Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.909
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Agric Food Chem ; 72(26): 14975-14983, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38898562

RESUMEN

Enniatins (ENNs) A1 and B1, previously considered ionophores, are emerging mycotoxins with effects on Ca2+ homeostasis. However, their exact mechanism of action remains unclear. This study investigated how these toxins affect Ca2+ flux in SH-SY5Y cells. ENN A1 induced Ca2+ influx through store-operated channels (SOC). The mitochondrial uncoupler FCCP reduced this influx, suggesting that the mitochondrial status influences the toxin effect. Conversely, ENN B1 did not affect SOC but acted on another Ca2+ channel, as shown when nickel, which directly blocks the Ca2+ channel pore, is added. Mitochondrial function also influenced the effects of ENN B1, as treatment with FCCP reduced toxin-induced Ca2+ depletion and uptake. In addition, both ENNs altered mitochondrial function by producing the opening of the mitochondrial permeability transition pore. This study describes for the first time that ENN A1 and B1 are not Ca2+ ionophores and suggests a different mechanism of action for each toxin.


Asunto(s)
Calcio , Depsipéptidos , Mitocondrias , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Calcio/metabolismo , Humanos , Depsipéptidos/farmacología , Micotoxinas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Línea Celular Tumoral
2.
Mol Med ; 30(1): 77, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840035

RESUMEN

BACKGROUND: Ischemic stroke presents a significant threat to human health due to its high disability rate and mortality. Currently, the clinical treatment drug, rt-PA, has a narrow therapeutic window and carries a high risk of bleeding. There is an urgent need to find new effective therapeutic drugs for ischemic stroke. Icariin (ICA), a key ingredient in the traditional Chinese medicine Epimedium, undergoes metabolism in vivo to produce Icaritin (ICT). While ICA has been reported to inhibit neuronal apoptosis after cerebral ischemia-reperfusion (I/R), yet its underlying mechanism remains unclear. METHODS: PC-12 cells were treated with 200 µM H2O2 for 8 h to establish a vitro model of oxidative damage. After administration of ICT, cell viability was detected by Thiazolyl blue tetrazolium Bromide (MTT) assay, reactive oxygen species (ROS) and apoptosis level, mPTP status and mitochondrial membrane potential (MMP) were detected by flow cytometry and immunofluorescence. Apoptosis and mitochondrial permeability transition pore (mPTP) related proteins were assessed by Western blotting. Middle cerebral artery occlusion (MCAO) model was used to establish I/R injury in vivo. After the treatment of ICA, the neurological function was scored by ZeaLonga socres; the infarct volume was observed by 2,3,5-Triphenyltetrazolium chloride (TTC) staining; HE and Nissl staining were used to detect the pathological state of the ischemic cortex; the expression changes of mPTP and apoptosis related proteins were detected by Western blotting. RESULTS: In vitro: ICT effectively improved H2O2-induced oxidative injury through decreasing the ROS level, inhibiting mPTP opening and apoptosis. In addition, the protective effects of ICT were not enhanced when it was co-treated with mPTP inhibitor Cyclosporin A (CsA), but reversed when combined with mPTP activator Lonidamine (LND). In vivo: Rats after MCAO shown cortical infarct volume of 32-40%, severe neurological impairment, while mPTP opening and apoptosis were obviously increased. Those damage caused was improved by the administration of ICA and CsA. CONCLUSIONS: ICA improves cerebral ischemia-reperfusion injury by inhibiting mPTP opening, making it a potential candidate drug for the treatment of ischemic stroke.


Asunto(s)
Apoptosis , Flavonoides , Accidente Cerebrovascular Isquémico , Potencial de la Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Estrés Oxidativo , Especies Reactivas de Oxígeno , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Flavonoides/farmacología , Flavonoides/uso terapéutico , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Apoptosis/efectos de los fármacos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/etiología , Células PC12 , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Masculino , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas Sprague-Dawley
3.
Drug Des Devel Ther ; 18: 2203-2213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882047

RESUMEN

Mitochondrial carrier homolog 2 (MTCH2) is a member of the solute carrier 25 family, located on the outer mitochondrial membrane. MTCH2 was first identified in 2000. The development in MTCH2 research is rapidly increasing. The most well-known role of MTCH2 is linking to the pro-apoptosis BID to facilitate mitochondrial apoptosis. Genetic variants in MTCH2 have been investigated for their association with metabolic and neurodegenerative diseases, however, no intervention or therapeutic suggestions were provided. Recent studies revealed the physiological and pathological function of MTCH2 in metabolic diseases, neurodegenerative diseases, cancers, embryonic development and reproduction via regulating mitochondrial apoptosis, metabolic shift between glycolysis and oxidative phosphorylation, mitochondrial fusion/fission, epithelial-mesenchymal transition, etc. This review endeavors to assess a total of 131 published articles to summarise the structure and physiological/pathological role of MTCH2, which has not previously been conducted. This review concludes that MTCH2 plays a crucial role in metabolic diseases, neurodegenerative diseases, cancers, embryonic development and reproduction, and the predominant molecular mechanism is regulation of mitochondrial function. This review gives a comprehensive state of current knowledgement on MTCH2, which will promote the therapeutic research of MTCH2.


Asunto(s)
Desarrollo Embrionario , Enfermedades Metabólicas , Neoplasias , Enfermedades Neurodegenerativas , Reproducción , Humanos , Enfermedades Neurodegenerativas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Metabólicas/metabolismo , Animales , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731874

RESUMEN

The mitochondrial protein IF1 is upregulated in many tumors and acts as a pro-oncogenic protein through its interaction with the ATP synthase and the inhibition of apoptosis. We have recently characterized the molecular nature of the IF1-Oligomycin Sensitivity Conferring Protein (OSCP) subunit interaction; however, it remains to be determined whether this interaction could be targeted for novel anti-cancer therapeutic intervention. We generated mitochondria-targeting peptides to displace IF1 from the OSCP interaction. The use of one selective peptide led to displacement of the inhibitor IF1 from ATP synthase, as shown by immunoprecipitation. NMR spectroscopy analysis, aimed at clarifying whether these peptides were able to directly bind to the OSCP protein, identified a second peptide which showed affinity for the N-terminal region of this subunit overlapping the IF1 binding region. In situ treatment with the membrane-permeable derivatives of these peptides in HeLa cells, that are silenced for the IF1 inhibitor protein, showed significant inhibition in mitochondrial permeability transition and no effects on mitochondrial respiration. These peptides mimic the effects of the IF1 inhibitor protein in cancer HeLa cells and confirm that the IF1-OSCP interaction inhibits apoptosis. A third peptide was identified which counteracts the anti-apoptotic role of IF1, showing that OSCP is a promising target for anti-cancer therapies.


Asunto(s)
Mitocondrias , ATPasas de Translocación de Protón Mitocondriales , Péptidos , Humanos , Apoptosis/efectos de los fármacos , Proteína Inhibidora ATPasa/efectos de los fármacos , Proteína Inhibidora ATPasa/metabolismo , Células HeLa , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/antagonistas & inhibidores , Péptidos/farmacología , Péptidos/química , Péptidos/metabolismo , Unión Proteica
5.
Circ Res ; 135(1): 26-40, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38747181

RESUMEN

BACKGROUND: Calcium (Ca2+) uptake by mitochondria occurs via the mitochondrial Ca2+ uniporter. Mitochondrial Ca2+ uniporter exists as a complex, regulated by 3 MICU (mitochondrial Ca2+ uptake) proteins localized in the intermembrane space: MICU1, MICU2, and MICU3. Although MICU3 is present in the heart, its role is largely unknown. METHODS: We used CRISPR-Cas9 to generate a mouse with global deletion of MICU3 and an adeno-associated virus (AAV9) to overexpress MICU3 in wild-type mice. We examined the role of MICU3 in regulating mitochondrial calcium ([Ca2+]m) in ex vivo hearts using an optical method following adrenergic stimulation in perfused hearts loaded with a Ca2+-sensitive fluorophore. Additionally, we studied how deletion and overexpression of MICU3, respectively, impact cardiac function in vivo by echocardiography and the molecular composition of the mitochondrial Ca2+ uniporter complex via Western blot, immunoprecipitation, and Blue native-PAGE analysis. Finally, we measured MICU3 expression in failing human hearts. RESULTS: MICU3 knock out hearts and cardiomyocytes exhibited a significantly smaller increase in [Ca2+]m than wild-type hearts following acute isoproterenol infusion. In contrast, heart with overexpression of MICU3 exhibited an enhanced increase in [Ca2+]m compared with control hearts. Echocardiography analysis showed no significant difference in cardiac function in knock out MICU3 mice relative to wild-type mice at baseline. However, mice with overexpression of MICU3 exhibited significantly reduced ejection fraction and fractional shortening compared with control mice. We observed a significant increase in the ratio of heart weight to tibia length in hearts with overexpression of MICU3 compared with controls, consistent with hypertrophy. We also found a significant decrease in MICU3 protein and expression in failing human hearts. CONCLUSIONS: Our results indicate that increased and decreased expression of MICU3 enhances and reduces, respectively, the uptake of [Ca2+]m in the heart. We conclude that MICU3 plays an important role in regulating [Ca2+]m physiologically, and overexpression of MICU3 is sufficient to induce cardiac hypertrophy, making MICU3 a possible therapeutic target.


Asunto(s)
Proteínas de Unión al Calcio , Calcio , Ratones Noqueados , Mitocondrias Cardíacas , Proteínas de Transporte de Membrana Mitocondrial , Miocitos Cardíacos , Animales , Humanos , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Mitocondrias Cardíacas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Masculino , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Calcio/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/genética , Ratones Endogámicos C57BL , Canales de Calcio/metabolismo , Canales de Calcio/genética , Señalización del Calcio , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Femenino
6.
Cell Mol Life Sci ; 81(1): 236, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795203

RESUMEN

Chemoresistance is the main obstacle in the clinical treatment of osteosarcoma (OS). In this study, we investigated the role of EF-hand domain-containing protein 1 (EFHD1) in OS chemotherapy resistance. We found that the expression of EFHD1 was highly correlated with the clinical outcome after chemotherapy. We overexpressed EFHD1 in 143B cells and found that it increased their resistance to cell death after drug treatment. Conversely, knockdown of EFHD1 in 143BR cells (a cisplatin-less-sensitive OS cell line derived from 143B cells) increased their sensitivity to treatment. Mechanistically, EFHD1 bound to adenine nucleotide translocase-3 (ANT3) and inhibited its conformational change, thereby inhibiting the opening of the mitochondrial membrane permeability transition pore (mPTP). This effect could maintain mitochondrial function, thereby favoring OS cell survival. The ANT3 conformational inhibitor carboxyatractyloside (CATR), which can promote mPTP opening, enhanced the chemosensitivity of EFHD1-overexpressing cells when combined with cisplatin. The ANT3 conformational inhibitor bongkrekic acid (BKA), which can inhibit mPTP opening, restored the resistance of EFHD1 knockdown cells. In conclusion, our results suggest that EFHD1-ANT3-mPTP might be a promising target for OS therapy in the future.


Asunto(s)
Proliferación Celular , Cisplatino , Resistencia a Antineoplásicos , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Osteosarcoma , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Línea Celular Tumoral , Cisplatino/farmacología , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Translocador 3 del Nucleótido Adenina/metabolismo , Translocador 3 del Nucleótido Adenina/genética , Antineoplásicos/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Ratones , Unión Proteica
7.
Circ Res ; 134(10): 1292-1305, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38618716

RESUMEN

BACKGROUND: During myocardial ischemia/reperfusion (I/R) injury, high levels of matrix Ca2+ and reactive oxygen species (ROS) induce the opening of the mitochondrial permeability transition pore (mPTP), which causes mitochondrial dysfunction and ultimately necrotic death. However, the mechanisms of how these triggers individually or cooperatively open the pore have yet to be determined. METHODS: Here, we use a combination of isolated mitochondrial assays and in vivo I/R surgery in mice. We challenged isolated liver and heart mitochondria with Ca2+, ROS, and Fe2+ to induce mitochondrial swelling. Using inhibitors of the mPTP (cyclosporine A or ADP) lipid peroxidation (ferrostatin-1, MitoQ), we determined how the triggers elicit mitochondrial damage. Additionally, we used the combination of inhibitors during I/R injury in mice to determine if dual inhibition of these pathways is additivity protective. RESULTS: In the absence of Ca2+, we determined that ROS fails to trigger mPTP opening. Instead, high levels of ROS induce mitochondrial dysfunction and rupture independently of the mPTP through lipid peroxidation. As expected, Ca2+ in the absence of ROS induces mPTP-dependent mitochondrial swelling. Subtoxic levels of ROS and Ca2+ synergize to induce mPTP opening. Furthermore, this synergistic form of Ca2+- and ROS-induced mPTP opening persists in the absence of CypD (cyclophilin D), suggesting the existence of a CypD-independent mechanism for ROS sensitization of the mPTP. These ex vivo findings suggest that mitochondrial dysfunction may be achieved by multiple means during I/R injury. We determined that dual inhibition of the mPTP and lipid peroxidation is significantly more protective against I/R injury than individually targeting either pathway alone. CONCLUSIONS: In the present study, we have investigated the relationship between Ca2+ and ROS, and how they individually or synergistically induce mitochondrial swelling. Our findings suggest that Ca2+ mediates mitochondrial damage through the opening of the mPTP, although ROS mediates its damaging effects through lipid peroxidation. However, subtoxic levels both Ca2+ and ROS can induce mPTP-mediated mitochondrial damage. Targeting both of these triggers to preserve mitochondria viability unveils a highly effective therapeutic approach for mitigating I/R injury.


Asunto(s)
Peroxidación de Lípido , Ratones Endogámicos C57BL , Mitocondrias Cardíacas , Mitocondrias Hepáticas , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica , Especies Reactivas de Oxígeno , Animales , Peroxidación de Lípido/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Mitocondrias Hepáticas/efectos de los fármacos , Calcio/metabolismo , Dilatación Mitocondrial/efectos de los fármacos
8.
Free Radic Res ; 58(4): 261-275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38599240

RESUMEN

Iron is essential for all the lives and mitochondria integrate iron into heme and Fe-S clusters for diverse use as cofactors. Here, we screened mitochondrial proteins in KU812 human chronic myelogenous leukemia cells by glutathione S-transferase pulldown assay with PCBP2 to identify mitochondrial receptors for PCBP2, a major cytosolic Fe(II) chaperone. LC-MS analyses identified TOM20, sideroflexin-3 (SFXN3), SFXN1 and TOM70 in the affinity-score sequence. Stimulated emission depletion microscopy and proteinase-K digestion of mitochondria in HeLa cells revealed that TOM20 is located in the outer membrane of mitochondria whereas SFXN3 is located in the inner membrane. Although direct association was not observed between PCBP2 and SFXN3 with co-immunoprecipitation, proximity ligation assay demonstrated proximal localization of PCBP2 with TOM20 and there was a direct binding between TOM20 and SFXN3. Single knockdown either of PCBP2 and SFXN3 in K562 leukemia cells significantly decreased mitochondrial catalytic Fe(II) and mitochondrial maximal respiration. SFXN3 but not MFRN1 knockout (KO) in mouse embryonic fibroblasts decreased FBXL5 and heme oxygenase-1 (HO-1) but increased transferrin uptake and induced ferritin, indicating that mitochondrial iron entry through SFXN3 is distinct. MFRN1 KO revealed more intense mitochondrial Fe(II) deficiency than SFXN3 KO. Insufficient mitochondrial heme synthesis was evident under iron overload both with SFXN3 and MFRN KO, which was partially reversed by HO-1 inhibitor. Conversely, SFXN3 overexpression caused cytosolic iron deficiency with mitochondrial excess Fe(II), which further sensitized HeLa cells to RSL3-induced ferroptosis. In conclusion, we discovered a novel pathway of iron entry into mitochondria from cytosol through PCBP2-TOM20-SFXN3 axis.


Asunto(s)
Hierro , Mitocondrias , Proteínas de Unión al ARN , Humanos , Mitocondrias/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Hierro/metabolismo , Animales , Receptores de Superficie Celular/metabolismo , Ratones , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Células HeLa , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/genética
9.
Biochem Soc Trans ; 52(2): 911-922, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629718

RESUMEN

To date, there is no general physical model of the mechanism by which unfolded polypeptide chains with different properties are imported into the mitochondria. At the molecular level, it is still unclear how transit polypeptides approach, are captured by the protein translocation machinery in the outer mitochondrial membrane, and how they subsequently cross the entropic barrier of a protein translocation pore to enter the intermembrane space. This deficiency has been due to the lack of detailed structural and dynamic information about the membrane pores. In this review, we focus on the recently determined sub-nanometer cryo-EM structures and our current knowledge of the dynamics of the mitochondrial two-pore outer membrane protein translocation machinery (TOM core complex), which provide a starting point for addressing the above questions. Of particular interest are recent discoveries showing that the TOM core complex can act as a mechanosensor, where the pores close as a result of interaction with membrane-proximal structures. We highlight unusual and new correlations between the structural elements of the TOM complexes and their dynamic behavior in the membrane environment.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Transporte de Proteínas , Microscopía por Crioelectrón/métodos , Humanos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Modelos Moleculares , Conformación Proteica , Animales
10.
Cancer Lett ; 590: 216847, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38583647

RESUMEN

Tamoxifen (TAM) resistance presents a major clinical obstacle in the management of estrogen-sensitive breast cancer, highlighting the need to understand the underlying mechanisms and potential therapeutic approaches. We showed that dysregulated mitochondrial dynamics were involved in TAM resistance by protecting against mitochondrial apoptosis. The dysregulated mitochondrial dynamics were associated with increased mitochondrial fusion and decreased fission, thus preventing the release of mitochondrial cytochrome c to the cytoplasm following TAM treatment. Dynamin-related GTPase protein mitofusin 1 (MFN1), which promotes fusion, was upregulated in TAM-resistant cells, and high MFN1 expression indicated a poor prognosis in TAM-treated patients. Mitochondrial translocation of MFN1 and interaction between MFN1 and mitofusin 2 (MFN2) were enhanced to promote mitochondrial outer membrane fusion. The interaction of MFN1 and cristae-shaping protein optic atrophy 1 (OPA1) and OPA1 oligomerization were reduced due to augmented OPA1 proteolytic cleavage, and their apoptosis-promoting function was reduced due to cristae remodeling. Furthermore, the interaction of MFN1 and BAK were increased, which restrained BAK activation following TAM treatment. Knockdown or pharmacological inhibition of MFN1 blocked mitochondrial fusion, restored BAK oligomerization and cytochrome c release, and amplified activation of caspase-3/9, thus sensitizing resistant cells to apoptosis and facilitating the therapeutic effects of TAM both in vivo and in vitro. Conversely, overexpression of MFN1 alleviated TAM-induced mitochondrial apoptosis and promoted TAM resistance in sensitive cells. These results revealed that dysregulated mitochondrial dynamics contributes to the development of TAM resistance, suggesting that targeting MFN1-mediated mitochondrial fusion is a promising strategy to circumvent TAM resistance.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Resistencia a Antineoplásicos , GTP Fosfohidrolasas , Dinámicas Mitocondriales , Tamoxifeno , Humanos , Tamoxifeno/farmacología , Dinámicas Mitocondriales/efectos de los fármacos , Apoptosis/efectos de los fármacos , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Animales , Ratones , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular Tumoral , Antineoplásicos Hormonales/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Células MCF-7 , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Nat Prod ; 87(4): 1187-1196, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38632902

RESUMEN

Psammaplins are sulfur containing bromotyrosine alkaloids that have shown antitumor activity through the inhibition of class I histone deacetylases (HDACs). The cytotoxic properties of psammaplin A (1), the parent compound, are related to peroxisome proliferator-activated receptor γ (PPARγ) activation, but the mechanism of action of its analogs psammaplin K (2) and bisaprasin (3) has not been elucidated. In this study, the protective effects against oxidative stress of compounds 1-3, isolated from the sponge Aplysinella rhax, were evaluated in SH-SY5Y cells. The compounds improved cell survival, recovered glutathione (GSH) content, and reduced reactive oxygen species (ROS) release at nanomolar concentrations. Psammaplins restored mitochondrial membrane potential by blocking mitochondrial permeability transition pore opening and reducing cyclophilin D expression. This effect was mediated by the capacity of 1-3 to activate PPARγ, enhancing gene expression of the antioxidant enzymes catalase, nuclear factor E2-related factor 2 (Nrf2), and glutathione peroxidase. Finally, HDAC3 activity was reduced by 1-3 under oxidative stress conditions. This work is the first description of the neuroprotective activity of 1 at low concentrations and the mechanism of action of 2 and 3. Moreover, it links for the first time the previously described effects of 1 in HDAC3 and PPARγ signaling, opening a new research field for the therapeutic potential of this compound family.


Asunto(s)
Disulfuros , Estrés Oxidativo , PPAR gamma , Tirosina/análogos & derivados , PPAR gamma/metabolismo , Estrés Oxidativo/efectos de los fármacos , Humanos , Animales , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Neuronas/efectos de los fármacos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Poríferos/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Glutatión/metabolismo , Alcaloides/farmacología , Alcaloides/química , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
12.
J Pharmacol Sci ; 155(2): 35-43, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677784

RESUMEN

Imeglimin is a novel oral antidiabetic drug for treating type 2 diabetes. However, the effect of imeglimin on NLRP3 inflammasome activation has not been investigated yet. Here, we aimed to investigate whether imeglimin reduces LPS-induced NLRP3 inflammasome activation in THP-1 macrophages and examine the associated underlying mechanisms. We analyzed the mRNA and protein expression levels of NLRP3 inflammasome components and IL-1ß secretion. Additionally, reactive oxygen species (ROS) generation, mitochondrial membrane potential, and mitochondrial permeability transition pore (mPTP) opening were measured by flow cytometry. Imeglimin inhibited NLRP3 inflammasome-mediated IL-1ß production in LPS-stimulated THP-1-derived macrophages. In addition, imeglimin reduced LPS-induced mitochondrial ROS production and mitogen-activated protein kinase phosphorylation. Furthermore, imeglimin restored the mitochondrial function by modulating mitochondrial membrane depolarization and mPTP opening. We demonstrated for the first time that imeglimin reduces LPS-induced NLRP3 inflammasome activation by inhibiting mPTP opening in THP-1 macrophages. These results suggest that imeglimin could be a promising new anti-inflammatory agent for treating diabetic complications.


Asunto(s)
Inflamasomas , Macrófagos , Mitocondrias , Triazinas , Humanos , Antiinflamatorios/farmacología , Hipoglucemiantes/farmacología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Interleucina-1beta/metabolismo , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células THP-1 , Triazinas/farmacología
13.
J Pediatr Gastroenterol Nutr ; 78(2): 178-187, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374571

RESUMEN

Citrin deficiency is an autosomal recessive metabolic liver disease caused by mutations in the SLC25A13 gene. The disease typically presents with cholestasis, elevated liver enzymes, hyperammonemia, hypercitrullinemia, and fatty liver in young infants, resulting in a phenotype known as "neonatal intrahepatic cholestasis caused by citrin deficiency" (NICCD). The diagnosis relies on clinical manifestation, biochemical evidence of hypercitrullinemia, and identifying mutations in the SLC25A13 gene. Several common mutations have been found in patients of East Asian background. The mainstay treatment is nutritional therapy in early infancy utilizing a lactose-free and medium-chain triglyceride formula. This approach leads to the majority of patients recovering liver function by 1 year of age. Some patients may remain asymptomatic or undiagnosed, but a small proportion of cases can progress to cirrhosis and liver failure, necessitating liver transplantation. Recently, advancements in newborn screening methods have improved the age of diagnosis. Early diagnosis and timely management improve patient outcomes. Further studies are needed to elucidate the long-term follow-up of NICCD patients into adolescence and adulthood.


Asunto(s)
Colestasis Intrahepática , Colestasis , Citrulinemia , Gastroenterología , Enfermedades del Recién Nacido , Transportadores de Anión Orgánico , Adolescente , Niño , Humanos , Lactante , Recién Nacido , Colestasis/diagnóstico , Colestasis/etiología , Colestasis/terapia , Colestasis Intrahepática/diagnóstico , Colestasis Intrahepática/etiología , Colestasis Intrahepática/terapia , Citrulinemia/complicaciones , Citrulinemia/diagnóstico , Citrulinemia/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Mutación , Transportadores de Anión Orgánico/genética
14.
Mol Cell ; 84(4): 616-618, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364779

RESUMEN

Two recent studies by Liu et al.1 in Science and Shi et al.2 in this issue of Molecular Cell identify a mitochondrial GSH-sensing mechanism that couples SLC25A39-mediated GSH import to iron metabolism, advancing our understanding of nutrient sensing within organelles.


Asunto(s)
Hierro , Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Glutatión/metabolismo , Hierro/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo
15.
Eur J Cell Biol ; 103(2): 151398, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38368729

RESUMEN

Naringenin (NRG) was characterized for its ability to counteract mitochondrial dysfunction which is linked to cardiovascular diseases. The F1FO-ATPase can act as a molecular target of NRG. The interaction of NRG with this enzyme can avoid the energy transmission mechanism of ATP hydrolysis, especially in the presence of Ca2+ cation used as cofactor. Indeed, NRG was a selective inhibitor of the hydrophilic F1 domain displaying a binding site overlapped with quercetin in the inside surface of an annulus made by the three α and the three ß subunits arranged alternatively in a hexamer. The kinetic constant of inhibition suggested that NRG preferred the enzyme activated by Ca2+ rather than the F1FO-ATPase activated by the natural cofactor Mg2+. From the inhibition type mechanism of NRG stemmed the possibility to speculate that NRG can prevent the activation of F1FO-ATPase by Ca2+. The event correlated to the protective role in the mitochondrial permeability transition pore opening by NRG as well as to the reduction of ROS production probably linked to the NRG chemical structure with antioxidant action. Moreover, in primary cerebral endothelial cells (ECs) obtained from stroke prone spontaneously hypertensive rats NRG had a protective effect on salt-induced injury by restoring cell viability and endothelial cell tube formation while also rescuing complex I activity.


Asunto(s)
Células Endoteliales , Flavanonas , Poro de Transición de la Permeabilidad Mitocondrial , Flavanonas/farmacología , Animales , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratas , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Ratas Endogámicas SHR , Cloruro de Sodio/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Calcio/metabolismo , ATPasas de Translocación de Protón/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
16.
Mol Carcinog ; 63(6): 1024-1037, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38411275

RESUMEN

Homologous recombination (HR) and poly ADP-ribosylation are partially redundant pathways for the repair of DNA damage in normal and cancer cells. In cell lines that are deficient in HR, inhibition of poly (ADP-ribose) polymerase (poly (ADP-ribose) polymerase [PARP]1/2) is a proven target with several PARP inhibitors (PARPis) currently in clinical use. Resistance to PARPi often develops, usually involving genetic alterations in DNA repair signaling cascades, but also metabolic rewiring particularly in HR-proficient cells. We surmised that alterations in metabolic pathways by cancer drugs such as Olaparib might be involved in the development of resistance to drug therapy. To test this hypothesis, we conducted a metabolism-focused clustered regularly interspaced short palindromic repeats knockout screen to identify genes that undergo alterations during the treatment of tumor cells with PARPis. Of about 3000 genes in the screen, our data revealed that mitochondrial pyruvate carrier 1 (MPC1) is an essential factor in desensitizing nonsmall cell lung cancer (NSCLC) lung cancer lines to PARP inhibition. In contrast to NSCLC lung cancer cells, triple-negative breast cancer cells do not exhibit such desensitization following MPC1 loss and reprogram the tricarboxylic acid cycle and oxidative phosphorylation pathways to overcome PARPi treatment. Our findings unveil a previously unknown synergistic response between MPC1 loss and PARP inhibition in lung cancer cells.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Pulmonares , Transportadores de Ácidos Monocarboxílicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Resistencia a Antineoplásicos/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Línea Celular Tumoral , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética
17.
J Cell Physiol ; 239(1): 193-211, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38164038

RESUMEN

The transcription factor methylated c-Myc heterodimerizes with MAX to modulate gene expression, and plays an important role in energy metabolism in kidney injury but the exact mechanism remains unclear. Mitochondrial solute transporter Slc25a24 imports ATP into mitochondria and is central to energy metabolism. Gene Expression Omnibus data analysis reveals Slc25a24 and c-Myc are consistently upregulated in all the acute kidney injury (AKI) cells. Pearson correlation analysis also shows that Slc25a24 and c-Myc are strongly correlated (⍴ > 0.9). Mutant arginine methylated c-Myc (R299A and R346A) reduced its combination with MAX when compared with the wild type of c-Myc. On the other hand, the Slc25a24 levels were also correspondingly reduced, which induced the downregulation of ATP production. The results promoted reactive oxygen species (ROS) production and mitophagy generation. The study revealed that the c-Myc overexpression manifested the most pronounced mitochondrial DNA depletion. Additionally, the varied levels of mitochondrial proteins like TIM23, TOM20, and PINK1 in each group, particularly the elevated levels of PINK1 in AKI model groups and lower levels of TIM23 and TOM20 in the c-Myc overexpression group, suggest potential disruptions in mitochondrial dynamics and homeostasis, indicating enhanced mitophagy or mitochondrial loss. Therefore, arginine-methylated c-Myc affects mouse kidney injury by regulating mitochondrial ATP and ROS, and mitophagy via Slc25a24.


Asunto(s)
Lesión Renal Aguda , Proteínas de Unión al Calcio , Proteínas de Transporte de Membrana Mitocondrial , Mitofagia , Proteínas Proto-Oncogénicas c-myc , Animales , Ratones , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo
18.
J Am Soc Nephrol ; 35(3): 281-298, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38200648

RESUMEN

SIGNIFICANCE STATEMENT: This study sheds light on the central role of adenine nucleotide translocase 2 (ANT2) in the pathogenesis of obesity-induced CKD. Our data demonstrate that ANT2 depletion in renal proximal tubule cells (RPTCs) leads to a shift in their primary metabolic program from fatty acid oxidation to aerobic glycolysis, resulting in mitochondrial protection, cellular survival, and preservation of renal function. These findings provide new insights into the underlying mechanisms of obesity-induced CKD and have the potential to be translated toward the development of targeted therapeutic strategies for this debilitating condition. BACKGROUND: The impairment in ATP production and transport in RPTCs has been linked to the pathogenesis of obesity-induced CKD. This condition is characterized by kidney dysfunction, inflammation, lipotoxicity, and fibrosis. In this study, we investigated the role of ANT2, which serves as the primary regulator of cellular ATP content in RPTCs, in the development of obesity-induced CKD. METHODS: We generated RPTC-specific ANT2 knockout ( RPTC-ANT2-/- ) mice, which were then subjected to a 24-week high-fat diet-feeding regimen. We conducted comprehensive assessment of renal morphology, function, and metabolic alterations of these mice. In addition, we used large-scale transcriptomics, proteomics, and metabolomics analyses to gain insights into the role of ANT2 in regulating mitochondrial function, RPTC physiology, and overall renal health. RESULTS: Our findings revealed that obese RPTC-ANT2-/- mice displayed preserved renal morphology and function, along with a notable absence of kidney lipotoxicity and fibrosis. The depletion of Ant2 in RPTCs led to a fundamental rewiring of their primary metabolic program. Specifically, these cells shifted from oxidizing fatty acids as their primary energy source to favoring aerobic glycolysis, a phenomenon mediated by the testis-selective Ant4. CONCLUSIONS: We propose a significant role for RPTC-Ant2 in the development of obesity-induced CKD. The nullification of RPTC-Ant2 triggers a cascade of cellular mechanisms, including mitochondrial protection, enhanced RPTC survival, and ultimately the preservation of kidney function. These findings shed new light on the complex metabolic pathways contributing to CKD development and suggest potential therapeutic targets for this condition.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Masculino , Animales , Ratones , Proteínas de Transporte de Membrana Mitocondrial , Fibrosis , Adenosina Trifosfato , Insuficiencia Renal Crónica/etiología
19.
Biomed Pharmacother ; 171: 116133, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198960

RESUMEN

Chronic Liver fibrosis may progress to liver cirrhosis and hepatocellular carcinoma (HCC), hence cause a substantial global burden. However, effective therapies for blocking fibrosis are still lacking. Although mesenchymal stem cells (MSCs) have been proven beneficial to liver regeneration after damage, the underlying mechanism of their therapeutic effects are not fully understood. Oxidative stress and mitochondrial functionality alteration directly contributes to the hepatocyte apoptosis and development of liver fibrosis. This study aims to elucidate the mechanism by which hUC-MSC alleviates liver fibrosis and mitochondrial dysfunction. RNA-sequencing was performed to characterize the transcriptomic changes after implantation of hUC-MSCs in mice with liver fibrosis. Next, western blot, RT-PCR, immunohistochemical and immunofluorescence staining were used to evaluate the expression of different genes in vitro and in vivo. Additionally, mitochondrial morphological and dynamic changes, ROS content, and ATP production were examined. Slc25a47, a newly identified liver-specific mitochondrial NAD+ transporter, was notably reduced in CCl4-treated mice and H2O2-stimulated hepatocytes. Conversely, hUC-MSCs increased the Slc25a47 expression and NAD+ level within mitochondria, thereby enhanced Sirt3 protein activity and alleviated mitochondrial dysfunction in the liver. Furthermore, Slc25a47 knockdown could partially abrogate the protective effects of hUC-MSCs on H2O2-induced mitochondrial fission and oxidative stress in hepatocytes. Our study illustrates that Slc25a47 is a key molecular for hUC-MSCs to improve liver fibrosis and regulates mitochondrial function through Sirt3 for the first time, and providing a theoretical basis for the clinical translation of hUC-MSCs transplantation in the treatment of patients with liver fibrosis/cirrhosis.


Asunto(s)
Cirrosis Hepática , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedades Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial , Sirtuina 3 , Animales , Humanos , Ratones , Peróxido de Hidrógeno/farmacología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/terapia , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , NAD/metabolismo , Transducción de Señal , Sirtuina 3/metabolismo , Cordón Umbilical/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA