Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928036

RESUMEN

Paclitaxel induces multipolar spindles at clinically relevant doses but does not substantially increase mitotic indices. Paclitaxel's anti-cancer effects are hypothesized to occur by promoting chromosome mis-segregation on multipolar spindles leading to apoptosis, necrosis and cyclic-GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) pathway activation in daughter cells, leading to secretion of type I interferon (IFN) and immunogenic cell death. Eribulin and vinorelbine have also been reported to cause increases in multipolar spindles in cancer cells. Recently, suppression of Anaphase-Promoting Complex/Cyclosome-Cell Division Cycle 20 (APC/C-CDC20) activity using CRISPR/Cas9 mutagenesis has been reported to increase sensitivity to Kinesin Family 18a (KIF18a) inhibition, which functions to suppress multipolar mitotic spindles in cancer cells. We propose that a way to enhance the effectiveness of anti-cancer agents that increase multipolar spindles is by suppressing the APC/C-CDC20 to delay, but not block, anaphase entry. Delaying anaphase entry in genomically unstable cells may enhance multipolar spindle-induced cell death. In genomically stable healthy human cells, delayed anaphase entry may suppress the level of multipolar spindles induced by anti-cancer drugs and lower mitotic cytotoxicity. We outline specific combinations of molecules to investigate that may achieve the goal of enhancing the effectiveness of anti-cancer agents.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Antineoplásicos , Huso Acromático , Humanos , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Antineoplásicos/farmacología , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Mitosis/efectos de los fármacos
2.
Curr Med Sci ; 44(3): 623-632, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853192

RESUMEN

OBJECTIVE: Endometrial carcinoma (EC) is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates. This underscores the critical need for novel therapeutic targets. One such potential target is cell division cycle 20 (CDC20), which has been implicated in oncogenesis. This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved. METHODS: The effects of Apcin on EC cell proliferation, apoptosis, and the cell cycle were evaluated using CCK8 assays and flow cytometry. RNA sequencing (RNA-seq) was subsequently conducted to explore the underlying molecular mechanism, and Western blotting and coimmunoprecipitation were subsequently performed to validate the results. Animal studies were performed to evaluate the antitumor effects in vivo. Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC. RESULTS: Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells, resulting in cell cycle arrest. Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin. Notably, Apcin treatment led to the upregulation of the cell cycle regulator p21, which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells. In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth. Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue, and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval. CONCLUSION: CDC20 is a novel molecular target in EC, and Apcin could be developed as a candidate antitumor drug for EC treatment.


Asunto(s)
Apoptosis , Proteínas Cdc20 , Puntos de Control del Ciclo Celular , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Neoplasias Endometriales , Femenino , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/patología , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Ratones Desnudos
3.
Sci Rep ; 14(1): 13906, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886545

RESUMEN

Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.


Asunto(s)
Proteínas Cdc20 , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Regulación Neoplásica de la Expresión Génica , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Ubiquitinación , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Proliferación Celular/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Progresión de la Enfermedad , Movimiento Celular/genética
4.
EMBO Rep ; 25(6): 2743-2772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806674

RESUMEN

Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Proteína 11 Similar a Bcl2 , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Mad2 , Proteínas Proto-Oncogénicas c-bcl-2 , Animales , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética , Ratones , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Atrofia , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Mitosis , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Médula Ósea/patología , Médula Ósea/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor
5.
Genes Genomics ; 46(4): 437-449, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438666

RESUMEN

BACKGROUND: Bladder cancer is a prevalent malignancy. CDC20, a pivotal cell cycle regulator gene, plays a significant role in tumour cell proliferation, but its role in bladder cancer remains unclear. OBJECTIVE: This study aimed to analyse CDC20 expression in bladder cancer and explore its roles in tumour progression, treatment response, patient prognosis, and cellular proliferation mechanisms. METHODS: We systematically analysed CDC20 expression in bladder cancer using bioinformatics. Our study investigated the impact of CDC20 on chemotherapy and radiotherapy sensitivity, patient prognosis, and changes in CDC20 methylation levels. We also explored the role and potential underlying mechanisms of CDC20 in bladder cancer cell growth. We used lentiviral transfection to downregulate CDC20 expression in 5637 and T24 cells, followed by CCK-8, colony formation, scratch, invasion, apoptosis, and cell cycle analyses. RESULTS: CDC20 is highly expressed in bladder cancer and is significantly correlated with poor prognosis. Moreover, CDC20 demonstrated high diagnostic potential for bladder cancer (AUC > 0.9). The tumour methylation levels of CDC20 in tumour tissues markedly decreased compared with those in normal tissues, and lower methylation levels were associated with a worse prognosis. Elevated CDC20 expression is linked to increased mutation burden. Our findings suggested a potential association between high CDC20 expression and resistance to chemotherapy and radiotherapy, as CDC20 expression may impact immune cell infiltration levels. Mechanistic analysis revealed the influence of CDC20 on bladder cancer cell proliferation through cell cycle-related pathways. According to the cell experiments, CDC20 downregulation significantly impedes bladder cancer cell proliferation and invasion, leading to G1 phase arrest. CONCLUSION: Aberrantly high CDC20 expression promotes tumour progression in bladder cancer, resulting in a poor prognosis, and may also constitute a promising therapeutic target.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Línea Celular Tumoral , Neoplasias de la Vejiga Urinaria/metabolismo , Proliferación Celular/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Biología Computacional , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo
6.
Eur J Med Chem ; 268: 116204, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364716

RESUMEN

The involvement of CDC20 in promoting tumor growth in different types of human cancers and it disturbs the process of cell division and impedes tumor proliferation. In this work, a novel of Apcin derivatives targeting CDC20 were designed and synthesized to evaluate for their biological activities. The inhibitory effect on the proliferation of four human tumor cell lines (MCF-7, MDA-MB-231, MDA-MB-468 and A549) was observed. Among them, compound E1 exhibited the strongest inhibitory effect on the proliferation of MDA-MB-231 cells with an IC50 value of 1.43 µM, which was significantly superior to that of Apcin. Further biological studies demonstrated that compound E1 inhibited cancer cell migration and colony formation. Furthermore, compound E1 specifically targeted CDC20 and exhibited a higher binding affinity to CDC20 compared to that of Apcin, thereby inducing cell cycle arrest in the G2/M phase of cancer cells. Moreover, it has been observed that compound E1 induces autophagy in cancer cells. In 4T1 Xenograft Models compound E1 exhibited the potential antitumor activity without obvious toxicity. These findings suggest that E1 could be regarded as a CDC20 inhibitor deserved further investigation.


Asunto(s)
Antineoplásicos , Diaminas , Neoplasias de la Mama Triple Negativas , Humanos , Proliferación Celular , Neoplasias de la Mama Triple Negativas/patología , Apoptosis , Carbamatos/farmacología , Línea Celular Tumoral , Proteínas de Ciclo Celular , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Cdc20
7.
J Cell Sci ; 137(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38206091

RESUMEN

The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.


Asunto(s)
Proteínas de Ciclo Celular , Ciclinas , Animales , Ciclo Celular , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Mitosis , Proteínas Cdc20/metabolismo , Mamíferos/metabolismo
8.
Commun Biol ; 6(1): 1216, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030698

RESUMEN

Small nucleotide variants in non-coding regions of the genome can alter transcriptional regulation, leading to changes in gene expression which can activate oncogenic gene regulatory networks. Melanoma is heavily burdened by non-coding variants, representing over 99% of total genetic variation, including the well-characterized TERT promoter mutation. However, the compendium of regulatory non-coding variants is likely still functionally under-characterized. We developed a pipeline to identify hotspots, i.e. recurrently mutated regions, in melanoma containing putatively functional non-coding somatic variants that are located within predicted melanoma-specific regulatory regions. We identified hundreds of statistically significant hotspots, including the hotspot containing the TERT promoter variants, and focused on a hotspot in the promoter of CDC20. We found that variants in the promoter of CDC20, which putatively disrupt an ETS motif, lead to lower transcriptional activity in reporter assays. Using CRISPR/Cas9, we generated an indel in the CDC20 promoter in human A375 melanoma cell lines and observed decreased expression of CDC20, changes in migration capabilities, increased growth of xenografts, and an altered transcriptional state previously associated with a more proliferative and less migratory state. Overall, our analysis prioritized several recurrent functional non-coding variants that, through downregulation of CDC20, led to perturbation of key melanoma phenotypes.


Asunto(s)
Melanoma , Humanos , Mutación , Melanoma/genética , Melanoma/metabolismo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Genoma , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo
9.
Medicine (Baltimore) ; 102(36): e35038, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682144

RESUMEN

The cell division cycle 20 homologue (CDC20) is known to regulate the cell cycle. Many studies have suggested that dysregulation of CDC20 is associated with various pathological processes in malignant solid tumors, including tumorigenesis, progression, chemoradiotherapy resistance, and poor prognosis, providing a biomarker for cancer diagnosis and prognosis. Some researchers have demonstrated that CDC20 also regulates apoptosis, immune microenvironment, and tumor angiogenesis. In this review, we have systematically summarized the biological functions of CDC20 in solid cancers. Furthermore, we briefly synthesized multiple medicines that inhibited CDC20. We anticipate that CDC20 will be a promising and effective biomarker and therapeutic target for the treatment of human cancer.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Transformación Celular Neoplásica , Carcinogénesis , Proteínas de Ciclo Celular , Ciclo Celular , Microambiente Tumoral , Proteínas Cdc20/genética
10.
Biologicals ; 83: 101697, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37579524

RESUMEN

MDCK is currently the main cell line used for influenza vaccine production in culture. Previous studies have reported that MDCK cells possess tumorigenic ability in nude mice. Although complete cell lysis can be ensured during vaccine production, host cell DNA released after cell lysis may still pose a risk for tumorigenesis. Greater caution is needed in the production of human vaccines; therefore, the use of gene editing to establish cells incapable of forming tumors may significantly improve the safety of influenza vaccines. Knowledge regarding the genes and molecular mechanisms that affect the tumorigenic ability of MDCK cells is crucial; however, our understanding remains superficial. Through monoclonal cell screening, we previously obtained a cell line, CL23, that possesses significantly reduced cell proliferation, migration, and invasion abilities, and tumor-bearing experiments in nude mice showed the absence of tumorigenic cells. With a view to exploring tumorigenesis-related genes in MDCK cells, DIA proteomics was used to compare the differences in protein expression between wild-type (M60) and non-tumorigenic (CL23) cells. Differentially expressed proteins were verified at the mRNA level by RT-qPCR, and a number of genes involved in cell tumorigenesis were preliminarily screened. Immunoblotting further confirmed that related protein expression was significantly reduced in non-tumorigenic cells. Inhibition of CDC20 expression by RNAi significantly reduced the proliferation and migration of MDCK cells and increased the proliferation of the influenza virus; therefore, CDC20 was preliminarily determined to be an effective target gene for the inhibition of cell tumorigenicity. These results contribute to a more comprehensive understanding of the mechanism underlying cell tumorigenesis and provide a basis for the establishment of target gene screening in genetically engineered non-tumorigenic MDCK cell lines.


Asunto(s)
Vacunas contra la Influenza , Ratones , Animales , Perros , Humanos , Células de Riñón Canino Madin Darby , Ratones Desnudos , Línea Celular , Carcinogénesis/genética , Proteínas Cdc20
11.
Apoptosis ; 28(11-12): 1584-1595, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37535214

RESUMEN

Currently, radiotherapy is one of the most attractive treatments for prostate cancer (PCa) patients. However, radioresistance remains a challenging issue and the underlying mechanism is unknown. Growing evidence has demonstrated that CDC20 (Cell division cycle protein 20) plays a pivotal role in a variety of tumors, including PCa. Here, GEPIA database mining and western blot analysis showed that higher expression of CDC20 was observed in PCa tissues and cells. We demonstrated that the expression of CDC20 was increased in PCa cells by irradiation, and knockdown of CDC20 resulted in inhibition of cell proliferation, migration, tumor formation, induced cell apoptosis and increased radiosensitivity in PCa in vitro and in vivo. Furthermore, we observed that CDC20 regulated Twist1 pathway, influencing cell proliferation and migration. These results suggest that targeting CDC20 and Twist1 may be an effective way to improve the radiosensitivity of PCa.


Asunto(s)
Apoptosis , Neoplasias de la Próstata , Masculino , Humanos , Apoptosis/genética , Línea Celular Tumoral , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/metabolismo , Proliferación Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo
12.
Nature ; 617(7959): 154-161, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100900

RESUMEN

Mitotic defects activate the spindle-assembly checkpoint, which inhibits the anaphase-promoting complex co-activator CDC20 to induce a prolonged cell cycle arrest1,2. Once errors are corrected, the spindle-assembly checkpoint is silenced, allowing anaphase onset to occur. However, in the presence of persistent unresolvable errors, cells can undergo 'mitotic slippage', exiting mitosis into a tetraploid G1 state and escaping the cell death that results from a prolonged arrest. The molecular logic that enables cells to balance these duelling mitotic arrest and slippage behaviours remains unclear. Here we demonstrate that human cells modulate the duration of their mitotic arrest through the presence of conserved, alternative CDC20 translational isoforms. Downstream translation initiation results in a truncated CDC20 isoform that is resistant to spindle-assembly-checkpoint-mediated inhibition and promotes mitotic exit even in the presence of mitotic perturbations. Our study supports a model in which the relative levels of CDC20 translational isoforms control the duration of mitotic arrest. During a prolonged mitotic arrest, new protein synthesis and differential CDC20 isoform turnover create a timer, with mitotic exit occurring once the truncated Met43 isoform achieves sufficient levels. Targeted molecular changes or naturally occurring cancer mutations that alter CDC20 isoform ratios or its translational control modulate mitotic arrest duration and anti-mitotic drug sensitivity, with potential implications for the diagnosis and treatment of human cancers.


Asunto(s)
Proteínas Cdc20 , Puntos de Control de la Fase M del Ciclo Celular , Biosíntesis de Proteínas , Humanos , Proteínas Cdc20/química , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Huso Acromático/metabolismo , Iniciación de la Cadena Peptídica Traduccional
13.
Oncogene ; 42(14): 1088-1100, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792756

RESUMEN

PRMT6, a type I arginine methyltransferase, di-methylates the arginine residues of both histones and non-histones asymmetrically. Increasing evidence indicates that PRMT6 plays a tumor mediator involved in human malignancies. Here, we aim to uncover the essential role and underlying mechanisms of PRMT6 in promoting glioblastoma (GBM) proliferation. Investigation of PRMT6 expression in glioma tissues demonstrated that PRMT6 is overexpressed, and elevated expression of PRMT6 is negatively correlated with poor prognosis in glioma/GBM patients. Silencing PRMT6 inhibited GBM cell proliferation and induced cell cycle arrest at the G0/G1 phase, while overexpressing PRMT6 had opposite results. Further, we found that PRMT6 attenuates the protein stability of CDKN1B by promoting its degradation. Subsequent mechanistic investigations showed that PRMT6 maintains the transcription of CDC20 by activating histone methylation mark (H3R2me2a), and CDC20 interacts with and destabilizes CDKN1B. Rescue experimental results confirmed that PRMT6 promotes the ubiquitinated degradation of CDKN1B and cell proliferation via CDC20. We also verified that the PRMT6 inhibitor (EPZ020411) could attenuate the proliferative effect of GBM cells. Our findings illustrate that PRMT6, an epigenetic mediator, promotes CDC20 transcription via H3R2me2a to mediate the degradation of CDKN1B to facilitate GBM progression. Targeting PRMT6-CDC20-CDKN1B axis might be a promising therapeutic strategy for GBM.


Asunto(s)
Glioblastoma , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Glioblastoma/genética , Histonas/genética , Histonas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metilación , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1869(4): 166663, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764621

RESUMEN

Fibrosis is a common pathological phenomenon in progressive kidney disease leading to eventual loss of kidney function. Previous studies demonstrated that CDC20 plays a role in cancers by regulating epithelial-mesenchymal transition (EMT) and the infiltration of fibroblasts, suggesting the potential of CDC20 in regulating fibrotic response. However, the role of CDC20 in renal fibrosis is yet unclear. Herein, we reported that renal CDC20 was remarkably upregulated in renal tubular epithelial cells and fibroblasts in chronic kidney disease (CKD) patients, which was in line with a positive correlation with the severity of kidney fibrosis. In mice with unilateral urinary obstruction, CDC20 was also strikingly enhanced, and treatment with Apcin, an inhibitor of CDC20, ameliorated kidney fibrosis. Consistently, the pharmacological inhibition of CDC20 in mouse proximal tubular epithelial cells and rat fibroblasts attenuated TGF-ß1-induced fibrotic responses, while overexpression of CDC20 aggravated such responses. Additional studies revealed that CDC20 induces nuclear translocation of ß-catenin, which in turn initiates and promotes the pathological process of fibrosis in CKD. Thus, enhanced CDC20 in renal tubular cells and fibroblasts promotes renal fibrosis by activating ß-catenin, and CDC20 inhibition may serve as a promising strategy for the prevention and treatment of renal fibrosis.


Asunto(s)
Insuficiencia Renal Crónica , beta Catenina , Animales , Ratones , Ratas , Proteínas Cdc20 , Proteínas de Ciclo Celular , Células Epiteliales/patología , Fibroblastos/patología , Fibrosis , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Humanos
15.
Curr Mol Med ; 23(3): 193-199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35319365

RESUMEN

The cancers of the cervix, endometrium, ovary, and breast are great threats to women's health. Cancer is characterized by the uncontrolled proliferation of cells and deregulated cell cycle progression is one of the main causes of malignancy. Agents targeting cell cycle regulators may have potential anti-tumor effects. CDC20 (cell division cycle 20 homologue) is a co-activator of the anaphase-promoting complex/cyclosome (APC/C) and thus acts as a mitotic regulator. In addition, CDC20 serves as a subunit of the mitotic checkpoint complex (MCC) whose function is to inhibit APC/C. Recently, higher expression of CDC20 has been reported in these cancers and was closely associated with their clinicopathological parameters, indicating CDC20 a potential target for cancer treatment that is worth further study. In the present review, we summarized current progress and put forward perspectives of CDC20 in female reproductive cancers.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias , Femenino , Humanos , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Mitosis
16.
Oxid Med Cell Longev ; 2022: 8421813, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36193067

RESUMEN

Background: The specificity and sensitivity of hepatocellular carcinoma (HCC) diagnostic markers are limited, hindering the early diagnosis and treatment of HCC patients. Therefore, improving prognostic biomarkers for patients with HCC is urgently needed. Methods: HCC-related datasets were downloaded from the public databases. Differentially expressed genes (DEGs) between HCC and adjacent nontumor liver tissues were then identified. Moreover, the intersection of DEGs in four datasets (GSE138178, GSE77509, GSE84006, and TCGA) was used in the functional enrichment, and module genes were obtained by a coexpression network. Cox and Kaplan-Meier analyses were used to identify overall survival- (OS-) related genes from module genes. Area under the curve (AUC) > 0.9 of OS-related genes was then carried out in order to perform the protein-protein interaction network. The feature genes were identified by least absolute shrinkage and selection operator (LASSO). Furthermore, the hub gene was identified through the univariate Cox model, after which the correlation analysis between the hub gene and pathways was explored. Finally, infiltration in immune cell types in HCC was analyzed. Results: A total of 2,227 upregulated genes and 1,501 downregulated DEGs were obtained in all four datasets, which were mainly found to be involved in the cell cycle and retinol metabolism. Accordingly, 998 OS-related genes were screened to construct the LASSO model. Finally, 8 feature genes (BUB1, CCNB1, CCNB2, CCNA2, AURKB, CDC20, OIP5, and TTK) were obtained. CDC20 was shown to serve as a poor prognostic gene in HCC and was mainly involved in the cell cycle. Moreover, a positive correlation was noted between the high degree of infiltration with Th2 and CDC20. Conclusion: High expression of CDC20 predicted poor survival, as potential target in the treatment for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Factores de Riesgo , Vitamina A
17.
Cancer Res ; 82(19): 3432-3434, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36193651

RESUMEN

Numerical chromosomal aberrations are highly frequent in cancer cells. However, tumor-associated mutations in regulators of the mitotic machinery that controls chromosome segregation are rather rare. By sequencing families with hereditary cancer, Chen and colleagues report two novel heterozygous mutations in CDC20, a coactivator of the anaphase-promoting complex (APC/C) and a target of the spindle assembly checkpoint (SAC) that prevents chromosome missegregation during mitosis. CDC20 mutations result in partial SAC functionality and segregate with tumor susceptibility in families with aneuploid ovarian cancers and other malignancies. The expression of these mutations in a knock-in mouse model accelerates the development of Myc-induced lymphomas and mortality, strongly supporting the notion that partial dysfunction of mitotic regulators may have profound implications in spontaneous and hereditary cancer. See related article by Chen et al., p. 3499.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Neoplasias , Animales , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Predisposición Genética a la Enfermedad , Células Germinativas/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Ratones , Mitosis/genética , Neoplasias/genética
18.
Biochim Biophys Acta Rev Cancer ; 1877(6): 188824, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36243246

RESUMEN

The Anaphase-Promoting Complex/Cyclosome (APC/C), an E3 ubiquitin ligase, and two co-activators, Cdc20 and Cdh1, enable the ubiquitin-dependent proteasomal degradation of various critical cell cycle regulators and govern cell division in a timely and precise manner. Dysregulated cell cycle events cause uncontrolled cell proliferation, leading to tumorigenesis. Studies have shown that Cdh1 has tumor suppressive activities while Cdc20 has an oncogenic property, suggesting that Cdc20 is an emerging therapeutic target for cancer treatment. Therefore, in this review, we discussed recent findings about the essential roles of APC/C-Cdc20 in cell cycle regulation. Furthermore, we briefly summarized that the regulation of Cdc20 expression levels is strictly controlled to order cell cycle events appropriately. Finally, given the function of Cdc20 as an oncogene, therapeutic interventions targeting Cdc20 activity may be beneficial in cancer treatment.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ubiquitina-Proteína Ligasas , Ciclo Celular , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología
19.
Genet Res (Camb) ; 2022: 3217248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186000

RESUMEN

Uterine Corpus Endometrial Carcinoma (UCEC), the most common gynecologic malignancy in developed countries, remains to be a major public health problem. Further studies are surely needed to elucidate the tumorigenesis of UCEC. Herein, intersecting 203 differentially expressed genes (DEGs) were identified with the GSE17025, GSE63678, and The Cancer Genome Atlas-UCEC datasets. The Gene Ontology/Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis and protein-protein interaction (PPI) network were performed on those 203 DEGs. Intriguingly, 6 of the top 10 nodes in the PPI network were related to unfavorable prognosis, that is, ASPM, CDC20, DLGAP5, BUB1B, CDCA8, and NCAPG. The mRNA and protein expression levels of the 6 hub genes were elevated in UCEC tissues compared to normal tissues. Higher expression of the 6 hub genes was associated with poor prognostic clinicopathological characteristics. The receiver operating characteristic curve suggested the significant diagnostic ability of the 6 hub genes for UCEC. Then, underlying pathogeneses of UCEC including promoter methylation level, TP53 mutation status, genomic genetic variation, and immune cells infiltration were analyzed. The mRNA expression level of the 6 hub genes was also higher in cervical squamous cell carcinoma and endocervical adenocarcinoma, uterine carcinosarcoma, and ovarian serous cystadenocarcinoma tissues than in corresponding normal tissues. In conclusion, ASPM, CDC20, DLGAP5, BUB1B, CDCA8, and NCAPG may be considered diagnostic and prognostic biomarkers in UCEC.


Asunto(s)
Neoplasias Endometriales , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Biología Computacional , Bases de Datos Genéticas , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Pronóstico , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética
20.
Stem Cell Res Ther ; 13(1): 443, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056439

RESUMEN

BACKGROUND: Bone is a rigid organ that provides physical protection and support to vital organs of the body. Bone loss disorders are commonly associated with increased bone marrow adipose tissue. Bone marrow mesenchymal stromal/stem cells (BMSCs) are multipotent progenitors that can differentiate into osteoblasts, adipocytes, and chondrocytes. Cell division cycle 20 (CDC20) is a co-activator of anaphase promoting complex/cyclosome (APC/C), and is required for ubiquitin ligase activity. Our previous study showed that CDC20 promoted the osteogenic commitment of BMSCs and Cdc20 conditional knockout mice suggested a decline in bone mass. In this study, we found that knockdown of CDC20 promoted adipogenic differentiation of BMSCs by modulating ß-catenin, which suggested a link between adipogenesis and osteogenesis. METHODS: Lentivirus containing a CDC20 shRNA was used for CDC20 knockdown in human BMSCs (hBMSCs). Primary mouse BMSCs (mBMSCs) were isolated from Cdc20f/f and Sp7-Cre;Cdc20f/f mice. Adipogenesis was examined using quantitative real-time reverse transcription PCR (qRT-PCR) and western blotting analysis of adipogenic regulators, Oil Red O staining, and transplantation into nude mice. CDC20 knockout efficiency was determined through immunochemistry, qRT-PCR, and western blotting of bone marrow. Accumulation of adiposity was measured through histology and staining of bone sections. Exploration of the molecular mechanism was determined through western blotting, Oil Red O staining, and qRT-PCR. RESULTS: CDC20 expression in hBMSCs was significantly decreased during adipogenic differentiation. CDC20 knockdown enhanced hBMSC adipogenic differentiation in vitro. CDC20-knockdown hBMSCs showed more adipose tissue-like constructs upon hematoxylin and eosin (H&E) and Oil Red O staining. Sp7-Cre;Cdc20f/f mice presented increased adipocytes in their bone marrow compared with the control mice. mBMSCs from Sp7-Cre;Cdc20f/f mice showed upregulated adipogenic differentiation. Knockdown of CDC20 led to decreased ß-catenin levels, and a ß-catenin pathway activator (lithium chloride) abolished the role of CDC20 in BMSC adipogenic differentiation. CONCLUSIONS: Our findings showed that CDC20 knockdown enhanced adipogenesis of hBMSC and mBMSCs adipogenesis in vitro and in vivo. CDC20 regulates both adipogenesis and osteogenesis of BMSCs, and might lead to the development of new therapeutic targets for "fatty bone" and osteoporosis.


Asunto(s)
Adipogénesis , Proteínas Cdc20/metabolismo , Células Madre Mesenquimatosas , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea , Proteínas Cdc20/genética , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , Ratones Desnudos , Osteogénesis/genética , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA