Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.488
Filtrar
1.
Mol Cell ; 84(9): 1811-1815.e3, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701742

RESUMEN

Post-translational modifications of proteins (PTMs) introduce an extra layer of complexity to cellular regulation. Although phosphorylation of serine, threonine, and tyrosine residues is well-known as PTMs, lysine is, in fact, the most heavily modified amino acid, with over 30 types of PTMs on lysine having been characterized. One of the most recently discovered PTMs on lysine residues is polyphosphorylation, which sees linear chains of inorganic polyphosphates (polyP) attached to lysine residues. The labile nature of phosphoramidate bonds raises the question of whether this modification is covalent in nature. Here, we used buffers with very high ionic strength, which would disrupt any non-covalent interactions, and confirmed that lysine polyphosphorylation occurs covalently on proteins containing PASK domains (polyacidic, serine-, and lysine-rich), such as the budding yeast protein nuclear signal recognition 1 (Nsr1) and the mammalian protein nucleolin. This Matters Arising Response paper addresses the Neville et al. (2024) Matters Arising paper, published concurrently in Molecular Cell.


Asunto(s)
Lisina , Fosfoproteínas , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN , Fosforilación , Lisina/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Nucleolina , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Animales , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Polifosfatos/metabolismo , Polifosfatos/química , Concentración Osmolar
2.
Elife ; 132024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809771

RESUMEN

The yeast SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a 'pincer-like' conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.


Asunto(s)
Adenosina Trifosfatasas , Histonas , Nucleosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/química , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Ensamble y Desensamble de Cromatina , Unión Proteica , Multimerización de Proteína
3.
Food Chem ; 453: 139691, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38781904

RESUMEN

Yeast extract is increasingly becoming an attractive source for unraveling novel umami peptides that are healthier and more nutritious than traditional seasonings. In the present study, a strategy for screening novel umami peptides was established using mass spectrometry-based peptidomics combined with molecular interaction modeling, emphasizing on smaller peptides than previously reported. Four representative novel umami peptides of FE, YDQ, FQEY, and SPFSQ from yeast extract (Saccharomyces cerevisiae) were identified and validated by sensory evaluation, with thresholds determined as 0.234 ± 0.045, 0.576 ± 0.175, 0.327 ± 0.057 and 0.456 ± 0.070 mmol/L, respectively. Hydrogen and ionic bonds were the main characteristic interactions between the umami peptides and the well-recognized receptor T1R1/T1R3, in which Asp 110, Thr 112, Arg 114, Arg 240, Lys 342, and Glu 264 were the key sites in ligand-receptor recognition. Our study provides accurate sequences of umami peptides and molecular interaction mechanism for the umami effect.


Asunto(s)
Péptidos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Péptidos/química , Humanos , Gusto , Modelos Moleculares , Aromatizantes/química , Aromatizantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Masculino , Proteómica , Femenino , Secuencia de Aminoácidos
4.
Nat Commun ; 15(1): 4491, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802374

RESUMEN

Actin nucleotide-dependent actin remodeling is essential to orchestrate signal transduction and cell adaptation. Rapid energy starvation requires accurate and timely reorganization of the actin network. Despite distinct treadmilling mechanisms of ADP- and ATP-actin filaments, their filament structures are nearly identical. How other actin-binding proteins regulate ADP-actin filament assembly is unclear. Here, we show that Spa2 which is the polarisome scaffold protein specifically remodels ADP-actin upon energy starvation in budding yeast. Spa2 triggers ADP-actin monomer nucleation rapidly through a dimeric core of Spa2 (aa 281-535). Concurrently, the intrinsically disordered region (IDR, aa 1-281) guides Spa2 undergoing phase separation and wetting on the surface of ADP-G-actin-derived F-actin and bundles the filaments. Both ADP-actin-specific nucleation and bundling activities of Spa2 are actin D-loop dependent. The IDR and nucleation core of Spa2 are evolutionarily conserved by coexistence in the fungus kingdom, suggesting a universal adaptation mechanism in the fungal kingdom in response to glucose starvation, regulating ADP-G-actin and ADP-F-actin with high nucleotide homogeneity.


Asunto(s)
Actinas , Adenosina Difosfato , Glucosa , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Difosfato/análogos & derivados , Glucosa/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
5.
Food Chem ; 449: 139216, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604031

RESUMEN

This study aimed to identify saltiness-enhancing peptides from yeast protein and elucidate their mechanisms by molecular docking. Yeast protein hydrolysates with optimal saltiness-enhancing effects were prepared under conditions determined using an orthogonal test. Ten saltiness-enhancing peptide candidates were screened using an integrated virtual screening strategy. Sensory evaluation demonstrated that these peptides exhibited diverse taste characteristics (detection thresholds: 0.13-0.50 mmol/L). Peptides NKF, LGLR, WDL, NMKF, FDSL and FDGK synergistically or additively enhanced the saltiness of a 0.30% NaCl solution. Molecular docking revealed that these peptides predominantly interacted with TMC4 by hydrogen bonding, with hydrophilic amino acids from both peptides and TMC4 playing a pivotal role in their binding. Furthermore, Leu217, Gln377, Glu378, Pro474 and Cys475 were postulated as the key binding sites of TMC4. These findings establish a robust theoretical foundation for salt reduction strategies in food and provide novel insights into the potential applications of yeast proteins.


Asunto(s)
Simulación del Acoplamiento Molecular , Péptidos , Gusto , Péptidos/química , Péptidos/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cloruro de Sodio/química
6.
J Proteome Res ; 23(6): 2186-2194, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38664393

RESUMEN

Tandem mass tags (TMT) are widely used in proteomics to simultaneously quantify multiple samples in a single experiment. The tags can be easily added to the primary amines of peptides/proteins through chemical reactions. In addition to amines, TMT reagents also partially react with the hydroxyl groups of serine, threonine, and tyrosine residues under alkaline conditions, which significantly compromises the analytical sensitivity and precision. Under alkaline conditions, reducing the TMT molar excess can partially mitigate overlabeling of histidine-free peptides, but has a limited effect on peptides containing histidine and hydroxyl groups. Here, we present a method under acidic conditions to suppress overlabeling while efficiently labeling amines, using only one-fifth of the TMT amount recommended by the manufacturer. In a deep-scale analysis of a yeast/human two-proteome sample, we systematically evaluated our method against the manufacturer's method and a previously reported TMT-reduced method. Our method reduced overlabeled peptides by 9-fold and 6-fold, respectively, resulting in the substantial enhancement in peptide/protein identification rates. More importantly, the quantitative accuracy and precision were improved as overlabeling was reduced, endowing our method with greater statistical power to detect 42% and 12% more statistically significant yeast proteins compared to the standard and TMT-reduced methods, respectively. Mass spectrometric data have been deposited in the ProteomeXchange Consortium via the iProX partner repository with the data set identifier PXD047052.


Asunto(s)
Aminas , Proteoma , Proteómica , Espectrometría de Masas en Tándem , Proteoma/análisis , Proteoma/química , Proteómica/métodos , Humanos , Aminas/química , Espectrometría de Masas en Tándem/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Péptidos/química , Péptidos/análisis , Análisis Costo-Beneficio , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Coloración y Etiquetado/métodos
7.
Biomolecules ; 14(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38672486

RESUMEN

The Dph1•Dph2 heterodimer from yeast is a radical SAM (RS) enzyme that generates the 3-amino-3-carboxy-propyl (ACP) precursor for diphthamide, a clinically relevant modification on eukaryotic elongation factor 2 (eEF2). ACP formation requires SAM cleavage and atypical Cys-bound Fe-S clusters in each Dph1 and Dph2 subunit. Intriguingly, the first Cys residue in each motif is found next to another ill-defined cysteine that we show is conserved across eukaryotes. As judged from structural modeling, the orientation of these tandem cysteine motifs (TCMs) suggests a candidate Fe-S cluster ligand role. Hence, we generated, by site-directed DPH1 and DPH2 mutagenesis, Dph1•Dph2 variants with cysteines from each TCM replaced individually or in combination by serines. Assays diagnostic for diphthamide formation in vivo reveal that while single substitutions in the TCM of Dph2 cause mild defects, double mutations almost entirely inactivate the RS enzyme. Based on enhanced Dph1 and Dph2 subunit instability in response to cycloheximide chases, the variants with Cys substitutions in their cofactor motifs are particularly prone to protein degradation. In sum, we identify a fourth functionally cooperative Cys residue within the Fe-S motif of Dph2 and show that the Cys-based cofactor binding motifs in Dph1 and Dph2 are critical for the structural integrity of the dimeric RS enzyme in vivo.


Asunto(s)
Secuencias de Aminoácidos , Cisteína , Histidina/análogos & derivados , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cisteína/metabolismo , Cisteína/genética , Cisteína/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Multimerización de Proteína , Liasas de Carbono-Azufre/metabolismo , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Mutagénesis Sitio-Dirigida
8.
Nucleic Acids Res ; 52(8): 4523-4540, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38477398

RESUMEN

In archaea and eukaryotes, the evolutionarily conserved KEOPS is composed of four core subunits-Kae1, Bud32, Cgi121 and Pcc1, and a fifth Gon7/Pcc2 that is found in fungi and metazoa. KEOPS cooperates with Sua5/YRDC to catalyze the biosynthesis of tRNA N6-threonylcarbamoyladenosine (t6A), an essential modification needed for fitness of cellular organisms. Biochemical and structural characterizations of KEOPSs from archaea, yeast and humans have determined a t6A-catalytic role for Kae1 and auxiliary roles for other subunits. However, the precise molecular workings of KEOPSs still remain poorly understood. Here, we investigated the biochemical functions of A. thaliana KEOPS and determined a cryo-EM structure of A. thaliana KEOPS dimer. We show that A. thaliana KEOPS is composed of KAE1, BUD32, CGI121 and PCC1, which adopts a conserved overall arrangement. PCC1 dimerization leads to a KEOPS dimer that is needed for an active t6A-catalytic KEOPS-tRNA assembly. BUD32 participates in direct binding of tRNA to KEOPS and modulates the t6A-catalytic activity of KEOPS via its C-terminal tail and ATP to ADP hydrolysis. CGI121 promotes the binding of tRNA to KEOPS and potentiates the t6A-catalytic activity of KEOPS. These data and findings provide insights into mechanistic understanding of KEOPS machineries.


Asunto(s)
Proteínas de Arabidopsis , Complejos Multiproteicos , ARN de Planta , ARN de Transferencia , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Microscopía por Crioelectrón , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , ARN de Transferencia/metabolismo , ARN de Transferencia/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Complejos Multiproteicos/metabolismo , ARN de Planta/química , ARN de Planta/metabolismo
9.
Structure ; 32(6): 795-811.e6, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38531363

RESUMEN

GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.


Asunto(s)
Unión Proteica , Proteínas Serina-Treonina Quinasas , ARN de Transferencia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , ARN de Transferencia/metabolismo , ARN de Transferencia/química , Sitios de Unión , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Microscopía por Crioelectrón , Simulación del Acoplamiento Molecular , Modelos Moleculares , Adenosina Trifosfato/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Histidina/metabolismo , Histidina/química , Fosforilación
10.
FEBS J ; 291(9): 1992-2008, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362806

RESUMEN

The nucleoside inosine is a main intermediate of purine nucleotide catabolism in Saccharomyces cerevisiae and is produced via the dephosphorylation of inosine monophosphate (IMP) by IMP-specific 5'-nucleotidase 1 (ISN1), which is present in many eukaryotic organisms. Upon transition of yeast from oxidative to fermentative growth, ISN1 is important for intermediate inosine accumulation as purine storage, but details of ISN1 regulation are unknown. We characterized structural and kinetic behavior of ISN1 from S. cerevisiae (ScISN1) and showed that tetrameric ScISN1 is negatively regulated by inosine and adenosine triphosphate (ATP). Regulation involves an inosine-binding allosteric site along with IMP-induced local and global conformational changes in the monomer and a tetrameric re-arrangement, respectively. A proposed interaction network propagates local conformational changes in the active site to the intersubunit interface, modulating the allosteric features of ScISN1. Via ATP and inosine, ScISN1 activity is likely fine-tuned to regulate IMP and inosine homeostasis. These regulatory and catalytic features of ScISN1 contrast with those of the structurally homologous ISN1 from Plasmodium falciparum, indicating that ISN1 enzymes may serve different biological purposes in different organisms.


Asunto(s)
Adenosina Trifosfato , Sitio Alostérico , Inosina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Inosina/metabolismo , Cinética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Dominio Catalítico , Regulación Alostérica , Cristalografía por Rayos X , Inosina Monofosfato/metabolismo , Modelos Moleculares , Conformación Proteica , Unión Proteica
11.
Nucleic Acids Res ; 52(8): 4627-4643, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38366554

RESUMEN

Ribosomal stalling induces the ribosome-associated quality control (RQC) pathway targeting aberrant polypeptides. RQC is initiated by K63-polyubiquitination of ribosomal protein uS10 located at the mRNA entrance of stalled ribosomes by the E3 ubiquitin ligase ZNF598 (Hel2 in yeast). Ubiquitinated ribosomes are dissociated by the ASC-1 complex (ASCC) (RQC-Trigger (RQT) complex in yeast). A cryo-EM structure of the ribosome-bound RQT complex suggested the dissociation mechanism, in which the RNA helicase Slh1 subunit of RQT (ASCC3 in mammals) applies a pulling force on the mRNA, inducing destabilizing conformational changes in the 40S subunit, whereas the collided ribosome acts as a wedge, promoting subunit dissociation. Here, using an in vitro reconstitution approach, we found that ribosomal collision is not a strict prerequisite for ribosomal ubiquitination by ZNF598 or for ASCC-mediated ribosome release. Following ubiquitination by ZNF598, ASCC efficiently dissociated all polysomal ribosomes in a stalled queue, monosomes assembled in RRL, in vitro reconstituted 80S elongation complexes in pre- and post-translocated states, and 48S initiation complexes, as long as such complexes contained ≥ 30-35 3'-terminal mRNA nt. downstream from the P site and sufficiently long ubiquitin chains. Dissociation of polysomes and monosomes both involved ribosomal splitting, enabling Listerin-mediated ubiquitination of 60S-associated nascent chains.


Asunto(s)
Ribosomas , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras , Proteínas de Unión al GTP , Polirribosomas/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Humanos
12.
Nucleic Acids Res ; 52(9): 5376-5391, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38412299

RESUMEN

The RNA helicase UPF1 interacts with mRNAs, mRNA decay machinery, and the terminating ribosome to promote nonsense-mediated mRNA decay (NMD). Structural and biochemical data have revealed that UPF1 exists in an enzymatically autoinhibited 'closed' state. Upon binding the NMD protein UPF2, UPF1 undergoes an extensive conformational change into a more enzymatically active 'open' state, which exhibits enhanced ATPase and helicase activity. However, mechanically deficient UPF1 mutants (i.e. poorly processive, slow, and mechanochemically uncoupled) can support efficient NMD, bringing into question the roles of UPF1 enzymatic autoinhibition and activation in NMD. Here, we identify two additional important features of the activated open state: slower RNA binding kinetics and enhanced ATP-stimulated RNA dissociation kinetics. Computational modeling based on empirical measurements of UPF1, UPF2 and RNA interaction kinetics predicts that the majority of UPF1-RNA binding and dissociation events in cells occur independently of UPF2 binding. We find that UPF1 mutants with either reduced or accelerated dissociation from RNA have NMD defects, whereas UPF1 mutants that are more dependent on UPF2 for catalytic activity remain active on well-established NMD targets. These findings support a model in which the kinetics of UPF1-mRNA interactions are important determinants of cellular NMD efficiency.


Asunto(s)
Adenosina Trifosfatasas , Degradación de ARNm Mediada por Codón sin Sentido , Unión Proteica , ARN Helicasas , ARN Mensajero , ARN Helicasas/metabolismo , ARN Helicasas/genética , Cinética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transactivadores/metabolismo , Transactivadores/genética , Mutación , Humanos , Adenosina Trifosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
13.
J Biol Chem ; 300(2): 105609, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159851

RESUMEN

A superfamily of proteins called cysteine transmembrane is widely distributed across eukaryotes. These small proteins are characterized by the presence of a conserved motif at the C-terminal region, rich in cysteines, that has been annotated as a transmembrane domain. Orthologs of these proteins have been involved in resistance to pathogens and metal detoxification. The yeast members of the family are YBR016W, YDL012C, YDR034W-B, and YDR210W. Here, we begin the characterization of these proteins at the molecular level and show that Ybr016w, Ydr034w-b, and Ydr210w are palmitoylated proteins. Protein S-acylation or palmitoylation, is a posttranslational modification that consists of the addition of long-chain fatty acids to cysteine residues. We provide evidence that Ybr016w, Ydr210w, and Ydr034w-b are localized to the plasma membrane and exhibit varying degrees of polarity toward the daughter cell, which is dependent on endocytosis and recycling. We suggest the names CPP1, CPP2, and CPP3 (C terminally palmitoylated protein) for YBR016W, YDR210W, and YDR034W-B, respectively. We show that palmitoylation is responsible for the binding of these proteins to the membrane indicating that the cysteine transmembrane on these proteins is not a transmembrane domain. We propose renaming the C-terminal cysteine-rich domain as cysteine-rich palmitoylated domain. Loss of the palmitoyltransferase Erf2 leads to partial degradation of Ybr016w (Cpp1), whereas in the absence of the palmitoyltransferase Akr1, members of this family are completely degraded. For Cpp1, we show that this degradation occurs via the proteasome in an Rsp5-dependent manner, but is not exclusively due to a lack of Cpp1 palmitoylation.


Asunto(s)
Cisteína , Lipoilación , Proteínas de Saccharomyces cerevisiae , Cisteína/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Unión Proteica , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteolisis , Análisis Mutacional de ADN , Dominios Proteicos
14.
J Biol Chem ; 299(12): 105417, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918807

RESUMEN

In Saccharomyces cerevisiae, the transcriptional repressor Opi1 regulates the expression of genes involved in phospholipid synthesis responding to the abundance of the phospholipid precursor phosphatidic acid at the endoplasmic reticulum. We report here the identification of the conserved leucine zipper (LZ) domain of Opi1 as a hot spot for gain of function mutations and the characterization of the strongest variant identified, Opi1N150D. LZ modeling posits asparagine 150 embedded on the hydrophobic surface of the zipper and specifying dynamic parallel homodimerization by allowing electrostatic bonding across the hydrophobic dimerization interface. Opi1 variants carrying any of the other three ionic residues at amino acid 150 were also repressing. Genetic analyses showed that Opi1N150D variant is dominant, and its phenotype is attenuated when loss of function mutations identified in the other two conserved domains are present in cis. We build on the notion that membrane binding facilitates LZ dimerization to antagonize an intramolecular interaction of the zipper necessary for repression. Dissecting Opi1 protein in three polypeptides containing each conserved region, we performed in vitro analyses to explore interdomain interactions. An Opi11-190 probe interacted with Opi1291-404, the C terminus that bears the activator interacting domain (AID). LZ or AID loss of function mutations attenuated the interaction of the probes but was unaffected by the N150D mutation. We propose a model for Opi1 signal transduction whereby synergy between membrane-binding events and LZ dimerization antagonizes intramolecular LZ-AID interaction and transcriptional repression.


Asunto(s)
Leucina Zippers , Fosfolípidos , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Fosfolípidos/biosíntesis , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Multimerización de Proteína
15.
Nucleic Acids Res ; 51(19): 10326-10343, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37738162

RESUMEN

Chromatin remodelers use a helicase-type ATPase motor to shift DNA around the histone core. Although not directly reading out the DNA sequence, some chromatin remodelers exhibit a sequence-dependent bias in nucleosome positioning, which presumably reflects properties of the DNA duplex. Here, we show how nucleosome positioning by the Chd1 remodeler is influenced by local DNA perturbations throughout the nucleosome footprint. Using site-specific DNA cleavage coupled with next-generation sequencing, we show that nucleosomes shifted by Chd1 can preferentially localize DNA perturbations - poly(dA:dT) tracts, DNA mismatches, and single-nucleotide insertions - about a helical turn outside the Chd1 motor domain binding site, super helix location 2 (SHL2). This phenomenon occurs with both the Widom 601 positioning sequence and the natural +1 nucleosome sequence from the Saccharomyces cerevisiae SWH1 gene. Our modeling indicates that localization of DNA perturbations about a helical turn outward from SHL2 results from back-and-forth sliding due to remodeler action on both sides of the nucleosome. Our results also show that barrier effects from DNA perturbations can be extended by the strong phasing of nucleosome positioning sequences.


Asunto(s)
Proteínas de Unión al ADN , Nucleosomas , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfato/química , Ensamble y Desensamble de Cromatina , Nucleosomas/química , Nucleosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo
16.
Nat Commun ; 14(1): 5942, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741838

RESUMEN

The double-ring AAA+ ATPase Pex1/Pex6 is required for peroxisomal receptor recycling and is essential for peroxisome formation. Pex1/Pex6 mutations cause severe peroxisome associated developmental disorders. Despite its pathophysiological importance, mechanistic details of the heterohexamer are not yet available. Here, we report cryoEM structures of Pex1/Pex6 from Saccharomyces cerevisiae, with an endogenous protein substrate trapped in the central pore of the catalytically active second ring (D2). Pairs of Pex1/Pex6(D2) subdomains engage the substrate via a staircase of pore-1 loops with distinct properties. The first ring (D1) is catalytically inactive but undergoes significant conformational changes resulting in alternate widening and narrowing of its pore. These events are fueled by ATP hydrolysis in the D2 ring and disengagement of a "twin-seam" Pex1/Pex6(D2) heterodimer from the staircase. Mechanical forces are propagated in a unique manner along Pex1/Pex6 interfaces that are not available in homo-oligomeric AAA-ATPases. Our structural analysis reveals the mechanisms of how Pex1 and Pex6 coordinate to achieve substrate translocation.


Asunto(s)
Peroxisomas , ATPasas de Translocación de Protón , Proteínas de Saccharomyces cerevisiae , ATPasas Asociadas con Actividades Celulares Diversas/genética , Microscopía por Crioelectrón , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
17.
Biomol NMR Assign ; 17(2): 239-242, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37589820

RESUMEN

Molecular chaperones aid proteins to fold and assemble without modifying their final structure, requiring, in several folding processes, the interplay between members of the Hsp70 and Hsp40 families. Here, we report the NMR chemical shift assignments for 1 H, 15 N, and 13 C nuclei of the backbone and side chains of the J-domain of the class B Hsp40 from Saccharomyces cerevisiae, Sis1, complexed with the C-terminal EEVD motif of Hsp70. The data revealed information on the structure and backbone dynamics that add significantly to the understanding of the J-domain-Hsp70-EEVD mechanism of interaction.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Unión Proteica , Resonancia Magnética Nuclear Biomolecular , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Péptidos/química
18.
J Struct Biol ; 215(3): 108006, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507029

RESUMEN

Eukaryotic initiation factor 2 (eIF2) plays a key role in protein synthesis and in its regulation. The assembly of this heterotrimeric factor is facilitated by Cdc123, a member of the ATP grasp family that binds the γ subunit of eIF2. Notably, some mutations related to MEHMO syndrome, an X-linked intellectual disability, affect Cdc123-mediated eIF2 assembly. The mechanism of action of Cdc123 is unclear and structural information for the human protein is awaited. Here, the crystallographic structure of human Cdc123 (Hs-Cdc123) bound to domain 3 of human eIF2γ (Hs-eIF2γD3) was determined. The structure shows that the domain 3 of eIF2γ is bound to domain 1 of Cdc123. In addition, the long C-terminal region of Hs-Cdc123 provides a link between the ATP and Hs-eIF2γD3 binding sites. A thermal shift assay shows that ATP is tightly bound to Cdc123 whereas the affinity of ADP is much smaller. Yeast cell viability experiments, western blot analysis and two-hybrid assays show that ATP is important for the function of Hs-Cdc123 in eIF2 assembly. These data and recent findings allow us to propose a refined model to explain the mechanism of action of Cdc123 in eIF2 assembly.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Proteínas de Saccharomyces cerevisiae , Humanos , Adenosina Trifosfato/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
19.
J Chem Inf Model ; 63(13): 4180-4189, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37379492

RESUMEN

The spliceosome machinery catalyzes precursor-messenger RNA (pre-mRNA) splicing by undergoing at each splicing cycle assembly, activation, catalysis, and disassembly processes, thanks to the concerted action of specific RNA-dependent ATPases/helicases. Prp2, a member of the DExH-box ATPase/helicase family, harnesses the energy of ATP hydrolysis to translocate a single pre-mRNA strand in the 5' to 3' direction, thus promoting spliceosome remodeling to its catalytic-competent state. Here, we established the functional coupling between ATPase and helicase activities of Prp2. Namely, extensive multi-µs molecular dynamics simulations allowed us to unlock how, after pre-mRNA selection, ATP binding, hydrolysis, and dissociation induce a functional typewriter-like rotation of the Prp2 C-terminal domain. This movement, endorsed by an iterative swing of interactions established between specific Prp2 residues with the nucleobases at 5'- and 3'-ends of pre-mRNA, promotes pre-mRNA translocation. Notably, some of these Prp2 residues are conserved in the DExH-box family, suggesting that the translocation mechanism elucidated here may be applicable to all DExH-box helicases.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Empalmosomas , Empalmosomas/química , Empalmosomas/genética , Empalmosomas/metabolismo , Precursores del ARN/genética , Precursores del ARN/análisis , Precursores del ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Simulación de Dinámica Molecular , ARN Helicasas DEAD-box/genética , Adenosina Trifosfatasas , Adenosina Trifosfato/metabolismo
20.
J Mol Biol ; 435(17): 168184, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348754

RESUMEN

Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.


Asunto(s)
Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA