Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 475
Filtrar
1.
Nat Commun ; 15(1): 3894, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719837

RESUMEN

The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.


Asunto(s)
Cadmio , Unión Proteica , Proteínas Ligasas SKP Cullina F-box , Cadmio/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación , Dominios Proteicos , Humanos , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
2.
Cancer Lett ; 591: 216848, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604312

RESUMEN

FBXO43 is a member of the FBXO subfamily of F-box proteins, known to be a regulatory hub during meiosis. A body of data showed that FBXO43 is overexpressed in a number of human cancers. However, whether and how FBXO43 affects cell cycle progression and growth of cancer cells remain elusive. In this study, we provide first piece of evidence, showing a pivotal role of FBXO43 in cell cycle progression and growth of cancer cells. Specifically, FBXO43 acts as a positive cell cycle regulator with an oncogenic activity in variety types of human cancer, including non-small cell lung cancer, hepatocellular carcinoma and sarcoma. Mechanistically, FBXO43 interacts with phosphorylated SKP2 induced by AKT1, leading to reduced SKP2 auto-ubiquitylation and subsequent proteasome degradation. Taken together, our study demonstrates that FBXO43 promotes cell cycle progression by stabilizing SKP2, and FBXO43 could serve as a potential anti-cancer target.


Asunto(s)
Ciclo Celular , Proteínas F-Box , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas Asociadas a Fase-S , Ubiquitinación , Humanos , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Proliferación Celular , Fosforilación , Animales , Ratones , Proteolisis , Regulación Neoplásica de la Expresión Génica , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Células HEK293 , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética
3.
Prostate ; 84(9): 877-887, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38605532

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the second-leading cause of cancer mortalities in the United States and is the most commonly diagnosed malignancy in men. While androgen deprivation therapy (ADT) is the first-line treatment option to initial responses, most PCa patients invariably develop castration-resistant PCa (CRPC). Therefore, novel and effective treatment strategies are needed. The goal of this study was to evaluate the anticancer effects of the combination of two small molecule inhibitors, SZL-P1-41 (SKP2 inhibitor) and PBIT (KDM5B inhibitor), on PCa suppression and to delineate the underlying molecular mechanisms. METHODS: Human CRPC cell lines, C4-2B and PC3 cells, were treated with small molecular inhibitors alone or in combination, to assess effects on cell proliferation, migration, senescence, and apoptosis. RESULTS: SKP2 and KDM5B showed an inverse regulation at the translational level in PCa cells. Cells deficient in SKP2 showed an increase in KDM5B protein level, compared to that in cells expressing SKP2. By contrast, cells deficient in KDM5B showed an increase in SKP2 protein level, compared to that in cells with KDM5B intact. The stability of SKP2 protein was prolonged in KDM5B depleted cells as measured by cycloheximide chase assay. Cells deficient in KDM5B were more vulnerable to SKP2 inhibition, showing a twofold greater reduction in proliferation compared to cells with KDM5B intact (p < 0.05). More importantly, combined inhibition of KDM5B and SKP2 significantly decreased proliferation and migration of PCa cells as compared to untreated controls (p < 0.005). Mechanistically, combined inhibition of KDM5B and SKP2 in PCa cells abrogated AKT activation, resulting in an induction of both cellular senescence and apoptosis, which was measured via Western blot analysis and senescence-associated ß-galactosidase (SA-ß-Gal) staining. CONCLUSIONS: Combined inhibition of KDM5B and SKP2 was more effective at inhibiting proliferation and migration of CRPC cells, and this regimen would be an ideal therapeutic approach of controlling CRPC malignancy.


Asunto(s)
Apoptosis , Senescencia Celular , Histona Demetilasas con Dominio de Jumonji , Neoplasias de la Próstata Resistentes a la Castración , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas Asociadas a Fase-S , Transducción de Señal , Humanos , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Fase-S/genética , Masculino , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/genética , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Células PC-3 , Proteínas Nucleares , Proteínas Represoras
4.
Cell Death Dis ; 15(4): 241, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561375

RESUMEN

Soft-tissue sarcomas (STS) emerges as formidable challenges in clinics due to the complex genetic heterogeneity, high rates of local recurrence and metastasis. Exploring specific targets and biomarkers would benefit the prognosis and treatment of STS. Here, we identified RCC1, a guanine-nucleotide exchange factor for Ran, as an oncogene and a potential intervention target in STS. Bioinformatics analysis indicated that RCC1 is highly expressed and correlated with poor prognosis in STS. Functional studies showed that RCC1 knockdown significantly inhibited the cell cycle transition, proliferation and migration of STS cells in vitro, and the growth of STS xenografts in mice. Mechanistically, we identified Skp2 as a downstream target of RCC1 in STS. Loss of RCC1 substantially diminished Skp2 abundance by compromising its protein stability, resulting in the upregulation of p27Kip1 and G1/S transition arrest. Specifically, RCC1 might facilitate the nucleo-cytoplasmic trafficking of Skp2 via direct interaction. As a result, the cytoplasmic retention of Skp2 would further protect it from ubiquitination and degradation. Notably, recovery of Skp2 expression largely reversed the phenotypes induced by RCC1 knockdown in STS cells. Collectively, this study unveils a novel RCC1-Skp2-p27Kip1 axis in STS oncogenesis, which holds promise for improving prognosis and treatment of this formidable malignancy.


Asunto(s)
Sarcoma , Animales , Humanos , Ratones , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Sarcoma/genética , Sarcoma/patología , Ubiquitinación , Regulación hacia Arriba
5.
J Mol Biol ; 436(8): 168505, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38423454

RESUMEN

Skp2, the substrate recognition component of the SCFSkp2 ubiquitin ligase, has been implicated in the targeted destruction of a number of key cell cycle regulators and the promotion of S-phase. One of its critical targets is the Cyclin dependent kinase (Cdk) inhibitor p27, and indeed the overexpression of Skp2 in a number of cancers is directly correlated with the premature degradation of p27. Skp2 was first identified as a protein that interacts with Cyclin A in transformed cells, but its role in this complex has remained unclear. In this paper, we demonstrate that Skp2 interacts with Cyclin A in Drosophila and is required to maintain Cyclin A levels and permit mitotic entry. Failure of mitotic entry in Skp2 mutant cells results in polyploidy. If these cells enter mitosis again they are unable to properly segregate their chromosomes, leading to checkpoint dependent cell cycle arrest or apoptosis. Thus, Skp2 is required for mitosis and for maintaining diploidy and genome stability.


Asunto(s)
Proteínas de Ciclo Celular , Ciclina A , Diploidia , Mitosis , Animales , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclina A/genética , Ciclina A/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo
6.
Oncogene ; 43(15): 1149-1159, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396292

RESUMEN

O-linked-ß-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) and ubiquitination are critical posttranslational modifications that regulate tumor development and progression. The continuous progression of the cell cycle is the fundamental cause of tumor proliferation. S-phase kinase-associated protein 2 (SKP2), an important E3 ubiquitin ligase, assumes a pivotal function in the regulation of the cell cycle. However, it is still unclear whether SKP2 is an effector of O-GlcNAcylation that affects tumor progression. In this study, we found that SKP2 interacted with O-GlcNAc transferase (OGT) and was highly O-GlcNAcylated in hepatocellular carcinoma (HCC). Mechanistically, the O-GlcNAcylation at Ser34 stabilized SKP2 by reducing its ubiquitination and degradation mediated by APC-CDH1. Moreover, the O-GlcNAcylation of SKP2 enhanced its binding ability with SKP1, thereby enhancing its ubiquitin ligase function. Consequently, SKP2 facilitated the transition from the G1-S phase of the cell cycle by promoting the ubiquitin degradation of cell cycle-dependent kinase inhibitors p27 and p21. Additionally, targeting the O-GlcNAcylation of SKP2 significantly suppressed the proliferation of HCC. Altogether, our findings reveal that O-GlcNAcylation, a novel posttranslational modification of SKP2, plays a crucial role in promoting HCC proliferation, and targeting the O-GlcNAcylation of SKP2 may become a new therapeutic strategy to impede the progression of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Quinasas Asociadas a Fase-S , Humanos , Carcinoma Hepatocelular/patología , División Celular , Neoplasias Hepáticas/patología , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
7.
Oncogene ; 43(13): 962-975, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355807

RESUMEN

Osteosarcoma(OS) is a highly aggressive bone cancer for which treatment has remained essentially unchanged for decades. Although OS is characterized by extensive genomic heterogeneity and instability, RB1 and TP53 have been shown to be the most commonly inactivated tumor suppressors in OS. We previously generated a mouse model with a double knockout (DKO) of Rb1 and Trp53 within cells of the osteoblastic lineage, which largely recapitulates human OS with nearly complete penetrance. SKP2 is a repression target of pRb and serves as a substrate recruiting subunit of the SCFSKP2 complex. In addition, SKP2 plays a central role in regulating the cell cycle by ubiquitinating and promoting the degradation of p27. We previously reported the DKOAA transgenic model, which harbored a knock-in mutation in p27 that impaired its binding to SKP2. Here, we generated a novel p53-Rb1-SKP2 triple-knockout model (TKO) to examine SKP2 function and its potential as a therapeutic target in OS. First, we observed that OS tumorigenesis was significantly delayed in TKO mice and their overall survival was markedly improved. In addition, the loss of SKP2 also promoted an apoptotic microenvironment and reduced the stemness of DKO tumors. Furthermore, we found that small-molecule inhibitors of SKP2 exhibited anti-tumor activities in vivo and in OS organoids as well as synergistic effects when combined with a standard chemotherapeutic agent. Taken together, our results suggest that SKP2 inhibitors may reduce the stemness plasticity of OS and should be leveraged as next-generation adjuvants in this cancer.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Humanos , Ratones , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Carcinogénesis , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Ratones Noqueados , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Microambiente Tumoral
8.
Cancer Lett ; 587: 216733, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38360141

RESUMEN

Despite significant advances in diagnostic techniques and treatment approaches, the prognosis of pancreatic ductal adenocarcinoma (PDAC) is still poor. Previous studies have reported that S-phase kinase-associated protein 2 (SKP2), a subunit of the SCF E3 ubiquitin ligase complex, is engaged in the malignant biological behavior of some tumor entities. However, SKP2 has not been fully investigated in PDAC. In the present study, it was observed that high expression of SKP2 significantly correlates with decreased survival time. Further experiments suggested that SKP2 promotes metastasis by interacting with the putative transcription factor paraspeckle component 1 (PSPC1). According to the results of coimmunoprecipitation and ubiquitination assays, SKP2 depletion resulted in the polyubiquitination of PSPC1, followed by its degradation. Furthermore, the SKP2-mediated ubiquitination of PSPC1 partially depended on the activity of the E3 ligase TRIM21. In addition, inhibition of the SKP2/PSPC1 axis by SMIP004, a traditional inhibitor of SKP2, impaired the migration of PDAC cells. In summary, this study provides novel insight into the mechanisms involved in PDAC malignant progression. Targeting the SKP2/PSPC1 axis is a promising strategy for the treatment of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Neoplasias Pancreáticas/genética , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Carcinoma Ductal Pancreático/genética , Proteínas de Unión al ARN/metabolismo
9.
Br J Dermatol ; 190(2): 244-257, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37850885

RESUMEN

BACKGROUND: Psoriasis is a common chronic skin disorder. Pathologically, it features abnormal epidermal proliferation, infiltrating inflammatory cells and increased angiogenesis in the dermis. Aberrant expression of E3 ubiquitin ligase and a dysregulated protein ubiquitination system are implicated in the pathogenesis of psoriasis. OBJECTIVES: To examine the potential role of S-phase kinase-associated protein 2 (Skp2), an E3 ligase and oncogene, in psoriasis. METHODS: Gene expression and protein levels were evaluated with quantitative reverse transcriptase polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence staining of skin samples from patients with psoriasis vulgaris and an imiquimod (IMQ)-induced mouse model, as well as from cultured endothelial cells (ECs). Protein interaction, substrate ubiquitination and degradation were examined using co-immunoprecipitation, Western blotting and a cycloheximide chase assay in human umbilical vein ECs. Angiogenesis was measured in vitro using human dermal microvascular ECs (HDMECs) for BrdU incorporation, migration and tube formation. In vivo angiogenesis assays included chick embryonic chorioallantoic membrane, the Matrigel plug assay and quantification of vasculature in the mouse lesions. Skp2 gene global knockout (KO) mice and endothelial-specific conditional KO mice were used. RESULTS: Skp2 was increased in skin samples from patients with psoriasis and IMQ-induced mouse lesions. Immunofluorescent double staining indicated a close association of Skp2 expression with excessive vascularity in the lesional dermal papillae. In HDMECs, Skp2 overexpression was enhanced, whereas Skp2 knockdown inhibited EC proliferation, migration and tube-like structure formation. Mechanistically, phosphatase and tensin homologue (PTEN), which suppresses the phosphoinositide 3-kinase/Akt pathway, was identified to be a novel substrate for Skp2-mediated ubiquitination. A selective inhibitor of Skp2 (C1) or Skp2 small interfering RNA significantly reduced vascular endothelial growth factor-triggered PTEN ubiquitination and degradation. In addition, Skp2-mediated ubiquitination depended on the phosphorylation of PTEN by glycogen synthase kinase 3ß. In the mouse model, Skp2 gene deficiency alleviated IMQ-induced psoriasis. Importantly, tamoxifen-induced endothelial-specific Skp2 KO mice developed significantly ameliorated psoriasis with diminished angiogenesis of papillae. Furthermore, topical use of the Skp2 inhibitor C1 effectively prevented the experimental psoriasis. CONCLUSIONS: The Skp2/PTEN axis may play an important role in psoriasis-associated angiogenesis. Thus, targeting Skp2-driven angiogenesis may be a potential approach to treating psoriasis.


Asunto(s)
Psoriasis , Proteínas Quinasas Asociadas a Fase-S , Humanos , Animales , Ratones , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Tensinas/metabolismo , Células Endoteliales/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Angiogénesis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Psoriasis/patología , Ubiquitina-Proteína Ligasas/metabolismo
10.
Environ Toxicol ; 39(2): 783-793, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37782699

RESUMEN

Glioma, a prevalent and serious form of brain cancer, is associated with dysregulation of DNA methylation, where DNA methyltransferase-1 (DNMT1) plays a significant role in glioma progression. However, the involvement of F-box protein 32 (FBXO32) in glioma and its regulation by DNMT1-mediated methylation remain poorly understood. In this study, we investigated FBXO32 expression in glioma cells with high DNMT1 expression using the online dataset and correlated it with patient survival. Then impact of elevated FBXO32 expression on cell proliferation, migration, and invasion was evaluated, along with the examination of EMT-related proteins. Furthermore, a xenograft model established by injecting glioma cells stably transfected with FBXO32 was used to evaluate tumor growth, volume, and weight. The ChIP assay was employed to study the interaction between DNMT1 and the FBXO32 promoter, revealing that DNMT1 negatively correlated with FBXO32 expression in glioma cells and promoted FBXO32 promoter methylation. Moreover, we investigated the interaction between FBXO32 and SKP1 using Co-IP and GST pulldown assays, discovering that FBXO32 acts as an E3 ubiquitin ligase and promotes SKP1 ubiquitination, leading to its degradation. Interestingly, our findings demonstrated that high FBXO32 expression was associated with improved overall survival in glioma patients. Knockdown of DNMT1 in glioma cells increased FBXO32 expression and suppressed malignant phenotypes, suggesting that FBXO32 functions as a tumor suppressor in glioma. In conclusion, this study reveals a novel regulatory mechanism involving DNMT1-mediated FBXO32 expression in glioma cells, where FBXO32 acts as an E3 ubiquitin ligase to degrade SKP1 via ubiquitination. This FBXO32-mediated regulation of SKP1 activity contributes to the progression of glioma cells. These findings provide important insights into the molecular mechanisms underlying glioma progression and may hold promise for the development of targeted therapies for glioma patients.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/genética
11.
Mol Cancer Ther ; 23(2): 223-234, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37871911

RESUMEN

Osteosarcoma is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in osteosarcoma is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that Skp2 knockout in murine osteosarcoma improved survival and delayed tumorigenesis. Here, we performed RNA sequencing (RNA-seq) on tumors from a transgenic osteosarcoma mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;Skp2-/-), followed by qPCR and immunohistochemistry validation. To investigate the clinical implications of our results, we analyzed a human osteosarcoma patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. We found large differences in gene expression after SKP2 knockout. Surprisingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors, especially the signature genes for macrophages and to a lesser extent, T cells, B cells, and vascular cells. We also uncovered a set of relevant transcription factors that may mediate these changes. In osteosarcoma patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET osteosarcoma and the TCGA Sarcoma cohorts. Overall, our findings indicate that SKP2 may mediate immune exclusion from the osteosarcoma tumor microenvironment, suggesting that SKP2 modulation in osteosarcoma may induce antitumor immune activation.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Humanos , Ratones , Neoplasias Óseas/genética , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Transgénicos , Osteosarcoma/genética , Osteosarcoma/patología , Pronóstico , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
12.
World J Gastroenterol ; 29(45): 5974-5987, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38130998

RESUMEN

BACKGROUND: Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2 (HER-2)-positive gastric cancer (GC). However, the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance. While S-phase kinase associated protein 2 (Skp2) overexpression has been implicated in the malignant progression of GC, its role in regulating trastuzumab resistance in this context remains uncertain. Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products, there has been a lack of successful commercialization of drugs specifically targeting Skp2. AIM: To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment. METHODS: Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells. Q-PCR, western blot, and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression. A cell counting kit-8 assay, flow cytometry, a amplex red glucose/glucose oxidase assay kit, and a lactate assay kit were utilized to measure the proliferation, apoptosis, and glycolytic activity of GC cells in vitro. A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo. RESULTS: The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab. Thioridazine demonstrated the ability to directly bind to Skp2, resulting in a reduction in Skp2 expression at both the transcriptional and translational levels. Moreover, thioridazine effectively inhibited cell proliferation, exhibited antiapoptotic properties, and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways. The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo, surpassing the efficacy of either monotherapy. CONCLUSION: Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance, particularly when used in conjunction with lapatinib. This compound has potential benefits for patients with Skp2-proficient tumors.


Asunto(s)
Neoplasias Gástricas , Tioridazina , Humanos , Animales , Ratones , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Lapatinib/farmacología , Lapatinib/uso terapéutico , Tioridazina/farmacología , Tioridazina/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ratones Desnudos , Receptor ErbB-2/metabolismo , Proliferación Celular , Glucólisis , Lactatos , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Mamíferos
13.
J Orthop Surg Res ; 18(1): 820, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37915040

RESUMEN

BACKGROUND: Antiepileptic drugs (AEDs) harm bone health and are significantly associated with osteoporosis development. In this study, we aimed to explore the mechanisms involved in carbamazepine (CBZ) and microRNA (miR)-20a-5p/ubiquitin-specific peptidase 10 (USP10)/S-phase kinase-associated protein 2 (SKP2) axis in osteoporosis. METHODS: Human bone marrow mesenchymal stem cells (BMSCs) were treated with different concentrations of CBZ. Knocking down or overexpressing miR-20a-5p, USP10, and SKP2 cell lines were constructed. The expressions of miR-20a-5p, USP10, SKP2, runt-related transcription factor 2 (Runx2), Alkaline phosphatase (ALP), Osterix (Osx), osteocalcin (OCN) and Collagen I were detected with western blot (WB) and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Alizarin Red S (ARS) staining was performed to measure calcium deposition. Dual-luciferase assay and RNA immunoprecipitation (RIP) were applied to verify the binding relationship between miR-20a-5p and USP10. USP10 and SKP2 combination was verified by Co-Immunopurification (Co-IP). The stability of the SKP2 protein was verified by Cycloheximide chase assay. RESULTS: CBZ could reduce cell activity. ALP activity and ARS staining were enhanced in the osteogenic induction (OM) group. The expressions of Runx2, ALP, Osx, OCN and Collagen I were increased. CBZ reduced miR-20a-5p expressions. Verification experiments showed miR-20a-5p could target USP10. USP10 increased SKP2 stability and promoted SKP2 expression. CBZ regulated miR-20a-5p/USP10/SPK2 and inhibited BMSCs osteogenic differentiation. CONCLUSIONS: CBZ regulated USP10 through miR-20a-5p to affect the deubiquitination of SKP2 and inhibit osteogenic differentiation, which provided a new idea for osteoporosis treatment.


Asunto(s)
MicroARNs , Osteoporosis , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Osteogénesis/genética , Células Cultivadas , Diferenciación Celular/genética , Osteoporosis/genética , Carbamazepina/farmacología , Fosfatasa Alcalina/metabolismo , Colágeno/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
14.
Clin Transl Med ; 13(10): e1443, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37837399

RESUMEN

BACKGROUND: Enhanced de novo lipogenesis is essential for hepatocellular carcinoma (HCC). Abnormally high cullin-associated and neddylation-dissociated 1 (CAND1) expression is associated with poor clinical prognosis in HCC. The SKP1-Cullin-1-F-box (SCF) complex consists of the SKP1, Cullin-1 and F-box proteins (FBPs) and performs multiple functions including adipogenesis. SCF complex was modulated by CAND1, but Whether and how the CAND1 promotes HCC by regulating SCF complex and lipogenesis are unknown. METHODS: HCC samples were used to analyze the correlations between CAND1 expression and clinicopathological characteristics such as survival and prognosis. The in vitro functions of CAND1, FBXO11 and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) were measured by cell proliferation, colony formation and migration assays. The in vivo functions were tested in multiple mouse liver cancer models including patient-derived xenograft (PDX), cell line-derived xenograft and AKT/NRASV12-induced primary liver cancer models. Injections of adeno-associated virus targeting CAND1 (AAV-shCAND1) were performed to evaluate the therapeutic efficacy of targeting CAND1. RNA-Seq and lipidomic assays followed by serial biochemical experiments including mass spectrometry, immunoprecipitation and GST pull-down were performed to dissect the underlying mechanisms. RESULTS: CAND1 promoted the expression of lipid synthesis genes by disrupting SCF complex assembly and lipid accumulation. Furthermore, we identified hnRNPA2B1 as a novel F-box protein 11 (FBXO11)-binding partner. FBXO11 directly bound to hnRNPA2B1 and promoted hnRNPA2B1 ubiquitination and subsequent degradation. Our evaluations of the therapeutic efficacy of AAV-shCAND1 injections confirmed that targeting the CAND1-SCFFBXO11 -hnRNPA2B1A signalling axis was therapeutically effective. CAND1 downregulation significantly reduced the tumour burden in a primary mouse liver cancer model and a PDX model. CONCLUSIONS: Our results highlight that CAND1 is associated with poor prognosis in HCC and regulates lipid metabolic reprogramming by dissociating the SCF complex. Targeting the CAND1-SCFFBXO11 -hnRNPA2B1 axis may be a novel strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Animales , Ratones , Humanos , Proteínas Cullin/química , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Carcinoma Hepatocelular/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Metabolismo de los Lípidos/genética , Neoplasias Hepáticas/genética , Ubiquitinación/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Lípidos , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas F-Box/metabolismo
15.
Commun Biol ; 6(1): 805, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532777

RESUMEN

Non-small cell lung cancer (NSCLC) is the most prevalent type of cancer and the leading cause of cancer-related death. Chemotherapeutic resistance is a major obstacle in treating NSCLC patients. Here, we discovered that the E3 ligase Skp2 is overexpressed, accompanied by the downregulation of necroptosis-related regulator MLKL in human NSCLC tissues and cell lines. Knockdown of Skp2 inhibited viability, anchorage-independent growth, and in vivo tumor development of NSCLC cells. We also found that the Skp2 protein is negatively correlated with MLKL in NSCLC tissues. Moreover, Skp2 is increased and accompanied by an upregulation of MLKL ubiquitination and degradation in cisplatin-resistant NSCLC cells. Accordingly, inhibition of Skp2 partially restores MLKL and sensitizes NSCLC cells to cisplatin in vitro and in vivo. Mechanistically, Skp2 interacts and promotes ubiquitination-mediated degradation of MLKL in cisplatin-resistant NSCLC cells. Our results provide evidence of an Skp2-dependent mechanism regulating MLKL degradation and cisplatin resistance, suggesting that targeting Skp2-ubiquitinated MLKL degradation may overcome NSCLC chemoresistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Quinasas , Proteínas Quinasas Asociadas a Fase-S , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo
16.
Phytomedicine ; 116: 154856, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37187035

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) has the worst prognosis of the any breast cancer subtype, and the efficient therapeutical treatment is extremely limited. Antenoron filiforme (Thunb.) Roberty & Vautier (AF) is a Traditional Chinese Medicine (TCM), which is well-known for a diverse array of pharmacological activities, including but not limited to anti-inflammatory, antioxidant and anti-tumors properties. Clinically, AF is commonly prescribed for the treatment of gynecological diseases. PURPOSE: Since TNBC is one of the worst gynecological diseases, the objective of this research is to study the anti-TNBC function of the ethyl acetate extract (EAE) of AF (AF-EAE) and disclose its mechanism of action. MATERIALS AND METHODS: With the aim of elucidating the underlying molecular mechanism and possible chemical basis of AF-EAE in the treatment of TNBC, a comprehensive approach combining system pharmacology and transcriptomic analysis, functional experimental validation, and computational modeling was implemented. Firstly, the potential therapeutic targets of AF-EAE treating TNBC were analyzed by systemic pharmacology and transcriptome sequencing. Subsequently, cell viability assays, cell cycle assays, and transplantation tumor assays were employed to detect the inhibitory effect of AF-EAE on TNBC. Apart from that, the western blot and RT-qPCR assays were adopted to verify its mechanism of action. Finally, the potential chemical basis of anti-TNBC function of AF-EAE was screened through molecular docking and validated by molecular dynamics. RESULTS: This study analyzed the differentially expressed genes after AF-EAE treatment by RNA-sequencing (RNA-seq). It was found that most of the genes were abundant in the gene set termed "cell cycle". Besides, AF-EAE could suppress the proliferation of TNBC cells in vitro and in vivo by inhibiting the function of Skp2 protein. AF-EAE could also lead to the accumulation of p21 and a decrease of CDK6/CCND1 protein, thereby stalling the cycle of cell in the G1/S stage. Notably, clinical data survival analysis clearly demonstrated that Skp2 overexpression has been negatively correlated with survival rates in breast cancer (BC) patients. Further, as suggested by molecular docking and molecular dynamics, the quercetin and its analogues of AF-EAE might bind to Skp2 protein. CONCLUSION: In summary, AF-EAE inhibits the growth of TNBC in vitro and in vivo through targeting Skp2/p21 signaling pathway. While providing a novel potential drug for treating TNBC, this study might establish a method to delve into the action mechanism of TCM.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Proliferación Celular , Neoplasias de la Mama Triple Negativas/patología , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Regulación Neoplásica de la Expresión Génica
17.
Cell Signal ; 109: 110735, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37257769

RESUMEN

PURPOSE: Cervical Squamous Cell Carcinoma (CSCC) is one of the significant causes of cancer deaths among women. Distinct genetic and epigenetic-altered loci, including chromosomal 11p15.5-15.4, have been identified. CDKN1C (Cyclin-Dependent Kinase Inhibitor 1C, p57KIP2), a member of the CIP/KIP family of cyclin-dependent kinase inhibitors (CDKIs), located at 11p15.4, is a putative tumor suppressor. Apart from transcriptional control, S-Phase Kinase Associated Protein 2 (SKP2), an oncogenic E3 ubiquitin ligase, regulates the protein turnover of CDKN1C. But the molecular status of CDKN1C in CSCC and the underlying mechanistic underpinnings have yet to be explored. METHODS: TCGA and other publicly available datasets were analyzed to evaluate the expression of CDKN1C and SKP2. The expression (transcript/protein) was validated in independent CSCC tumors (n = 155). Copy number alteration and promoter methylation were correlated with the expression. Finally, in vitro functional validation was performed. RESULTS: CDKN1C was down-regulated, and SKP2 was up-regulated at the transcript and protein levels in CSCC tumors and the SiHa cell line. Notably, promoter methylation (50%) was associated with the downregulation of the CDKN1C transcript. However, high expression of SKP2 was found to be associated with the decreased expression of CDKN1C protein. Independent treatments with 5-aza-dC, MG132, and SKP2i (SKPin C1) in SiHa cells led to an enhanced expression of CDKN1C protein, validating the mechanism of down-regulation in CSCC. CONCLUSION: Collectively, CDKN1C was down-regulated due to the synergistic effect of promoter hyper-methylation and SKP2 over-expression in CSCC tumors, paving the way for further studies of its role in the pathogenesis of the disease.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias del Cuello Uterino , Femenino , Humanos , Carcinoma de Células Escamosas/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo/genética , Metilación , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Neoplasias del Cuello Uterino/genética
18.
Adv Biol Regul ; 88: 100964, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37004354

RESUMEN

Small cell lung cancer (SCLC) often exhibits Rb deficiency, TRß and p130 deletion, and SKP2 amplification, suggesting TRß inactivation and SKP2 activation. It is reported that SKP2 targeted therapy is effective in some cancers in vitro and in vivo, but it is not reported for the treatment of SCLC and retinoblastoma. SKP2 is the synthetic lethal gene in SCLC and retinoblastoma, so SKP2 can be used for targeted therapy in SCLC and retinoblastoma. RB1 knockout mice develop several kinds of tumors, but Rb1 and SKP2 double knockout mice are healthy, suggesting that SKP2 targeted therapy may have significant effects on Rb deficient cancers with less side effects, and if successful in SCLC and retinoblastoma in vitro and in animal model, such compounds may be promising for the clinical treatment of SCLC, retinoblastoma, and variety of Rb deficient cancers. Previously our studies showed that retinoblastomas exhibit retinal cone precursor properties and depend on cone-specific thyroid hormone receptor ß2 (TRß2) and SKP2 signaling. In this study, we sought to suppress SCLC and retinoblastoma cell growth by SKP2 inhibitors as a prelude to targeted therapy in vitro and in vivo. We knocked down TRß2 and SKP2 or over-expressed p27 in SCLC and retinoblastoma cell lines to investigate SKP2 and p27 signaling alterations. The SCLC cell lines H209 as well as retinoblastoma cell lines Y79, WERI, and RB177 were treated with SKP2 inhibitor C1 at different concentrations, following which Western blotting, Immunostaining, and cell cycle kinetics studies were performed to study SKP2 and p27 expression ubiquitination, to determine impact on cell cycle regulation and growth inhibition. TRß2 knockdown in Y79, RB177 and H209 caused SKP2 downregulation and degradation, p27 up-regulation, and S phase arrest, whereas, SKP2 knockdown or p27 over-expression caused p27 accumulation and G1-S phase arrest. In the cell lines Y79, WERI, RB177, and H209 treatment with C1 caused SKP2 ubiquitination and degradation, p27 de-ubiquitination and accumulation, and cell growth arrest. SKP2 inhibitor C1 significantly suppressed retinoblastoma as well as SCLC cell growth by SKP2 degradation and p27 accumulation. In vivo study also showed inhibition of tumor growth with C1 treatment. Potential limitations of the success of such a therapeutic approach and its translational application in human primary tumors, and alternative approaches to overcome such limitations are briefly discussed for the treatment of retinoblastoma, SCLC and other RB-related cancers.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Ratones , Animales , Humanos , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Línea Celular Tumoral , Ciclo Celular , Ratones Noqueados , Pulmón/patología
19.
Am J Chin Med ; 51(3): 723-740, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866798

RESUMEN

Colorectal cancer (CRC) is the third most common cancer worldwide. The main obstacle in treating advanced CRC is tumor recurrence and metastasis due to chemoresistance. S-phase kinase associated protein 2 (Skp2), an E3 ligase, is highly associated with tumor resistance and a poor prognosis. The results of immunoblotting, immunohistochemical staining, ubiquitination analysis, and co-immunoprecipitation (co-IP) assay revealed that the plant curcuma, curcumol, is a novel Skp2 inhibitor for CRC treatment. Curcumol inhibits aerobic glycolysis in CRC by inducing Skp2 degradation. Co-immunoprecipitation results showed that curcumol enhanced the interaction between cadherin-1 (Cdh1) and Skp2 and led to the ubiquitination and degradation of Skp2. Curcumol exhibited significant antitumor effects against CRC, such as increased intrinsic apoptosis and decreased tumorigenic properties, both in vivo and in vitro. Furthermore, curcumol overcame 5-fluorouracil (5-Fu) resistance in CRC and induced apoptosis in 5-Fu-resistant CRC cells. The present data revealed a novel antitumor mechanism of glycolytic regulation by curcumol, suggesting that curcumol may be a potential chemical candidate for treating 5-Fu-resistant CRC.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Humanos , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Línea Celular Tumoral , Ubiquitinación , Fluorouracilo/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Cadherinas/metabolismo , Glucólisis , Antígenos CD/metabolismo
20.
Eur J Pharmacol ; 948: 175697, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997048

RESUMEN

BACKGROUND: Platycodin D (PD) is a major bioactive component of Platycodon grandiflorum, a medicinal herb that is widely used in China, and is effective against various human cancers, including glioblastoma multiforme (GBM). S phase kinase-related protein 2 (Skp2) is oncogenic and overexpressed in various human tumors. It is highly expressed in GBM and its expression is correlated with tumor growth, drug resistance and poor prognosis. In this study, we investigated whether inhibition of glioma progression by PD is mediated by decreasing expression of Skp2. METHODS: Cell Counting Kit-8 (CCK-8) and Transwell assays were used to determine the effects of PD on GBM cell proliferation, migration, and invasion in vitro. mRNA and protein expression were determined by real time polymerase chain reaction (RT-PCR) and western blotting, respectively. The U87 xenograft model was used to verify the anti-glioma effect of PD in vivo. Expression levels of Skp2 protein were analyzed by immunofluorescence staining. RESULTS: PD suppressed proliferation and motility of GBM cells in vitro. The expression of Skp2 in U87 and U251 cells was significantly reduced by PD. PD mainly decreased the cytoplasmic expression of Skp2 in glioma cells. Skp2 protein expression was downregulated by PD, resulting in upregulation of its downstream targets, p21and p27. The inhibitory effect of PD was enhanced by Skp2 knockdown in GBM cells and reversed in cells with Skp2 overexpression. CONCLUSION: PD suppresses glioma development by regulation of Skp2 in GBM cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Neoplasias Encefálicas/genética , Glioma/patología , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA