Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.882
Filtrar
1.
Physiol Plant ; 176(3): e14371, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837414

RESUMEN

The WRKY transcription factor (TF) genes form a large family in higher plants, with 72 members in Arabidopsis (Arabidopsis thaliana). The gaseous phytohormone ethylene (ET) regulates multiple physiological processes in plants. It is known that 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs, EC 4.4.1.14) limit the enzymatic reaction rate of ethylene synthesis. However, whether WRKY TFs regulate the expression of ACSs and/or ACC oxidases (ACOs, EC 1.14.17.4) remains largely elusive. Here, we demonstrated that Arabidopsis WRKY22 positively regulated the expression of a few ACS and ACO genes, thus promoting ethylene production. Inducible overexpression of WRKY22 caused shorter hypocotyls without ACC treatment. A qRT-PCR screening demonstrated that overexpression of WRKY22 activates the expression of several ACS and ACO genes. The promoter regions of ACS5, ACS11, and ACO5 were also activated by WRKY22, which was revealed by a dual luciferase reporter assay. A follow-up chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and electrophoretic mobility shift assay (EMSA) showed that the promoter regions of ACS5 and ACO5 could be bound by WRKY22 directly. Moreover, wrky22 mutants had longer primary roots and more lateral roots than wild type, while WRKY22-overexpressing lines showed the opposite phenotype. In conclusion, this study revealed that WRKY22 acts as a novel TF activating, at least, the expression of ACS5 and ACO5 to increase ethylene synthesis and modulate root development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulación de la Expresión Génica de las Plantas , Liasas , Raíces de Plantas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/biosíntesis , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Liasas/genética , Liasas/metabolismo , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Regiones Promotoras Genéticas/genética , Liasas de Carbono-Carbono/metabolismo , Liasas de Carbono-Carbono/genética , Activación Transcripcional/genética
2.
Physiol Plant ; 176(3): e14340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741259

RESUMEN

Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.


Asunto(s)
Arabidopsis , Cisteína , Malato Deshidrogenasa , NAD , Oxidación-Reducción , Plastidios , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína/metabolismo , Malato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/genética , Plastidios/metabolismo , Plastidios/enzimología , NAD/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
3.
Mol Plant Pathol ; 25(5): e13466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767756

RESUMEN

The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Potyvirus/patogenicidad , Potyvirus/fisiología , Arabidopsis/virología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/virología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Replicación Viral , Nicotiana/virología , Nicotiana/genética
4.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791463

RESUMEN

Mitochondrial protein homeostasis is crucially regulated by protein degradation processes involving both mitochondrial proteases and cytosolic autophagy. However, it remains unclear how plant cells regulate autophagy in the scenario of lacking a major mitochondrial Lon1 protease. In this study, we observed a notable downregulation of core autophagy proteins in Arabidopsis Lon1 knockout mutant lon1-1 and lon1-2, supporting the alterations in the relative proportions of mitochondrial and vacuolar proteins over total proteins in the plant cells. To delve deeper into understanding the roles of the mitochondrial protease Lon1 and autophagy in maintaining mitochondrial protein homeostasis and plant development, we generated the lon1-2atg5-1 double mutant by incorporating the loss-of-function mutation of the autophagy core protein ATG5, known as atg5-1. The double mutant exhibited a blend of phenotypes, characterized by short plants and early senescence, mirroring those observed in the individual single mutants. Accordingly, distinct transcriptome alterations were evident in each of the single mutants, while the double mutant displayed a unique amalgamation of transcriptional responses. Heightened severity, particularly evident in reduced seed numbers and abnormal embryo development, was observed in the double mutant. Notably, aberrations in protein storage vacuoles (PSVs) and oil bodies were evident in the single and double mutants. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of genes concurrently downregulated in lon1-2, atg5-1, and lon1-2atg5-1 unveiled a significant suppression of genes associated with brassinosteroid (BR) biosynthesis and homeostasis. This downregulation likely contributes to the observed abnormalities in seed and embryo development in the mutants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Autofagia , Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Mitocondrias , Semillas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo , Mitocondrias/metabolismo , Brasinoesteroides/metabolismo , Proteasas ATP-Dependientes/metabolismo , Proteasas ATP-Dependientes/genética , Mutación , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Regulación hacia Abajo , Fenotipo , Serina Endopeptidasas
5.
New Phytol ; 242(6): 2787-2802, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38693568

RESUMEN

Root-knot nematodes (RKN; Meloidogyne species) are plant pathogens that introduce several effectors in their hosts to facilitate infection. The actual targets and functioning mechanism of these effectors largely remain unexplored. This study illuminates the role and interplay of the Meloidogyne javanica nematode effector ROS suppressor (Mj-NEROSs) within the host plant environment. Mj-NEROSs suppresses INF1-induced cell death as well as flg22-induced callose deposition and reactive oxygen species (ROS) production. A transcriptome analysis highlighted the downregulation of ROS-related genes upon Mj-NEROSs expression. NEROSs interacts with the plant Rieske's iron-sulfur protein (ISP) as shown by yeast-two-hybrid and bimolecular fluorescence complementation. Secreted from the subventral pharyngeal glands into giant cells, Mj-NEROSs localizes in the plastids where it interacts with ISP, subsequently altering electron transport rates and ROS production. Moreover, our results demonstrate that isp Arabidopsis thaliana mutants exhibit increased susceptibility to M. javanica, indicating ISP importance for plant immunity. The interaction of a nematode effector with a plastid protein highlights the possible role of root plastids in plant defense, prompting many questions on the details of this process.


Asunto(s)
Arabidopsis , Complejo III de Transporte de Electrones , Inmunidad de la Planta , Plastidios , Especies Reactivas de Oxígeno , Tylenchoidea , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/parasitología , Arabidopsis/inmunología , Arabidopsis/genética , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Animales , Plastidios/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Unión Proteica , Mutación/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética
6.
Planta ; 259(6): 142, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702456

RESUMEN

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Sulfuro de Hidrógeno , Fosfolipasa D , Estomas de Plantas , Arabidopsis/genética , Arabidopsis/fisiología , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sulfuro de Hidrógeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Fisiológico/genética , Prolina/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Peroxidación de Lípido
7.
New Phytol ; 243(1): 213-228, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38715414

RESUMEN

Arabidopsis lamin analogs CROWDED NUCLEIs (CRWNs) are necessary to maintain nuclear structure, genome function, and proper plant growth. However, whether and how CRWNs impact reproduction and genome-wide epigenetic modifications is unknown. Here, we investigate the role of CRWNs during the development of gametophytes, seeds, and endosperm, using genomic and epigenomic profiling methods. We observed defects in crwn mutant seeds including seed abortion and reduced germination rate. Quadruple crwn null genotypes were rarely transmitted through gametophytes. Because defects in seeds often stem from abnormal endosperm development, we focused on crwn1 crwn2 (crwn1/2) endosperm. These mutant seeds exhibited enlarged chalazal endosperm cysts and increased expression of stress-related genes and the MADS-box transcription factor PHERES1 and its targets. Previously, it was shown that PHERES1 expression is regulated by H3K27me3 and that CRWN1 interacts with the PRC2 interactor PWO1. Thus, we tested whether crwn1/2 alters H3K27me3 patterns. We observed a mild loss of H3K27me3 at several hundred loci, which differed between endosperm and leaves. These data indicate that CRWNs are necessary to maintain the H3K27me3 landscape, with tissue-specific chromatin and transcriptional consequences.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Endospermo , Regulación de la Expresión Génica de las Plantas , Histonas , Mutación , Reproducción , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Histonas/metabolismo , Endospermo/genética , Endospermo/metabolismo , Mutación/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Núcleo Celular/metabolismo , Metilación
8.
New Phytol ; 243(1): 330-344, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38742296

RESUMEN

Arabidopsis Col-0 RPP2A and RPP2B confer recognition of Arabidopsis downy mildew (Hyaloperonospora arabidopsidis [Hpa]) isolate Cala2, but the identity of the recognized ATR2Cala2 effector was unknown. To reveal ATR2Cala2, an F2 population was generated from a cross between Hpa-Cala2 and Hpa-Noks1. We identified ATR2Cala2 as a non-canonical RxLR-type effector that carries a signal peptide, a dEER motif, and WY domains but no RxLR motif. Recognition of ATR2Cala2 and its effector function were verified by biolistic bombardment, ectopic expression and Hpa infection. ATR2Cala2 is recognized in accession Col-0 but not in Ler-0 in which RPP2A and RPP2B are absent. In ATR2Emoy2 and ATR2Noks1 alleles, a frameshift results in an early stop codon. RPP2A and RPP2B are essential for the recognition of ATR2Cala2. Stable and transient expression of ATR2Cala2 under 35S promoter in Arabidopsis and Nicotiana benthamiana enhances disease susceptibility. Two additional Col-0 TIR-NLR (TNL) genes (RPP2C and RPP2D) adjacent to RPP2A and RPP2B are quantitatively required for full resistance to Hpa-Cala2. We compared RPP2 haplotypes in multiple Arabidopsis accessions and showed that all four genes are present in all ATR2Cala2-recognizing accessions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oomicetos , Enfermedades de las Plantas , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oomicetos/patogenicidad , Proteínas NLR/metabolismo , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/inmunología , Secuencia de Aminoácidos , Alelos
9.
Biochem Biophys Res Commun ; 719: 150096, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38749091

RESUMEN

Protein S-nitrosylation, which is defined by the covalent attachment of nitric oxide (NO) to the thiol group of cysteine residues, is known to play critical roles in plant development and stress responses. NO promotes seedling photomorphogenesis and NO emission is enhanced by light. However, the function of protein S-nitrosylation in plant photomorphogenesis is largely unknown. E3 ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and transcription factor ELONGATED HYPOCOTYL 5 (HY5) antagonistically regulate seedling photomorphogenesis. COP1 inhibits plant photomorphogenesis by targeting photomorphogenic promoters like HY5 for 26S proteasome degradation. Here, we report that COP1 is S-nitrosylated in vitro. Mass spectrometry analyses revealed that two evolutionarily well conserved residues, cysteine 425 and cysteine 607, in the WD40 domain of COP1 are S-nitrosylated. S-nitrosylated glutathione (GSNO) is an important physiological NO donor for protein S-nitrosylation. The Arabidopsis (Arabidopsis thaliana) gsnor1-3 mutant, which accumulates higher level of GSNO, accumulated higher HY5 levels than wildtype (WT), indicating that COP1 activity is inhibited. Protein S-nitrosylation can be reversed by Thioredoxin-h5 (TRXh5) in plants. Indeed, COP1 interacts directly with TRXh5 and its close homolog TRXh3. Moreover, catalase 3 (CAT3) acts as a transnitrosylase that transfers NO to its target proteins like GSNO reductase (GSNOR). We found that CAT3 interacts with COP1 in plants. Taken together, our data indicate that the activity of COP1 is likely inhibited by NO via S-nitrosylation to promote the accumulation of HY5 and photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Óxido Nítrico , Ubiquitina-Proteína Ligasas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Óxido Nítrico/metabolismo , Luz , Cisteína/metabolismo , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Plantones/genética , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/genética , Regulación de la Expresión Génica de las Plantas
10.
PLoS One ; 19(4): e0295732, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626041

RESUMEN

Iron (Fe) is a crucial micronutrient needed in many metabolic processes. To balance needs and potential toxicity, plants control the amount of Fe they take up and allocate to leaves and seeds during their development. One important regulator of this process is POPEYE (PYE). PYE is a Fe deficiency-induced key bHLH transcription factor (TF) for allocation of internal Fe in plants. In the absence of PYE, there is altered Fe translocation and plants develop a leaf chlorosis. NICOTIANAMINE SYNTHASE4 (NAS4), FERRIC-REDUCTION OXIDASE3 (FRO3), and ZINC-INDUCED FACILITATOR1 (ZIF1) genes are expressed at higher level in pye-1 indicating that PYE represses these genes. PYE activity is controlled in a yet unknown manner. Here, we show that a small Fe deficiency-induced protein OLIVIA (OLV) can interact with PYE. OLV has a conserved C-terminal motif, that we named TGIYY. Through deletion mapping, we pinpointed that OLV TGIYY and several regions of PYE can be involved in the protein interaction. An OLV overexpressing (OX) mutant line exhibited an enhanced NAS4 gene expression. This was a mild Fe deficiency response phenotype that was related to PYE function. Leaf rosettes of olv mutants remained smaller than those of wild type, indicating that OLV promotes plant growth. Taken together, our study identified a small protein OLV as a candidate that may connect aspects of Fe homeostasis with regulation of leaf growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Deficiencias de Hierro , Humanos , Hierro/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
Biochem Biophys Res Commun ; 711: 149934, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38626621

RESUMEN

C-terminally encoded peptides (CEPs) are peptide hormones that function as mobile signals coordinating crucial developmental programs in plants. Previous studies have revealed that CEPs exert negative regulation on root development through interaction with CEP receptors (CEPRs), CEP DOWNSTREAMs (CEPDs), the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE (AHKs) and the transcriptional repressor Auxin/Indole-3-Acetic Acid (AUX/IAA). However, the precise molecular mechanisms underlying CEPs-mediated regulation of root development via auxin and cytokinin signaling pathways still necessitate further detailed investigation. In this study, we examined prior research and elucidated the underlying molecular mechanisms. The results showed that both synthetic AtCEPs and overexpression of AtCEP5 markedly supressed primary root elongation and lateral root (LR) formation in Arabidopsis. Molecular biology and genetics elucidated how CEPs inhibit root growth by suppressing auxin signaling while promoting cytokinin signaling. In summary, this study elucidated the inhibitory effects of AtCEPs on Arabidopsis root growth and provided insights into their potential molecular mechanisms, thus enhancing our comprehension of CEP-mediated regulation of plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/genética , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/genética
12.
Methods Mol Biol ; 2787: 305-313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656499

RESUMEN

Bimolecular fluorescence complementation (BiFC) is a powerful tool for studying protein-protein interactions in living cells. By fusing interacting proteins to fluorescent protein fragments, BiFC allows visualization of spatial localization patterns of protein complexes. This method has been adapted to a variety of expression systems in different organisms and is widely used to study protein interactions in plant cells. The Agrobacterium-mediated transient expression protocol for BiFC assays in Nicotiana benthamiana (N. benthamiana) leaf cells is widely used, but in this chapter, a method for BiFC assay using Arabidopsis thaliana protoplasts is presented.


Asunto(s)
Arabidopsis , Hojas de la Planta , Protoplastos , Arabidopsis/metabolismo , Arabidopsis/genética , Protoplastos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Mapeo de Interacción de Proteínas/métodos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Microscopía Fluorescente/métodos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Nicotiana/metabolismo , Nicotiana/genética , Unión Proteica , Agrobacterium/genética , Agrobacterium/metabolismo
13.
Plant Cell Rep ; 43(5): 133, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687356

RESUMEN

KEY MESSAGE: RTH may activate Fe assimilation related genes to promote Fe absorption, transport and accumulation in Arabidopsis. Iron (Fe) is an important nutrient element. The Fe absorption and transport in plants are well investigated over the past decade. Our previous work indicated that RTE1-HOMOLOG (RTH), the homologous gene of reversion-to-ethylene sensitivity 1 (RTE1), plays a role in ethylene signaling pathway. However, its function in Fe absorption and transport is largely unknown. In the present study, we found that RTH was expressed in absorptive tissue and conducting tissue, including root hairs, root vascular bundle, and leaf veins. Under high Fe concentration, the seedling growth of rth-1 mutant was better, while the RTH overexpression lines were retarded compared to the wild type (Col-0). When treated with EDTA-Fe3+ (400 µM), the chlorophyll content and ion leakage rate were higher and lower in rth-1 than those of Col-0, respectively. By contrast, the chlorophyll contents and ion leakage rates of RTH overexpression lines were decreased and hastened compared with Col-0, respectively. Fe measurement indicated that the Fe contents of rth-1 were lower than those of Col-0, whereas those of RTH overexpression lines were comparably higher. Gene expression analysis revealed that Fe absorption and transport genes AHA2, IRT1, FIT, FPN1, and YSL1 decreased in rth-1 but increased in RTH overexpression lines compared with Col-0. Additionally, Y2H (yeast two-hybrid) and BiFC (bimolecular fluorescence complementation) assays showed that RTH can physically interact with hemoglobin 1 (HB1) and HB2. All these findings suggest that RTH may play an important role in regulation of Fe absorption, transport, and accumulation in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Hierro , Arabidopsis/genética , Arabidopsis/metabolismo , Hierro/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Clorofila/metabolismo , Plantones/genética , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Plantas Modificadas Genéticamente
14.
J Hazard Mater ; 471: 134276, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640682

RESUMEN

Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.


Asunto(s)
Biodegradación Ambiental , Cadmio , Nicotiana , Cadmio/toxicidad , Cadmio/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Plantas Modificadas Genéticamente/metabolismo
15.
Physiol Plant ; 176(3): e14320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686642

RESUMEN

Many nucleoside triphosphate-diphosphohydrolases (NTPDases/APYRASEs, APYs) play a key role in modulating extracellular nucleotide levels. However, the Golgi-localized APYs, which help control glycosylation, have rarely been studied. Here, we identified AtAPY1, a gene encoding an NTPDase in the Golgi apparatus, which is required for cell wall integrity and plant growth under boron (B) limited availability. Loss of function in AtAPY1 hindered cell elongation and division in root tips while increasing the number of cortical cell layers, leading to swelling of the root tip and abundant root hairs under low B stress. Further, expression pattern analysis revealed that B deficiency significantly induced AtAPY1, especially in the root meristem and stele. Fluorescent-labeled AtAPY1-GFP localized to the Golgi stack. Biochemical analysis showed that AtAPY1 exhibited a preference of UDP and GDP hydrolysis activities. Consequently, the loss of function in AtAPY1 might disturb the homoeostasis of NMP-driven NDP-sugar transport, which was closely related to the synthesis of cell wall polysaccharides. Further, cell wall-composition analysis showed that pectin content increased and borate-dimerized RG-II decreased in apy1 mutants, along with a decrease in cellulose content. Eventually, altered polysaccharide characteristics presumably cause growth defects in apy1 mutants under B deficiency. Altogether, these data strongly support a novel role for AtAPY1 in mediating responses to low B availability by regulating cell wall integrity.


Asunto(s)
Apirasa , Proteínas de Arabidopsis , Arabidopsis , Boro , Pared Celular , Aparato de Golgi , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Pared Celular/metabolismo , Boro/metabolismo , Boro/deficiencia , Aparato de Golgi/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Apirasa/metabolismo , Apirasa/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Pectinas/metabolismo
16.
Redox Biol ; 72: 103141, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599017

RESUMEN

The thiol redox state is a decisive functional characteristic of proteins in cell biology. Plasmatic cell compartments maintain a thiol-based redox regulatory network linked to the glutathione/glutathione disulfide couple (GSH/GSSG) and the NAD(P)H system. The basic network constituents are known and in vivo cell imaging with gene-encoded probes have revealed insight into the dynamics of the [GSH]2/[GSSG] redox potential, cellular H2O2 and NAD(P)H+H+ amounts in dependence on metabolic and environmental cues. Less understood is the contribution and interaction of the network components, also because of compensatory reactions in genetic approaches. Reconstituting the cytosolic network of Arabidopsis thaliana in vitro from fifteen recombinant proteins at in vivo concentrations, namely glutathione peroxidase-like (GPXL), peroxiredoxins (PRX), glutaredoxins (GRX), thioredoxins, NADPH-dependent thioredoxin reductase A and glutathione reductase and applying Grx1-roGFP2 or roGFP2-Orp1 as dynamic sensors, allowed for monitoring the response to a single H2O2 pulse. The major change in thiol oxidation as quantified by mass spectrometry-based proteomics occurred in relevant peptides of GPXL, and to a lesser extent of PRX, while other Cys-containing peptides only showed small changes in their redox state and protection. Titration of ascorbate peroxidase (APX) into the system together with dehydroascorbate reductase lowered the oxidation of the fluorescent sensors in the network but was unable to suppress it. The results demonstrate the power of the network to detoxify H2O2, the partially independent branches of electron flow with significance for specific cell signaling and the importance of APX to modulate the signaling without suppressing it and shifting the burden to glutathione oxidation.


Asunto(s)
Arabidopsis , Citosol , Glutatión , Peróxido de Hidrógeno , Oxidación-Reducción , Peróxido de Hidrógeno/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Glutatión/metabolismo , Citosol/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Disulfuro de Glutatión/metabolismo , NADP/metabolismo
17.
Bioessays ; 46(6): e2400043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571390

RESUMEN

Volatile compounds, such as nitric oxide and ethylene gas, play a vital role as signaling molecules in organisms. Ethylene is a plant hormone that regulates a wide range of plant growth, development, and responses to stress and is perceived by a family of ethylene receptors that localize in the endoplasmic reticulum. Constitutive Triple Response 1 (CTR1), a Raf-like protein kinase and a key negative regulator for ethylene responses, tethers to the ethylene receptors, but undergoes nuclear translocation upon activation of ethylene signaling. This ER-to-nucleus trafficking transforms CTR1 into a positive regulator for ethylene responses, significantly enhancing stress resilience to drought and salinity. The nuclear trafficking of CTR1 demonstrates that the spatiotemporal control of ethylene signaling is essential for stress adaptation. Understanding the mechanisms governing the spatiotemporal control of ethylene signaling elements is crucial for unraveling the system-level regulatory mechanisms that collectively fine-tune ethylene responses to optimize plant growth, development, and stress adaptation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Transducción de Señal , Estrés Fisiológico , Etilenos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Retículo Endoplásmico/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Quinasas
18.
Sci Rep ; 14(1): 9752, 2024 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-38679676

RESUMEN

The TTG2 transcription factor of Arabidopsis regulates a set of epidermal traits, including the differentiation of leaf trichomes, flavonoid pigment production in cells of the inner testa (or seed coat) layer and mucilage production in specialized cells of the outer testa layer. Despite the fact that TTG2 has been known for over twenty years as an important regulator of multiple developmental pathways, little has been discovered about the downstream mechanisms by which TTG2 co-regulates these epidermal features. In this study, we present evidence of phosphoinositide lipid signaling as a mechanism for the regulation of TTG2-dependent epidermal pathways. Overexpression of the AtPLC1 gene rescues the trichome and seed coat phenotypes of the ttg2-1 mutant plant. Moreover, in the case of seed coat color rescue, AtPLC1 overexpression restored expression of the TTG2 flavonoid pathway target genes, TT12 and TT13/AHA10. Consistent with these observations, a dominant AtPLC1 T-DNA insertion allele (plc1-1D) promotes trichome development in both wild-type and ttg2-3 plants. Also, AtPLC1 promoter:GUS analysis shows expression in trichomes and this expression appears dependent on TTG2. Taken together, the discovery of a genetic interaction between TTG2 and AtPLC1 suggests a role for phosphoinositide signaling in the regulation of trichome development, flavonoid pigment biosynthesis and the differentiation of mucilage-producing cells of the seed coat. This finding provides new avenues for future research at the intersection of the TTG2-dependent developmental pathways and the numerous molecular and cellular phenomena influenced by phospholipid signaling.


Asunto(s)
Proteínas de Arabidopsis , Regulación de la Expresión Génica de las Plantas , Fosfoinositido Fosfolipasa C , Epidermis de la Planta , Transducción de Señal , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flavonoides/metabolismo , Mutación , Fenotipo , Fosfatidilinositoles/metabolismo , Epidermis de la Planta/metabolismo , Epidermis de la Planta/genética , Epidermis de la Planta/citología , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Tricomas/genética , Tricomas/metabolismo , Tricomas/crecimiento & desarrollo , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo
19.
Plant Cell Rep ; 43(5): 130, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652336

RESUMEN

KEY MESSAGE: We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.


Asunto(s)
Arabidopsis , Proteínas Bacterianas , Nicotiana , Enfermedades de las Plantas , Especies Reactivas de Oxígeno , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Citrus/microbiología , Citrus/genética , Citrus/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Liberibacter/patogenicidad , Liberibacter/fisiología , Interacciones Huésped-Patógeno , Plantas Modificadas Genéticamente , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizobiaceae/fisiología , Resistencia a la Enfermedad/genética
20.
Plant Mol Biol ; 114(2): 28, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38485794

RESUMEN

In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria- and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. IPI1/emb175/PPR103 is a nuclear gene encoding a PLS-type PPR protein essential for survival in Arabidopsis thaliana and maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis and Nicotiana IPI1 orthologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. In this study we examined the function of IPI1 in chloroplast RNA processing in N. benthamiana to gain insight into the importance of the DYW domain to the function of the EMB175/PPR103/ IPI1 proteins. Structural predictions suggest that evolutionary loss of residues identified as critical for catalyzing C-to-U editing in other members of this class of proteins, were likely to lead to reduced or absent editing activity in the Nicotiana and Arabidopsis IPI1 orthologs. Virus-induced gene silencing of NbIPI1 led to defects in chloroplast ribosomal RNA processing and changes to stability of rpl16 transcripts, revealing conserved function with its maize ortholog. NbIPI1-silenced plants also had defective C-to-U RNA editing in several chloroplast transcripts, a contrast from the finding that maize PPR103 had no role in editing. The results indicate that in addition to its role in transcript stability, NbIPI1 may contribute to C-to-U editing in N. benthamiana chloroplasts.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , ARN del Cloroplasto/metabolismo , Proteínas de Arabidopsis/genética , Zea mays/genética , Zea mays/metabolismo , ARN , Cloroplastos/genética , Cloroplastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA