Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 929
Filtrar
1.
Biomed Pharmacother ; 176: 116858, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850669

RESUMEN

The roles and mechanisms of A-kinase anchoring protein 1 (AKAP1) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. AKAP1 is a mitochondrial PKA-anchored protein and maintains mitochondrial homeostasis. This study aimed to investigate how AKAP1/PKA signaling plays a protective role in inhibiting VSMC phenotypic transformation and neointima formation by regulating mitochondrial fission. The results showed that both PDGF-BB treatment and balloon injury reduced the transcription, expression, and mitochondrial anchoring of AKAP1. In vitro, the overexpression of AKAP1 significantly inhibited PDGF-BB mediated VSMC proliferation and migration, whereas AKAP1 knockdown further aggravated VSMC phenotypic transformation. Additionally, in the balloon injury model in vivo, AKAP1 overexpression reduced neointima formation, the muscle fiber area ratio, and rat VSMC proliferation and migration. Furthermore, PDGF-BB and balloon injury inhibited Drp1 phosphorylation at Ser637 and promoted Drp1 activity and mitochondrial midzone fission; AKAP1 overexpression reversed these effects. AKAP1 overexpression also inhibited the distribution of mitochondria at the plasma membrane and the reduction of PKARIIß expression induced by PDGF-BB, as evidenced by an increase in mitochondria-plasma membrane distance as well as PKARIIß protein levels. Moreover, the PKA agonist promoted Drp1 phosphorylation (Ser637) and inhibited PDGF-BB-mediated mitochondrial fission, cell proliferation, and migration. The PKA antagonist reversed the increase in Drp1 phosphorylation (Ser637) and the decline in mitochondrial midzone fission and VSMC phenotypic transformation caused by AKAP1 overexpression. The results of this study reveal that AKAP1 protects VSMCs against phenotypic modulation by improving Drp1 phosphorylation at Ser637 through PKA and inhibiting mitochondrial fission, thereby preventing neointima formation.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Proliferación Celular , Dinaminas , Dinámicas Mitocondriales , Músculo Liso Vascular , Neointima , Fenotipo , Ratas Sprague-Dawley , Animales , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Dinámicas Mitocondriales/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/efectos de los fármacos , Neointima/metabolismo , Neointima/patología , Dinaminas/metabolismo , Proliferación Celular/efectos de los fármacos , Masculino , Ratas , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Becaplermina/farmacología , Movimiento Celular/efectos de los fármacos , Transducción de Señal , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosforilación , Células Cultivadas
2.
Int Immunopharmacol ; 134: 112224, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723370

RESUMEN

Immunotherapy is becoming increasingly important, but the overall response rate is relatively low in the treatment of gastric cancer (GC). The application of tumor mutational burden (TMB) in predicting immunotherapy efficacy in GC patients is limited and controversial, emphasizing the importance of optimizing TMB-based patient selection. By combining TMB and major histocompatibility complex (MHC) related hub genes, we established a novel TM-Score. This score showed superior performance for immunotherapeutic selection (AUC = 0.808) compared to TMB, MSI status, and EBV status. Additionally, it predicted the prognosis of GC patients. Subsequently, a machine learning model adjusted by the TM-Score further improved the accuracy of survival prediction (AUC > 0.8). Meanwhile, we found that GC patients with low TM-Score had a higher mutation frequency, higher expression of HLA genes and immune checkpoint genes, and higher infiltration of CD8+ T cells, CD4+ helper T cells, and M1 macrophages. This suggests that TM-Score is significantly associated with tumor immunogenicity and tumor immune environment. Notably, based on the RNA-seq and scRNA-seq, it was found that AKAP5, a key component gene of TM-Score, is involved in anti-tumor immunity by promoting the infiltration of CD4+ T cells, NK cells, and myeloid cells. Additionally, siAKAP5 significantly reduced MHC-II mRNA expression in the GC cell line. In addition, our immunohistochemistry assays confirmed a positive correlation between AKAP5 and human leukocyte antigen (HLA) expression. Furthermore, AKAP5 levels were higher in patients with longer survival and those who responded to immunotherapy in GC, indicating its potential value in predicting prognosis and immunotherapy outcomes. In conclusion, TM-Score, as an optimization of TMB, is a more precise biomarker for predicting the immunotherapy efficacy of the GC population. Additionally, AKAP5 shows promise as a therapeutic target for GC.


Asunto(s)
Inmunoterapia , Aprendizaje Automático , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/terapia , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Inmunoterapia/métodos , Pronóstico , Biomarcadores de Tumor/genética , Proteínas de Anclaje a la Quinasa A/genética , Microambiente Tumoral/inmunología , Mutación , Resultado del Tratamiento
4.
Br J Pharmacol ; 181(15): 2622-2635, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38613158

RESUMEN

BACKGROUND AND PURPOSE: In human airway smooth muscle (hASM) cells, not all receptors stimulating cAMP production elicit the same effects. This can only be explained if cAMP movement throughout the cell is restricted, yet the mechanisms involved are not fully understood. Phosphodiesterases (PDEs) contribute to compartmentation of many cAMP responses, but PDE activity alone is predicted to be insufficient if cAMP is otherwise freely diffusible. We tested the hypothesis that buffering of cAMP by protein kinase A (PKA) associated with A kinase anchoring proteins (AKAPs) slows cAMP diffusion and that this contributes to receptor-mediated, compartmentalized responses. EXPERIMENTAL APPROACH: Raster image correlation spectroscopy (RICS) was used to measure intracellular cAMP diffusion coefficients and evaluate the contribution of PKA-AKAP interactions. Western blotting and immunocytochemistry were used to identify the AKAPs involved. RNA interference was used to down-regulate AKAP expression and determine its effects on cAMP diffusion. Compartmentalized cAMP responses were measured using fluorescence resonance energy transfer (FRET) based biosensors. KEY RESULTS: Cyclic AMP movement was significantly slower than that of free-diffusion in hASM cells, and disrupting PKA-AKAP interactions significantly increased the diffusion coefficient. PKA associated with the outer mitochondrial membrane appears to play a prominent role in this effect. Consistent with this idea, knocking down expression of D-AKAP2, the primary mitochondrial AKAP, increased cAMP diffusion and disrupted compartmentation of receptor-mediated responses. CONCLUSION AND IMPLICATIONS: Our results confirm that AKAP-anchored PKA contributes to the buffering of cAMP and is consequential in the compartmentation of cAMP responses in hASM cells.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Miocitos del Músculo Liso , Transducción de Señal , Humanos , AMP Cíclico/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miocitos del Músculo Liso/metabolismo , Células Cultivadas , Difusión , Transferencia Resonante de Energía de Fluorescencia
5.
Circ Res ; 134(8): 1006-1022, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38506047

RESUMEN

BACKGROUND: In heart failure, signaling downstream the ß2-adrenergic receptor is critical. Sympathetic stimulation of ß2-adrenergic receptor alters cAMP (cyclic adenosine 3',5'-monophosphate) and triggers PKA (protein kinase A)-dependent phosphorylation of proteins that regulate cardiac function. cAMP levels are regulated in part by PDEs (phosphodiesterases). Several AKAPs (A kinase anchoring proteins) regulate cardiac function and are proposed as targets for precise pharmacology. AKAP12 is expressed in the heart and has been reported to directly bind ß2-adrenergic receptor, PKA, and PDE4D. However, its roles in cardiac function are unclear. METHODS: cAMP accumulation in real time downstream of the ß2-adrenergic receptor was detected for 60 minutes in live cells using the luciferase-based biosensor (GloSensor) in AC16 human-derived cardiomyocyte cell lines overexpressing AKAP12 versus controls. Cardiomyocyte intracellular calcium and contractility were studied in adult primary cardiomyocytes from male and female mice overexpressing cardiac AKAP12 (AKAP12OX) and wild-type littermates post acute treatment with 100-nM isoproterenol (ISO). Systolic cardiac function was assessed in mice after 14 days of subcutaneous ISO administration (60 mg/kg per day). AKAP12 gene and protein expression levels were evaluated in left ventricular samples from patients with end-stage heart failure. RESULTS: AKAP12 upregulation significantly reduced total intracellular cAMP levels in AC16 cells through PDE8. Adult primary cardiomyocytes from AKAP12OX mice had significantly reduced contractility and impaired calcium handling in response to ISO, which was reversed in the presence of the selective PDE8 inhibitor (PF-04957325). AKAP12OX mice had deteriorated systolic cardiac function and enlarged left ventricles. Patients with end-stage heart failure had upregulated gene and protein levels of AKAP12. CONCLUSIONS: AKAP12 upregulation in cardiac tissue is associated with accelerated cardiac dysfunction through the AKAP12-PDE8 axis.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas , Cardiopatías , Receptores Adrenérgicos , Animales , Femenino , Humanos , Masculino , Ratones , 3',5'-AMP Cíclico Fosfodiesterasas/genética , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cardiopatías/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos/metabolismo , Regulación hacia Arriba
6.
Proc Natl Acad Sci U S A ; 121(13): e2314947121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513099

RESUMEN

Protein kinase A (PKA) is a ubiquitous, promiscuous kinase whose activity is specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), suggesting the existence of one or more FA AKAPs. Using a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1 to R13. Direct binding assays and NMR spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Experiments with single molecules and in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. Finally, talin mutations that disrupt PKA binding also decrease levels of total and phosphorylated PKA RII subunits as well as phosphorylation of VASP, a known PKA substrate, within FA. These observations identify a mechanically gated anchoring protein for PKA, a force-dependent binding partner for talin1, and a potential pathway for adhesion-associated mechanotransduction.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Adhesiones Focales , Adhesiones Focales/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Talina/metabolismo , Mecanotransducción Celular , Adhesión Celular/fisiología , Integrinas/metabolismo , Unión Proteica , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
7.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38203733

RESUMEN

Thyroid carcinoma is the primary endocrine malignancy worldwide. The preoperative examination of thyroid tissue lesion is often unclear. Approximately 25% of thyroid cancers cannot be diagnosed definitively without post-surgery histopathological examination. The assessment of diagnostic and differential markers of thyroid cancers is needed to improve preoperative diagnosis and reduce unnecessary treatments. Here, we assessed the expression of RASSF1A, DIRAS3, and AKAP9 genes, and the presence of BRAF V600E point mutation in benign and malignant thyroid lesions in a Polish cohort (120 patients). We have also performed a comparative analysis of gene expression using data obtained from the Gene Expression Omnibus (GEO) database (307 samples). The expression of RASSF1A and DIRAS3 was decreased, whereas AKAP9's was increased in pathologically changed thyroid compared with normal thyroid tissue, and significantly correlated with e.g., histopathological type of lesion papillary thyroid cancer (PTC) vs follicular thyroid cancer (FTC), patient's age, tumour stage, or its encapsulation. The receiver operating characteristic (ROC) analysis for the more aggressive FTC subtype differential marker suggests value in estimating RASSF1A and AKAP9 expression, with their area under curve (AUC), specificity, and sensitivity at 0.743 (95% CI: 0.548-0.938), 82.2%, and 66.7%; for RASSF1A, and 0.848 (95% CI: 0.698-0.998), 54.8%, and 100%, for AKAP9. Our research gives new insight into the basis of the aggressiveness and progression of thyroid cancers, and provides information on potential differential markers that may improve preoperative diagnosis.


Asunto(s)
Adenocarcinoma Folicular , Neoplasias de la Tiroides , Humanos , Proteínas de Anclaje a la Quinasa A/genética , Proteínas del Citoesqueleto/genética , Diagnóstico Diferencial , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/genética
8.
Heart Surg Forum ; 27(1): E028-E037, 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38286648

RESUMEN

BACKGROUND: This study mainly investigated the mechanism and effects of AKAP1 in renal patients with acute heart failure (AHF). METHODS: Patients with renal patients with AHF and normal volunteers were collected. The left anterior descending arteries (LAD) of mice were ligated to induce myocardial infarction. RESULTS: AKAP1 messenger RNA (mRNA) expression was found to be down-regulated in renal patients with AHF. The serum levels of AKAP1 mRNA expression were negatively correlated with collagen I/III in patients. AKAP1 mRNA and protein expression in the heart tissue of mice with AHF were also found to be down-regulated in a time-dependent manner. Short hairpin (Sh)-AKAP1 promotes AHF in a mouse model. AKAP1 up-regulation reduces reactive oxygen species (ROS)-induced oxidative stress in an In Vitro model. AKAP1 up-regulation also reduces ROS-induced lipid peroxidation ferroptosis in an In Vitro model. AKAP1 induces NDUFS1 expression to increase GPX4 activity levels. AKAP1 protein interlinked with the NDUFS1 protein. Up-regulation of the AKAP1 gene reduced NDUFS1 ubiquitination, while down-regulation of the AKAP1 gene increased NDUFS1 ubiquitination in a model. In vivo imaging showed that the sh-AKAP1 virus reduced NDUFS1 expression in the heart of a mouse model. CONCLUSIONS: AKAP1 reduced ROS-induced lipid peroxidation ferroptosis through the inhibition of ubiquitination of NDUFS by mitochondrial damage in model of renal patients with AHF, suggest a novel target for AHF treatment.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Ferroptosis , Insuficiencia Cardíaca , Animales , Humanos , Ratones , Insuficiencia Cardíaca/genética , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ARN Mensajero , Proteínas de Anclaje a la Quinasa A/metabolismo , NADH Deshidrogenasa/metabolismo
9.
Arch Biochem Biophys ; 752: 109882, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38211639

RESUMEN

G protein-coupled receptor 30 (GPR30), also named G protein-coupled estrogen receptor (GPER), and the ß1-adrenergic receptor (ß1AR) are G protein-coupled receptors (GPCR) that are implicated in breast cancer progression. Both receptors contain PSD-95/Discs-large/ZO-1 homology (PDZ) motifs in their C-terminal tails through which they interact in the plasma membrane with membrane-associated guanylate kinase (MAGUK) scaffold proteins, and in turn protein kinase A anchoring protein (AKAP) 5. GPR30 constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. We hypothesized that this inhibition is a consequence of a plasma membrane complex of these receptors. Using co-immunoprecipitation, confocal immunofluorescence microscopy, and bioluminescence resonance energy transfer (BRET), we show that GPR30 and ß1AR reside in close proximity in a plasma membrane complex when transiently expressed in HEK293. Deleting the GPR30 C-terminal PDZ motif (-SSAV) does not interfere with the receptor complex, indicating that the complex is not PDZ-dependent. MCF7 breast cancer cells express GPR30, ß1AR, MAGUKs, and AKAP5 in the plasma membrane, and co-immunoprecipitation revealed that these proteins exist in close proximity also under native conditions. Furthermore, expression of GPR30 in MCF7 cells constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. AKAP5 also inhibits ß1AR-mediated cAMP production, which is not additive with GPR30-promoted inhibition. These results argue that GPR30 and ß1AR form a PDZ-independent complex in MCF7 cells through which GPR30 constitutively and PDZ-dependently inhibits ß1AR signaling via receptor interaction with MAGUKs and AKAP5.


Asunto(s)
Neoplasias de la Mama , Proteínas Quinasas Dependientes de AMP Cíclico , Femenino , Humanos , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al GTP/metabolismo , Guanilato-Quinasas , Células HEK293 , Células MCF-7 , Receptores Adrenérgicos/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
10.
Oncogene ; 43(1): 22-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37875657

RESUMEN

PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastatic development: Pten/RbPE:-/- mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas RbPE:-/- mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node dissemination, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110ß and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor. In contrast, PTEN expression, which dampened these oncogenic behaviors, correlated with greater dependence on p110α plus AKT1. Our data suggest that metastatic PC aggressiveness is controlled by specific PI3K/AKT isoform combinations influenced by divergent Src activation or PTEN-loss pathways.


Asunto(s)
Neoplasia Intraepitelial Prostática , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas/metabolismo , Neoplasias de la Próstata/patología , Fosfohidrolasa PTEN/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo
11.
Biol Reprod ; 110(4): 684-697, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38145487

RESUMEN

The protein kinase A (PKA) signaling pathway, which mediates protein phosphorylation, is important for sperm motility and male fertility. This process relies on A-kinase anchoring proteins that organize PKA and its signalosomes within specific subcellular compartments. Previously, it was found that the absence of A-kinase anchoring protein 3 (AKAP3) leads to multiple morphological abnormalities in mouse sperm. But how AKAP3 regulates sperm motility is yet to be elucidated. AKAP3 has two amphipathic domains, here named dual and RI, in its N-terminus. These domains are responsible for binding regulatory subunits I alpha (RIα) and II alpha (RIIα) of PKA and for RIα only, respectively. Here, we generated mutant mice lacking the dual and RI domains of AKAP3. It was found that the deletion of these domains caused male mouse infertile, accompanied by mild defects in the fibrous sheath of sperm tails. Additionally, the levels of serine/threonine phosphorylation of PKA substrates and tyrosine phosphorylation decreased in the mutant sperm, which exhibited a defect in hyperactivation under capacitation conditions. The protein levels of PKA subunits remained unchanged. But, interestingly, the regulatory subunit RIα was mis-localized from principal piece to midpiece of sperm tail, whereas this was not observed for RIIα. Further protein-protein interaction assays revealed a preference for AKAP3 to bind RIα over RIIα. Collectively, our findings suggest that AKAP3 is important for sperm hyperactivity by regulating type-I PKA signaling pathway mediated protein phosphorylation via its dual and RI domains.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Proteína Quinasa Tipo I Dependiente de AMP Cíclico , Motilidad Espermática , Animales , Masculino , Ratones , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteína Quinasa Tipo I Dependiente de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fertilidad/genética , Semen/metabolismo , Transducción de Señal/fisiología , Motilidad Espermática/genética , Espermatozoides/metabolismo , Capacitación Espermática/genética
12.
FEBS Lett ; 598(4): 457-476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38140814

RESUMEN

Cilia are microtubule-based sensory organelles present in a number of eukaryotic cells. Mutations in the genes encoding ciliary proteins cause ciliopathies in humans. A-kinase anchoring proteins (AKAPs) tether ciliary signaling proteins such as protein kinase A (PKA). The dimerization and docking domain (D/D) on the RIIα subunit of PKA interacts with AKAPs. Here, we show that AKAP240 from the central-pair microtubules of Chlamydomonas reinhardtii cilia uses two C-terminal amphipathic helices to bind to its partner FAP174, an RIIα-like protein with a D/D domain at the N-terminus. Co-immunoprecipitation using anti-FAP174 antibody with an enriched central-pair microtubule fraction isolated seven interactors whose mass spectrometry analysis revealed proteins from the C2a (FAP65, FAP70, and FAP147) and C1b (CPC1, HSP70A, and FAP42) microtubule projections and FAP75, a protein whose sub-ciliary localization is unknown. Using RII D/D and FAP174 as baits, we identified two additional AKAPs (CPC1 and FAP297) in the central-pair microtubules.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Chlamydomonas reinhardtii , Humanos , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Cilios/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Secuencia de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Microtúbulos/metabolismo
13.
Diabetes Res Clin Pract ; 206: 111012, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37967586

RESUMEN

BACKGROUND: Diabetes mellitus erectile dysfunction (DMED) is one of common complications of diabetes. We aimed to investigate the potential efficacy of methyl protodioscin (MPD) in DMED and explored the underlying mechanism. METHODS: Diabetic mice were induced by streptozotocin, while vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were stimulated with high glucose. MPD was administrated in vitro and in vivo to verify its efficacy on DMED. The interaction of c-Myc and AKAP12 was determined by luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS: c-Myc and AKAP12 were upregulated in penile tissues in DMED mice. In high glucose-stimulated VSMCs or VECs, MPD intervention enhanced cell viability, inhibited apoptosis, decreased c-Myc and AKAP12, as well as elevated p-eNOS Ser1177. MPD-induced apoptosis inhibition, AKAP12 reduction and p-eNOSSer1177 elevation were reversed by AKAP12 overexpression. c-Myc functioned as a positive regulator of AKAP12. Overexpression of c-Myc reversed the effects induced by MPD in vitro, which was neutralized by AKAP12 silencing. MPD ameliorated erectile function in diabetic mice via inhibiting AKAP12. CONCLUSIONS: MPD improved erectile dysfunction in streptozotocin-caused diabetic mice by regulating c-Myc/AKAP12 pathway, indicating that MPD could be developed as a promising natural agent for the treatment of DMED.


Asunto(s)
Diabetes Mellitus Experimental , Disfunción Eréctil , Masculino , Ratas , Humanos , Ratones , Animales , Disfunción Eréctil/etiología , Disfunción Eréctil/genética , Diabetes Mellitus Experimental/metabolismo , Regulación hacia Abajo , Células Endoteliales/metabolismo , Estreptozocina , Ratas Sprague-Dawley , Glucosa , Proteínas de Ciclo Celular/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo
14.
PeerJ ; 11: e16317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025711

RESUMEN

Background: Gastric cancer (GC) is an extremely heterogeneous malignancy with a complex tumor microenvironment (TME) that contributes to unsatisfactory prognosis. Methods: The overall activity score for assessing the immune activity of GC patients was developed based on cancer immune cycle activity index in the Tracking Tumor Immunophenotype (TIP). Genes potentially affected by the overall activity score were screened using weighted gene co-expression network analysis (WGCNA). Based on the expression profile data of GC in The Cancer Genome Atlas (TCGA) database, COX analysis was applied to create an immune activity score (IAS). Differences in TME activity in the IAS groups were analyzed. We also evaluated the value of IAS in estimating immunotherapy and chemotherapy response based on immunotherapy cohort. Gene expression in IAS model and cell viability were determined by real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and Cell Counting Kit-8 (CCK-8) assay, respectively. Results: WGCAN analysis screened 629 overall activity score-related genes, which were mainly associated with T cell response and B cell response. COX analysis identified AKAP5, CTLA4, LRRC8C, AOAH-IT1, NPC2, RGS1 and SLC2A3 as critical genes affecting the prognosis of GC, based on which the IAS was developed. Further RT-qPCR analysis data showed that the expression of AKAP5 and CTLA4 was downregulated, while that of LRRC8C, AOAH-IT1, NPC2, RGS1 and SLC2A3 was significantly elevated in GC cell lines. Inhibition of AKAP5 increased cell viability but siAOAH-IT1 promoted viability of GC cells. IAS demonstrated excellent robustness in predicting immunotherapy outcome and GC prognosis, with low-IAS patients having better prognosis and immunotherapy. In addition, resistance to Erlotinib, Rapamycin, MG-132, Cyclopamine, AZ628, and Sorafenib was reduced in patients with low IAS. Conclusion: IAS was a reliable prognostic indicator. For GC patients, IAS showed excellent robustness in predicting GC prognosis, immune activity status, immunotherapy response, and chemotherapeutic drug resistance. Our study provided novel insights into the prognostic assessment in GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Antígeno CTLA-4 , Pronóstico , Linfocitos B , Bioensayo , Microambiente Tumoral/genética , Proteínas de Anclaje a la Quinasa A
15.
Mol Cell Probes ; 72: 101939, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879503

RESUMEN

Esophageal squamous cell carcinoma (ESCC) consistently ranks as one of the most challenging variants of squamous cell carcinomas, primarily due to the lack of effective early detection strategies. We herein aimed to elucidate the underlying mechanisms and biological role associated with A-kinase anchoring protein 12 (AKAP12) in the context of ESCC. Bioinformatic analysis had revealed significantly lower expression level of AKAP12 in ESCC tissue samples than in their non-cancerous counterparts. To gain deeper insights into the potential role of AKAP12 in the progression of ESCC, we conducted a single-gene set enrichment analysis of AKAP12 on ESCC datasets. Our findings suggested that AKAP12 exhibits functions inhibiting cell cycle progression, tumor proliferation, and epithelial-mesenchymal transition. To further validate our findings, we subjected ESCC cell lines to AKAP12 overexpression using CRISPR/Cas9-SAM. In vitro analyses demonstrated that increased expression of AKAP12 significantly reduced cell proliferation, migration, and cell cycle progression. Simultaneously, genes associated with this biological role undergo corresponding regulatory shifts. These observations provided valuable insights into the biological role played by AKAP12 in ESCC progression. In summary, AKAP12 shows promise as a new potential biomarker for early ESCC diagnosis, offering potential advantages for subsequent therapeutic intervention and disease management.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Línea Celular Tumoral , Carcinoma de Células Escamosas/patología , Transducción de Señal/genética , Ciclo Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
16.
Biomed Pharmacother ; 167: 115613, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37801904

RESUMEN

Colorectal cancer (CRC) is associated with high incidence and mortality rates. Targeted therapies for CRC cause various adverse effects, necessitating the development of novel approaches to control CRC progression. In this milieu, we investigated the anti-CRC effects of fisetin, a natural plant flavonoid. Cytotoxicity was performed in CRC patient-derived organoids (30 T and 33 T). Fisetin-induced tumor growth was evaluated in a CRC patient-derived organoid xenograft (PDOX) model. RNA sequencing, immunohistochemistry, and western blotting were performed subsequently. Fisetin significantly decreased organoid viability in a dose-dependent manner. In the PDOX model, fisetin significantly delayed tumor growth, showing a decrease in Ki-67 expression and the induction of apoptosis. In tumor tissues, four genes were identified as differentially expressed between the control and fisetin-treated groups. Among these, A-kinase anchoring protein 12 (AKAP12) level was significantly increased by fisetin treatment (fold change > 2, p < 0.05). Notably, fisetin significantly inhibited vascular endothelial growth factor (VEGF) and epithelial cell adhesion molecule (EpCAM) via upregulation of AKAP12. Our results demonstrate the upregulation of AKAP12 mRNA and inhibition of angiogenesis by fisetin as a therapeutic strategy against CRC.


Asunto(s)
Neoplasias Colorrectales , Flavonoles , Neoplasias , Humanos , Proteínas de Anclaje a la Quinasa A/genética , Apoptosis , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Flavonoles/farmacología , Xenoinjertos , Organoides/patología , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Aging (Albany NY) ; 15(17): 8851-8872, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683130

RESUMEN

A-kinase anchoring protein 8L (AKAP8L) belong to the A-kinase anchoring protein (AKAP) family. Recent studies have proved that AKAP8L is associated with the progression of various tumors. To establish a more complete understanding of the significance of AKAP8L across various types of cancers, we conducted a detailed analysis of multiple histological datasets, including the level of gene expression in pancancer, biological function, molecular characteristics, as well as the diagnostic and prognostic value of AKAP8L in pancancer. Furthermore, we focused on renal clear cell carcinoma (KIRC), and of explored the correlation of AKAP8L with clinical characteristics, prognosis of distinct patient subsets, co-expression genes and differentially expressed genes (DEG). We also performed the immunohistochemical staining and semi-quantitative verification of the monoclonal antibody established by AKAP8L. Our findings indicate that AKAP8L expression varied significantly not only across most cancer types, but also across different cancer molecules and immune subtypes. In addition, the robust ability to accurately predict cancer and its strong correlation with the prognosis of cancer strongly suggest that AKAP8L may be a potential biomarker for cancer diagnosis and prognosis. Furthermore, the high expression levels of AKAP8L were related to the worse overall survival (OS), disease-specific survival (DSS) as well as progression-free interval (PFI) of KIRC with statistical significance, especially among distinct clinical subgroups of KIRC. To sum up, AKAP8L has the potential to serve as a critical molecular biomarker for the diagnosis and prognosis of pancancer, an independent prognostic risk factor of KIRC, and a novel molecular target for cancer therapies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Proteínas de Anclaje a la Quinasa A/genética , Anticuerpos Monoclonales , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Pronóstico
18.
Acta Haematol ; 146(6): 473-480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37605556

RESUMEN

INTRODUCTION: The aim of this study was to develop a prognostic model for chronic lymphocytic leukemia (CLL). METHODS: GEO2R was used to retrieve the gene expression data of CLL and normal B cells from the Gene Expression Omnibus (GEO; GSE22529 and GSE50006 datasets) database. Practical Extraction and Report Language was used to extract the gene expression and overall survival (OS) data of CLL patients from the Chronic Lymphocytic Leukemia - ES (CLLE-ES) project in the International Cancer Genome Consortium (ICGC) database. Cox regression with Lasso was used to create and validate a prognostic model for CLL. RESULTS: A total of 267 genes exhibited differential expression between CLL and normal B cells. Cox univariate analysis identified 14 DEGs that correlated with OS. Lasso multivariate evaluation demonstrated that AKAP12 and IGFBP4 are independent prognostic factors for CLL. Kaplan-Meier survival analysis revealed a significant association between the estimated risk score and survival. The area under the receiver operating characteristic curve was calculated to be 0.97, indicating high predictive accuracy. In addition, high AKAP12 and IGFBP4 risk scores were associated with the high incidence of trisomy 12q. CONCLUSION: Taken together, AKAP12 and IGFBP4 are independent prognostic factors for CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Estimación de Kaplan-Meier , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Pronóstico
19.
Clin Transl Oncol ; 25(11): 3263-3276, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37326825

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) have unique biological characteristics, including tumorigenicity, immortality, and chemoresistance. Colorectal CSCs have been identified and isolated from colorectal cancers by various methods. AKAP12, a scaffolding protein, is considered to act as a potential suppressor in colorectal cancer, but its role in CSCs remains unknown. In this study, we investigated the function of AKAP12 in Colorectal CSCs. METHODS: Herein, Colorectal CSCs were enriched by cell culture with a serum-free medium. CSC-associated characteristics were evaluated by Flow cytometry assay and qPCR. AKAP12 gene expression was regulated by lentiviral transfection assay. The tumorigenicity of AKAP12 in vivo by constructing a tumor xenograft model. The related pathways were explored by qPCR and Western blot. RESULTS: The depletion of AKAP12 reduced colony formation, sphere formation, and expression of stem cell markers in colorectal cancer cells, while its knockdown decreased the volume and weight of tumor xenografts in vivo. AKAP12 expression levels also affected the expression of stemness markers associated with STAT3, potentially via regulating the expression of protein kinase C. CONCLUSION: This study suggests Colorectal CSCs overexpress AKAP12 and maintain stem cell characteristics through the AKAP12/PKC/STAT3 pathway. AKAP12 may be an important therapeutic target for blocking the development of colorectal cancer in the field of cancer stem cells.


Asunto(s)
Neoplasias Colorrectales , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Fenotipo , Células Madre Neoplásicas/patología , Proliferación Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Factor de Transcripción STAT3/genética
20.
J Biol Chem ; 299(5): 104696, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37044218

RESUMEN

KDEL receptor (KDELR) is a key protein that recycles escaped endoplasmic reticulum (ER) resident proteins from the Golgi apparatus back to the ER and maintains a dynamic balance between these two organelles in the early secretory pathway. Studies have shown that this retrograde transport pathway is partly regulated by two KDELR-interacting proteins, acyl-CoA-binding domain-containing 3 (ACBD3), and cyclic AMP-dependent protein kinase A (PKA). However, whether Golgi-localized ACBD3, which was first discovered as a PKA-anchoring protein in mitochondria, directly interacts with PKA at the Golgi and coordinates its signaling in Golgi-to-ER traffic has remained unclear. In this study, we showed that the GOLD domain of ACBD3 directly interacts with the regulatory subunit II (RII) of PKA and effectively recruits PKA holoenzyme to the Golgi. Forward trafficking of proteins from the ER triggers activation of PKA by releasing the catalytic subunit from RII. Furthermore, we determined that depletion of ACBD3 reduces the Golgi fraction of RII, resulting in moderate, but constitutive activation of PKA and KDELR retrograde transport, independent of cargo influx from the ER. Taken together, these data demonstrate that ACBD3 coordinates the protein secretory pathway at the Golgi by facilitating KDELR/PKA-containing protein complex formation.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Aparato de Golgi , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas , Transducción de Señal , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA