Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.067
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2400732121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838021

RESUMEN

Cytoplasmic mislocalization and aggregation of TDP-43 protein are hallmarks of amyotrophic lateral sclerosis (ALS) and are observed in the vast majority of both familial and sporadic cases. How these two interconnected processes are regulated on a molecular level, however, remains enigmatic. Genome-wide screens for modifiers of the ALS-associated genes TDP-43 and FUS have identified the phospholipase D (Pld) pathway as a key regulator of ALS-related phenotypes in the fruit fly Drosophila melanogaster [M. W. Kankel et al., Genetics 215, 747-766 (2020)]. Here, we report the results of our search for downstream targets of the enzymatic product of Pld, phosphatidic acid. We identify two conserved negative regulators of the cAMP/PKA signaling pathway, the phosphodiesterase dunce and the inhibitory subunit PKA-R2, as modifiers of pathogenic phenotypes resulting from overexpression of the Drosophila TDP-43 ortholog TBPH. We show that knockdown of either of these genes results in a mitigation of both TBPH aggregation and mislocalization in larval motor neuron cell bodies, as well as an amelioration of adult-onset motor defects and shortened lifespan induced by TBPH. We determine that PKA kinase activity is downstream of both TBPH and Pld and that overexpression of the PKA target CrebA can rescue TBPH mislocalization. These findings suggest a model whereby increasing cAMP/PKA signaling can ameliorate the molecular and functional effects of pathological TDP-43.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Proteínas de Unión al ADN , Proteínas de Drosophila , Drosophila melanogaster , Transducción de Señal , Animales , AMP Cíclico/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Humanos , Neuronas Motoras/metabolismo
3.
Cell Death Dis ; 15(6): 388, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830901

RESUMEN

Vitamin B6 is a water-soluble vitamin which possesses antioxidant properties. Its catalytically active form, pyridoxal 5'-phosphate (PLP), is a crucial cofactor for DNA and amino acid metabolism. The inverse correlation between vitamin B6 and cancer risk has been observed in several studies, although dietary vitamin B6 intake sometimes failed to confirm this association. However, the molecular link between vitamin B6 and cancer remains elusive. Previous work has shown that vitamin B6 deficiency causes chromosome aberrations (CABs) in Drosophila and human cells, suggesting that genome instability may correlate the lack of this vitamin to cancer. Here we provide evidence in support of this hypothesis. Firstly, we show that PLP deficiency, induced by the PLP antagonists 4-deoxypyridoxine (4DP) or ginkgotoxin (GT), promoted tumorigenesis in eye larval discs transforming benign RasV12 tumors into aggressive forms. In contrast, PLP supplementation reduced the development of tumors. We also show that low PLP levels, induced by 4DP or by silencing the sgllPNPO gene involved in PLP biosynthesis, worsened the tumor phenotype in another Drosophila cancer model generated by concomitantly activating RasV12 and downregulating Discs-large (Dlg) gene. Moreover, we found that RasV12 eye discs from larvae reared on 4DP displayed CABs, reactive oxygen species (ROS) and low catalytic activity of serine hydroxymethyltransferase (SHMT), a PLP-dependent enzyme involved in thymidylate (dTMP) biosynthesis, in turn required for DNA replication and repair. Feeding RasV12 4DP-fed larvae with PLP or ascorbic acid (AA) plus dTMP, rescued both CABs and tumors. The same effect was produced by overexpressing catalase in RasV12 DlgRNAi 4DP-fed larvae, thus allowing to establish a relationship between PLP deficiency, CABs, and cancer. Overall, our data provide the first in vivo demonstration that PLP deficiency can impact on cancer by increasing genome instability, which is in turn mediated by ROS and reduced dTMP levels.


Asunto(s)
Deficiencia de Vitamina B 6 , Animales , Deficiencia de Vitamina B 6/metabolismo , Deficiencia de Vitamina B 6/complicaciones , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Vitamina B 6/metabolismo , Vitamina B 6/farmacología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila/metabolismo , Fosfato de Piridoxal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Carcinogénesis/metabolismo , Carcinogénesis/efectos de los fármacos , Proteínas ras/metabolismo , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Larva/metabolismo , Humanos
4.
Elife ; 122024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700995

RESUMEN

Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.


Asunto(s)
Drosophila melanogaster , Síndrome de Lesch-Nyhan , Animales , Drosophila melanogaster/fisiología , Drosophila melanogaster/genética , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Purinas/metabolismo , Modelos Animales de Enfermedad , Conducta Animal , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Hipoxantina Fosforribosiltransferasa/deficiencia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Locomoción
5.
Gac Med Mex ; 160(1): 1-8, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753562

RESUMEN

BACKGROUND: Protein interactions participate in many molecular mechanisms involved in cellular processes. The human TATA box binding protein (hTBP) interacts with Antennapedia (Antp) through its N-terminal region, specifically via its glutamine homopeptides. This PolyQ region acts as a binding site for other transcription factors under normal conditions, but when it expands, it generates spinocerebellar ataxia 17 (SCA17), whose protein aggregates in the brain prevent its correct functioning. OBJECTIVE: To determine whether the hTBP glutamine-rich region is involved in its interaction with homeoproteins and the role it plays in the formation of protein aggregates in SCA17. MATERIAL AND METHODS: We characterized hTBP interaction with other homeoproteins using BiFC, and modeled SCA17 in Drosophila melanogaster by targeting hTBPQ80 to the fly brain using UAS/GAL4. RESULTS: There was hTBP interaction with homeoproteins through its glutamine-rich region, and hTBP protein aggregates with expanded glutamines were found to affect the locomotor capacity of flies. CONCLUSIONS: The study of hTBP interactions opens the possibility for the search for new therapeutic strategies in neurodegenerative pathologies such as SCA17.


ANTECEDENTES: Las interacciones proteicas participan en una gran cantidad de mecanismos moleculares que rigen los procesos celulares. La proteína de unión a la caja TATA humana (hTBP) interacciona con Antennapedia (Antp) a través de su extremo N-terminal, específicamente a través de sus homopéptidos de glutaminas. Esta región PolyQ sirve como sitio de unión a factores de transcripción en condiciones normales, pero cuando se expande genera la ataxia espinal cerebelosa 17 (SCA17), cuyos agregados proteicos en el cerebro impiden su funcionamiento correcto. OBJETIVO: Determinar si la región rica en glutaminas de hTBP interviene en su interacción con homeoproteínas y el papel que tiene en la formación de agregados proteicos en SCA17. MATERIAL Y MÉTODOS: Se caracterizó la interacción de hTBP con otras homeoproteínas usando BiFC y se modeló SCA17 en Drosophila melanogaster dirigiendo hTBPQ80 al cerebro de las moscas usando UAS/GAL4. RESULTADOS: Existió interacción de hTBP con homeoproteínas a través de su región rica en glutaminas. Los agregados proteicos de hTBP con las glutaminas expandidas afectaron la capacidad locomotriz de las moscas. CONCLUSIONES: El estudio de las interacciones de hTBP abre la posibilidad para la búsqueda de nuevas estrategias terapéuticas en patologías neurodegenerativas como SCA17.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster , Ataxias Espinocerebelosas , Proteína de Unión a TATA-Box , Animales , Drosophila melanogaster/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/genética , Proteína de Unión a TATA-Box/metabolismo , Proteína de Unión a TATA-Box/genética , Humanos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Glutamina/metabolismo , Agregado de Proteínas/fisiología , Péptidos/metabolismo , Encéfalo/metabolismo
6.
Nat Commun ; 15(1): 4045, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744835

RESUMEN

Vesicular transport is essential for delivering cargo to intracellular destinations. Evi5 is a Rab11-GTPase-activating protein involved in endosome recycling. In humans, Evi5 is a high-risk locus for multiple sclerosis, a debilitating disease that also presents with excess iron in the CNS. In insects, the prothoracic gland (PG) requires entry of extracellular iron to synthesize steroidogenic enzyme cofactors. The mechanism of peripheral iron uptake in insect cells remains controversial. We show that Evi5-depletion in the Drosophila PG affected vesicle morphology and density, blocked endosome recycling and impaired trafficking of transferrin-1, thus disrupting heme synthesis due to reduced cellular iron concentrations. We show that ferritin delivers iron to the PG as well, and interacts physically with Evi5. Further, ferritin-injection rescued developmental delays associated with Evi5-depletion. To summarize, our findings show that Evi5 is critical for intracellular iron trafficking via transferrin-1 and ferritin, and implicate altered iron homeostasis in the etiology of multiple sclerosis.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Ferritinas , Hierro , Transferrina , Animales , Hierro/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ferritinas/metabolismo , Ferritinas/genética , Transferrina/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Endosomas/metabolismo , Humanos , Transporte de Proteínas
7.
PLoS One ; 19(5): e0303115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776353

RESUMEN

The detrimental effects of ultraviolet C (UVC) radiation on living organisms, with a specific focus on the fruit fly Drosophila melanogaster, were examined. This study investigated the impact of heightened UVC radiation exposure on D. melanogaster by assessing mortality and fertility rates, studying phenotypic mutations, and investigating the associated molecular mechanisms. The findings of this study revealed that UVC radiation increases mortality rates and decreases fertility rates in D. melanogaster. Additionally, phenotypic wing mutations were observed in the exposed flies. Furthermore, the study demonstrated that UVC radiation downregulates the expression of antioxidant genes, including superoxide dismutase (SOD), manganese-dependent superoxide dismutase (Mn-SOD), zinc-dependent superoxide dismutase (Cu-Zn-SOD), and the G protein-coupled receptor methuselah (MTH) gene. These results suggest that UVC radiation exerts a destructive effect on D. melanogaster by inducing oxidative stress, which is marked by the overexpression of harmful oxidative processes and a simultaneous reduction in antioxidant gene expression. In conclusion, this study underscores the critical importance of comprehending the deleterious effects of UVC radiation, not only to safeguard human health on Earth, but also to address the potential risks associated with space missions, such as the ongoing Emirate astronaut program.


Asunto(s)
Drosophila melanogaster , Fertilidad , Mutación , Rayos Ultravioleta , Animales , Drosophila melanogaster/efectos de la radiación , Drosophila melanogaster/genética , Rayos Ultravioleta/efectos adversos , Fertilidad/efectos de la radiación , Fertilidad/genética , Mutación/efectos de la radiación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Estrés Oxidativo/efectos de la radiación , Estrés Oxidativo/genética , Masculino , Femenino , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Antioxidantes/metabolismo , Regulación de la Expresión Génica/efectos de la radiación
8.
Biomolecules ; 14(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38785929

RESUMEN

Suppressor of deltex (Su(dx)) is a Drosophila melanogaster member of the NEDD4 family of the HECT domain E3 ubiquitin ligases. Su(dx) acts as a regulator of Notch endocytic trafficking, promoting Notch lysosomal degradation and the down-regulation of both ligand-dependent and ligand-independent signalling, the latter involving trafficking through the endocytic pathway and activation of the endo/lysosomal membrane. Mutations of Su(dx) result in developmental phenotypes in the Drosophila wing that reflect increased Notch signalling, leading to gaps in the specification of the wing veins, and Su(dx) functions to provide the developmental robustness of Notch activity to environmental temperature shifts. The full developmental functions of Su(dx) are unclear; however, this is due to a lack of a clearly defined null allele. Here we report the first defined null mutation of Su(dx), generated by P-element excision, which removes the complete open reading frame. We show that the mutation is recessive-viable, with the Notch gain of function phenotypes affecting wing vein and leg development. We further uncover new roles for Su(dx) in Drosophila oogenesis, where it regulates interfollicular stalk formation, egg chamber separation and germline cyst enwrapment by the follicle stem cells. Interestingly, while the null allele exhibited a gain in Notch activity during oogenesis, the previously described Su(dx)SP allele, which carries a seven amino acid in-frame deletion, displayed a Notch loss of function phenotypes and an increase in follicle stem cell turnover. This is despite both alleles displaying similar Notch gain of function in wing development. We attribute this unexpected context-dependent outcome of Su(dx)sp being due to the partial retention of function by the intact C2 and WW domain regions of the protein. Our results extend our understanding of the developmental role of Su(dx) in the tissue renewal and homeostasis of the Drosophila ovary and illustrate the importance of examining an allelic series of mutations to fully understand developmental functions.


Asunto(s)
Alelos , Proteínas de Drosophila , Drosophila melanogaster , Oogénesis , Receptores Notch , Animales , Oogénesis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Femenino , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Mutación , Transducción de Señal , Fenotipo , Proteínas de la Membrana
9.
Cell Rep ; 43(5): 114251, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38761374

RESUMEN

Phagocytic macrophages are crucial for innate immunity and tissue homeostasis. Most tissue-resident macrophages develop from embryonic precursors that populate every organ before birth to lifelong self-renew. However, the mechanisms for versatile macrophage differentiation remain unknown. Here, we use in vivo genetic and cell biological analysis of the Drosophila larval hematopoietic organ, the lymph gland that produces macrophages. We show that the developmentally regulated transient activation of caspase-activated DNase (CAD)-mediated DNA strand breaks in intermediate progenitors is essential for macrophage differentiation. Insulin receptor-mediated PI3K/Akt signaling regulates the apoptosis signal-regulating kinase 1 (Ask1)/c-Jun kinase (JNK) axis to control sublethal levels of caspase activation, causing DNA strand breaks during macrophage development. Furthermore, caspase activity is also required for embryonic-origin macrophage development and efficient phagocytosis. Our study provides insights into developmental signaling and CAD-mediated DNA strand breaks associated with multifunctional and heterogeneous macrophage differentiation.


Asunto(s)
Diferenciación Celular , Daño del ADN , Proteínas de Drosophila , Macrófagos , Fagocitosis , Animales , Macrófagos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transducción de Señal , Caspasas/metabolismo , Activación Enzimática , Desoxirribonucleasas/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
10.
Commun Biol ; 7(1): 533, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710747

RESUMEN

Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteínas Supresoras de Tumor , Alas de Animales , Animales , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Apoptosis , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
11.
Exp Cell Res ; 439(1): 114092, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754617

RESUMEN

Asymmetric stem cell divisions play instrumental roles in the maintenance, growth and differentiation of organs. Failure of asymmetric stem cell divisions may result in an array of developmental disorders, including cancer. It is well established that the gene, inscuteable, acts as the upstream component of asymmetric cell divisions. In Drosophila larval midgut, a founder adult midgut precursor (AMP) experiences an asymmetric division to instruct its first daughter to become a peripheral cell that serves as a niche where the AMP and its future daughters can remain undifferentiated. The present study demonstrates that inscuteable expressing stem cells require Rab11, a conserved small Ras-like GTPase, for proper proliferation and differentiation. As insc-GAL4 mediated Rab11RNAi in Drosophila larval and adult midguts show the disruption of the niche microenvironment of adult midgut precursors as well as elevated DPP signalling at the larval stage, which is associated with aberrant over-proliferation and early differentiation of larval AMPs and adult intestinal stem cells. The observed connections between Rab11, larval AMP proliferation, niche establishment, and DPP signalling highlight the potential for Rab11 to serve as a key regulatory factor in maintaining tissue homeostasis and balanced cellular growth.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila , Larva , Transducción de Señal , Proteínas de Unión al GTP rab , Animales , Diferenciación Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/genética , Proliferación Celular , Células Madre/metabolismo , Células Madre/citología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Nicho de Células Madre
12.
Mol Biol Cell ; 35(7): br13, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696256

RESUMEN

Autophagy is a conserved catabolic process where double membrane-bound structures form around macromolecules or organelles targeted for degradation. Autophagosomes fuse with lysosomes to facilitate degradation and macromolecule recycling for homeostasis or growth in a cell autonomous manner. In cancer cells, autophagy is often up-regulated and helps cancer cells survive nutrient deprivation and stressful growth conditions. Here, we propose that the increased intracellular pH (pHi) common to cancer cells is sufficient to induce autophagic cell death. We previously developed tools to increase pHi in the Drosophila eye via overexpression of DNhe2, resulting in aberrant patterning and reduced tissue size. We examined fly eyes at earlier stages of development and found fewer interommatidial cells. We next tested whether this decrease in cell number was due to increased cell death. We found that the DNhe2-induced cell death was caspase independent, which is inconsistent with apoptosis. However, this cell death required autophagy genes, which supports autophagy as the mode of cell death. We also found that expression of molecular markers supports increased autophagy. Together, our findings suggest new roles for ion transport proteins in regulating conserved, critical developmental processes and provide evidence for new paradigms in growth control.


Asunto(s)
Muerte Celular Autofágica , Autofagia , Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Concentración de Iones de Hidrógeno , Ojo/metabolismo , Apoptosis , Lisosomas/metabolismo , Drosophila/metabolismo , Autofagosomas/metabolismo
13.
Nat Commun ; 15(1): 3000, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589403

RESUMEN

Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.


Asunto(s)
Actomiosina , Proteínas de Drosophila , Animales , Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo , Epitelio/metabolismo , Morfogénesis
14.
Proc Natl Acad Sci U S A ; 121(16): e2316244121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588419

RESUMEN

Despite the conservation of genetic machinery involved in eye development, there is a strong diversity in the placement of eyes on the head of animals. Morphogen gradients of signaling molecules are vital to patterning cues. During Drosophila eye development, Wingless (Wg), a ligand of Wnt/Wg signaling, is expressed anterolaterally to form a morphogen gradient to determine the eye- versus head-specific cell fate. The underlying mechanisms that regulate this process are yet to be fully understood. We characterized defective proventriculus (dve) (Drosophila ortholog of human SATB1), a K50 homeodomain transcription factor, as a dorsal eye gene, which regulates Wg signaling to determine eye versus head fate. Across Drosophila species, Dve is expressed in the dorsal head vertex region where it regulates wg transcription. Second, Dve suppresses eye fate by down-regulating retinal determination genes. Third, the dve-expressing dorsal head vertex region is important for Wg-mediated inhibition of retinal cell fate, as eliminating the Dve-expressing cells or preventing Wg transport from these dve-expressing cells leads to a dramatic expansion of the eye field. Together, these findings suggest that Dve regulates Wg expression in the dorsal head vertex, which is critical for determining eye versus head fate. Gain-of-function of SATB1 exhibits an eye fate suppression phenotype similar to Dve. Our data demonstrate a conserved role for Dve/SATB1 in the positioning of eyes on the head and the interocular distance by regulating Wg. This study provides evidence that dysregulation of the Wg morphogen gradient results in developmental defects such as hypertelorism in humans where disproportionate interocular distance and facial anomalies are reported.


Asunto(s)
Proteínas de Drosophila , Proteínas de Unión a la Región de Fijación a la Matriz , Animales , Humanos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Drosophila/genética , Retina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación del Desarrollo de la Expresión Génica , Drosophila melanogaster/metabolismo , Tipificación del Cuerpo/genética
15.
Proc Natl Acad Sci U S A ; 121(16): e2318155121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38602917

RESUMEN

Tissue development occurs through a complex interplay between many individual cells. Yet, the fundamental question of how collective tissue behavior emerges from heterogeneous and noisy information processing and transfer at the single-cell level remains unknown. Here, we reveal that tissue scale signaling regulation can arise from local gap-junction mediated cell-cell signaling through the spatiotemporal establishment of an intermediate-scale of transient multicellular communication communities over the course of tissue development. We demonstrated this intermediate scale of emergent signaling using Ca2+ signaling in the intact, ex vivo cultured, live developing Drosophila hematopoietic organ, the lymph gland. Recurrent activation of these transient signaling communities defined self-organized signaling "hotspots" that gradually formed over the course of larva development. These hotspots receive and transmit information to facilitate repetitive interactions with nonhotspot neighbors. Overall, this work bridges the scales between single-cell and emergent group behavior providing key mechanistic insight into how cells establish tissue-scale communication networks.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Hematopoyesis , Transducción de Señal , Comunicación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
16.
Sci Rep ; 14(1): 9631, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671036

RESUMEN

Intestinal stem cells (ISCs) of the fruit fly, Drosophila melanogaster, offer an excellent genetic model to explore homeostatic roles of ISCs in animal physiology. Among available genetic tools, the escargot (esg)-GAL4 driver, expressing the yeast transcription factor gene, GAL4, under control of the esg gene promoter, has contributed significantly to ISC studies. This driver facilitates activation of genes of interest in proximity to a GAL4-binding element, Upstream Activating Sequence, in ISCs and progenitor enteroblasts (EBs). While esg-GAL4 has been considered an ISC/EB-specific driver, recent studies have shown that esg-GAL4 is also active in other tissues, such as neurons and ovaries. Therefore, the ISC/EB specificity of esg-GAL4 is questionable. In this study, we reveal esg-GAL4 expression in the corpus allatum (CA), responsible for juvenile hormone (JH) production. When driving the oncogenic gene, RasV12, esg-GAL4 induces overgrowth in ISCs/EBs as reported, but also increases CA cell number and size. Consistent with this observation, animals alter expression of JH-response genes. Our data show that esg-GAL4-driven gene manipulation can systemically influence JH-mediated animal physiology, arguing for cautious use of esg-GAL4 as a "specific" ISC/EB driver to examine ISC/EB-mediated animal physiology.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Hormonas Juveniles , Células Madre , Factores de Transcripción , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hormonas Juveniles/metabolismo , Intestinos/citología , Regulación de la Expresión Génica , Animales Modificados Genéticamente
17.
Cell Mol Life Sci ; 81(1): 190, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649521

RESUMEN

The high-protein diet (HPD) has emerged as a potent dietary approach to curb obesity. Peroxisome, a highly malleable organelle, adapts to nutritional changes to maintain homeostasis by remodeling its structure, composition, and quantity. However, the impact of HPD on peroxisomes and the underlying mechanism remains elusive. Using Drosophila melanogaster as a model system, we discovered that HPD specifically increases peroxisome levels within the adipose tissues. This HPD-induced peroxisome elevation is attributed to cysteine and methionine by triggering the expression of CG33474, a fly homolog of mammalian PEX11G. Both the overexpression of Drosophila CG33474 and human PEX11G result in increased peroxisome size. In addition, cysteine and methionine diets both reduce lipid contents, a process that depends on the presence of CG33474. Furthermore, CG33474 stimulates the breakdown of neutral lipids in a cell-autonomous manner. Moreover, the expression of CG33474 triggered by cysteine and methionine requires TOR signaling. Finally, we found that CG33474 promotes inter-organelle contacts between peroxisomes and lipid droplets (LDs), which might be a potential mechanism for CG33474-induced fat loss. In summary, our findings demonstrate that CG33474/PEX11G may serve as an essential molecular bridge linking HPD to peroxisome dynamics and lipid metabolism.


Asunto(s)
Tejido Adiposo , Cisteína , Proteínas de Drosophila , Drosophila melanogaster , Metionina , Peroxisomas , Animales , Metionina/metabolismo , Peroxisomas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Cisteína/metabolismo , Tejido Adiposo/metabolismo , Humanos , Metabolismo de los Lípidos , Gotas Lipídicas/metabolismo , Transducción de Señal , Dieta
18.
Cells ; 13(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38667335

RESUMEN

Neurofibromatosis 1 (NF1) is a multisymptomatic disorder with highly variable presentations, which include short stature, susceptibility to formation of the characteristic benign tumors known as neurofibromas, intense freckling and skin discoloration, and cognitive deficits, which characterize most children with the condition. Attention deficits and Autism Spectrum manifestations augment the compromised learning presented by most patients, leading to behavioral problems and school failure, while fragmented sleep contributes to chronic fatigue and poor quality of life. Neurofibromin (Nf1) is present ubiquitously during human development and postnatally in most neuronal, oligodendrocyte, and Schwann cells. Evidence largely from animal models including Drosophila suggests that the symptomatic variability may reflect distinct cell-type-specific functions of the protein, which emerge upon its loss, or mutations affecting the different functional domains of the protein. This review summarizes the contributions of Drosophila in modeling multiple NF1 manifestations, addressing hypotheses regarding the cell-type-specific functions of the protein and exploring the molecular pathways affected upon loss of the highly conserved fly homolog dNf1. Collectively, work in this model not only has efficiently and expediently modelled multiple aspects of the condition and increased understanding of its behavioral manifestations, but also has led to pharmaceutical strategies towards their amelioration.


Asunto(s)
Modelos Animales de Enfermedad , Neurofibromatosis 1 , Animales , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Neurofibromatosis 1/metabolismo , Humanos , Drosophila melanogaster , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Drosophila
19.
Nat Commun ; 15(1): 3339, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688961

RESUMEN

Social networks are a mathematical representation of interactions among individuals which are prevalent across various animal species. Studies of human populations have shown the breadth of what can spread throughout a social network: obesity, smoking cessation, happiness, drug use and divorce. 'Betweenness centrality' is a key property of social networks that indicates an individual's importance in facilitating communication and cohesion within the network. Heritability of betweenness centrality has been suggested in several species, however the genetic regulation of this property remains enigmatic. Here, we demonstrate that the gene CG14109, referred to as degrees of kevin bacon (dokb), influences betweenness centrality in Drosophila melanogaster. We identify strain-specific alleles of dokb with distinct amino acid sequences and when the dokb allele is exchanged between strains, flies exhibit the betweenness centrality pattern dictated by the donor allele. By inserting a GAL4 reporter into the dokb locus, we confirm that dokb is expressed in the central nervous system. These findings define a novel genetic entry point to study social network structure and thereby establish gene-to-social structure relationships. While dokb sequence homology is exclusive to Diptera, we anticipate that dokb-associated molecular pathways could unveil convergent neural mechanisms of social behaviour that apply in diverse animal species.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Alelos , Masculino , Femenino , Conducta Animal , Conducta Social , Red Social
20.
PLoS Genet ; 20(4): e1011250, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683763

RESUMEN

Accurate repair of DNA double-strand breaks (DSBs) is essential for the maintenance of genome integrity, as failure to repair DSBs can result in cell death. The cell has evolved two main mechanisms for DSB repair: non-homologous end-joining (NHEJ) and homology-directed repair (HDR), which includes single-strand annealing (SSA) and homologous recombination (HR). While certain factors like age and state of the chromatin are known to influence DSB repair pathway choice, the roles of developmental stage, tissue type, and sex have yet to be elucidated in multicellular organisms. To examine the influence of these factors, DSB repair in various embryonic developmental stages, larva, and adult tissues in Drosophila melanogaster was analyzed through molecular analysis of the DR-white assay using Tracking across Indels by DEcomposition (TIDE). The proportion of HR repair was highest in tissues that maintain the canonical (G1/S/G2/M) cell cycle and suppressed in both terminally differentiated and polyploid tissues. To determine the impact of sex on repair pathway choice, repair in different tissues in both males and females was analyzed. When molecularly examining tissues containing mostly somatic cells, males and females demonstrated similar proportions of HR and NHEJ. However, when DSB repair was analyzed in male and female premeiotic germline cells utilizing phenotypic analysis of the DR-white assay, there was a significant decrease in HR in females compared to males. This study describes the impact of development, tissue-specific cycling profile, and, in some cases, sex on DSB repair outcomes, underscoring the complexity of repair in multicellular organisms.


Asunto(s)
Roturas del ADN de Doble Cadena , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Masculino , Reparación del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN por Recombinación , Recombinación Homóloga/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ciclo Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA