ channels in central nervous system.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas de Transporte de Catión , Potasio , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Potasio/metabolismo , Unión Proteica , Sodio/metabolismo
20.
Elife ; 122024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695350

RESUMEN

Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas Bacterianas , Lactococcus lactis , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Betaína/metabolismo , Microscopía por Crioelectrón , Transferencia Resonante de Energía de Fluorescencia , Lactococcus lactis/metabolismo , Concentración Osmolar , Osmorregulación , Unión Proteica , Dominios Proteicos , Imagen Individual de Molécula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA