Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 551
Filtrar
2.
Eur J Prev Cardiol ; 31(2): 191-202, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37793095

RESUMEN

AIMS: Diet quality might influence cardiometabolic health through epigenetic changes, but this has been little investigated in adults. Our aims were to identify cytosine-phosphate-guanine (CpG) dinucleotides associated with diet quality by conducting an epigenome-wide association study (EWAS) based on blood DNA methylation (DNAm) and to assess how diet-related CpGs associate with inherited susceptibility to cardiometabolic traits: body mass index (BMI), systolic blood pressure (SBP), triglycerides, type 2 diabetes (T2D), and coronary heart disease (CHD). METHODS AND RESULTS: Meta-EWAS including 5274 participants in four cohorts from Spain, the USA, and the UK. We derived three dietary scores (exposures) to measure adherence to a Mediterranean diet, to a healthy plant-based diet, and to the Dietary Approaches to Stop Hypertension. Blood DNAm (outcome) was assessed with the Infinium arrays Human Methylation 450K BeadChip and MethylationEPIC BeadChip. For each diet score, we performed linear EWAS adjusted for age, sex, blood cells, smoking and technical variables, and BMI in a second set of models. We also conducted Mendelian randomization analyses to assess the potential causal relationship between diet-related CpGs and cardiometabolic traits. We found 18 differentially methylated CpGs associated with dietary scores (P < 1.08 × 10-7; Bonferroni correction), of which 12 were previously associated with cardiometabolic traits. Enrichment analysis revealed overrepresentation of diet-associated genes in pathways involved in inflammation and cardiovascular disease. Mendelian randomization analyses suggested that genetically determined methylation levels corresponding to lower diet quality at cg02079413 (SNORA54), cg02107842 (MAST4), and cg23761815 (SLC29A3) were causally associated with higher BMI and at cg05399785 (WDR8) with greater SBP, and methylation levels associated with higher diet quality at cg00711496 (PRMT1) with lower BMI, T2D risk, and CHD risk and at cg0557921 (AHRR) with lower CHD risk. CONCLUSION: Diet quality in adults was related to differential methylation in blood at 18 CpGs, some of which related to cardiometabolic health.


We conducted a study to investigate the connection between diet quality, epigenetic changes, and cardiovascular health in adults. The study included 5274 participants from Spain, the USA, and the UK, combining data from four different cohorts. We assessed adherence to different healthy diets: Mediterranean style diet, plant-based diet, and Dietary Approaches to Stop Hypertension diet. We used advanced technology to analyse blood DNA methylation, which refers to chemical modifications in the DNA that can affect gene activity.We discovered 18 CpGs that showed differential methylation patterns related to the dietary scores. Importantly, 12 of these CpGs had previously been associated with cardiovascular disease or risk factors, suggesting a potential link between diet, epigenetic changes, and heart health. Some of the diet-related CpGs mapped to genes involved in pathways associated with cardiovascular disease. Moreover, using a method called Mendelian randomization, we found that several CpGs may have a causal association with body mass index, systolic blood pressure, and risk of type 2 diabetes and coronary heart disease.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Metilación de ADN , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Dieta , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética , Proteínas de Transporte de Nucleósidos/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética
3.
Shock ; 61(4): 527-540, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37752081

RESUMEN

ABSTRACT: Objective: Extracellular purines such as adenosine triphosphate (ATP), uridine triphosphate (UTP), and uridine diphosphate (UDP) and the ATP degradation product adenosine are biologically active signaling molecules, which accumulate at sites of metabolic stress in sepsis. They have potent immunomodulatory effects by binding to and activating P1 or adenosine and P2 receptors on the surface of leukocytes. Here we assessed the levels of extracellular purines, their receptors, metabolic enzymes, and cellular transporters in leukocytes of septic patients. Methods: Peripheral blood mononuclear cells (PBMCs), neutrophils, and plasma were isolated from blood obtained from septic patients and healthy control subjects. Ribonucleic acid was isolated from cells, and mRNA levels for purinergic receptors, enzymes, and transporters were measured. Adenosine triphosphate, UTP, UDP, and adenosine levels were evaluated in plasma. Results: Adenosine triphosphate levels were lower in septic patients than in healthy individuals, and levels of the other purines were comparable between the two groups. Levels of P1 and P2 receptors did not differ between the two patient groups. mRNA levels of ectonucleoside triphosphate diphosphohydrolase (NTPDase) 1 or CD39 increased, whereas those of NTPDase2, 3, and 8 decreased in PBMCs of septic patients when compared with healthy controls. CD73 mRNA was lower in PBMCs of septic than in healthy individuals. Equilibrative nucleoside transporter (ENT) 1 mRNA concentrations were higher and ENT2, 3, and 4 mRNA concentrations were lower in PBMCs of septic subjects when compared with healthy subjects. Concentrative nucleoside transporter (CNT) 1 mRNA levels were higher in PBMCs of septic versus healthy subjects, whereas the mRNA levels of CNT2, 3, and 4 did not differ. We failed to detect differences in mRNA levels of purinergic receptors, enzymes, and transporters in neutrophils of septic versus healthy subjects. Conclusion: Because CD39 degrades ATP to adenosine monophosphate (AMP), the lower ATP levels in septic individuals may be the result of increased CD39 expression. This increased degradation of ATP did not lead to increased adenosine levels, which may be explained by the decreased expression of CD73, which converts AMP to adenosine. Altogether, our results demonstrate differential regulation of components of the purinergic system in PBMCs during human sepsis.


Asunto(s)
Leucocitos Mononucleares , Sepsis , Humanos , Uridina Trifosfato/metabolismo , Leucocitos Mononucleares/metabolismo , Adenosina , Adenosina Trifosfato/metabolismo , Uridina Difosfato , Adenosina Monofosfato , Receptores Purinérgicos/metabolismo , ARN Mensajero , Proteínas de Transporte de Nucleósidos
4.
Exp Cell Res ; 434(2): 113892, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104646

RESUMEN

As a crucial gene associated with diseases, the SLC29A3 gene encodes the equilibrative nucleoside transporter 3 (ENT3). ENT3 plays an essential regulatory role in transporting intracellular hydrophilic nucleosides, nucleotides, hydrophilic anticancer and antiviral nucleoside drugs, energy metabolism, subcellular localization, protein stability, and signal transduction. The mutation and inactivation of SLC29A3 are intimately linked to the occurrence, development, and prognosis of various human tumors. Moreover, many hereditary human diseases, such as H syndrome, pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) syndrome, Faisalabad histiocytosis (FHC), are related to SLC29A3 mutations. This review explores the mechanisms of SLC29A3 mutations and expression alterations in inherited disorders and cancers. Additionally, we compile studies on the inhibition of ENT3, which may serve as an effective strategy to potentiate the anticancer activity of chemotherapy. Thus, the synopsis of genetics, permeant function and drug therapy of ENT3 provides a new theoretical and empirical foundation for the diagnosis, prognosis of evaluation and treatment of various related diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Histiocitosis , Neoplasias , Humanos , Nucleótidos/metabolismo , Mutación , Histiocitosis/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(49): e2309047120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011562

RESUMEN

PARP7 was reported to promote tumor growth in a cell-autonomous manner and by repressing the antitumor immune response. Nevertheless, the molecular mechanism of how PARP7-mediated ADP-ribosylation exerts these effects in cancer cells remains elusive. Here, we identified PARP7 as a nuclear and cysteine-specific mono-ADP-ribosyltransferase that modifies targets critical for regulating transcription, including the AP-1 transcription factor FRA1. Loss of FRA1 ADP-ribosylation via PARP7 inhibition by RBN-2397 or mutation of the ADP-ribosylation site C97 increased FRA1 degradation by the proteasome via PSMC3. The reduction in FRA1 protein levels promoted IRF1- and IRF3-dependent cytokine as well as proapoptotic gene expression, culminating in CASP8-mediated apoptosis. Furthermore, high PARP7 expression was indicative of the PARP7 inhibitor response in FRA1-positive lung and breast cancer cells. Collectively, our findings highlight the connected roles of PARP7 and FRA1 and emphasize the clinical potential of PARP7 inhibitors for FRA1-driven cancers.


Asunto(s)
ADP-Ribosilación , Neoplasias , Proteínas de Transporte de Nucleósidos , Proteínas Proto-Oncogénicas c-fos , Humanos , ADP Ribosa Transferasas/metabolismo , Apoptosis , Transformación Celular Neoplásica , Regulación de la Expresión Génica , Factor 1 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Neoplasias/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
6.
Blood ; 142(20): 1740-1751, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37738562

RESUMEN

Histiocytoses are inflammatory myeloid neoplasms often driven by somatic activating mutations in mitogen-activated protein kinase (MAPK) cascade genes. H syndrome is an inflammatory genetic disorder caused by germ line loss-of-function mutations in SLC29A3, encoding the lysosomal equilibrative nucleoside transporter 3 (ENT3). Patients with H syndrome are predisposed to develop histiocytosis, yet the mechanism is unclear. Here, through phenotypic, molecular, and functional analysis of primary cells from a cohort of patients with H syndrome, we reveal the molecular pathway leading to histiocytosis and inflammation in this genetic disorder. We show that loss of function of ENT3 activates nucleoside-sensing toll-like receptors (TLR) and downstream MAPK signaling, inducing cytokine secretion and inflammation. Importantly, MEK inhibitor therapy led to resolution of histiocytosis and inflammation in a patient with H syndrome. These results demonstrate a yet-unrecognized link between a defect in a lysosomal transporter and pathological activation of MAPK signaling, establishing a novel pathway leading to histiocytosis and inflammation.


Asunto(s)
Histiocitosis , Proteínas Quinasas Activadas por Mitógenos , Humanos , Histiocitosis/genética , Histiocitosis/patología , Mutación , Receptores Toll-Like , Inflamación/genética , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo
7.
Iran J Allergy Asthma Immunol ; 22(4): 405-408, 2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37767683

RESUMEN

Mutations in the SLC29A3 gene cause histiocytosis-lymphadenopathy plus (H) syndrome, a rare autosomal recessive genetic condition that affects numerous systems. We present a 7-year-old Syrian patient with pericardial effusion whose acute phase reactants did not decrease despite treatment. In order to emphasize the variety and raise awareness of H syndrome in the hopes of achieving an early diagnosis and appropriate treatment, molecular investigation of SLC29A3-related disorders is crucial. H syndrome is an uncommon genetic condition with a broad spectrum of phenotypes. Therefore, early genetic testing is essential for the accurate diagnosis of patients. Doctors should be aware of this condition and its symptoms and consider autoimmune diseases as a possible alternative diagnosis in patients with suspected immunodeficiency.


Asunto(s)
Enfermedades Autoinmunes , Histiocitosis , Síndromes de Inmunodeficiencia , Linfadenopatía , Humanos , Niño , Diagnóstico Diferencial , Síndromes de Inmunodeficiencia/diagnóstico , Histiocitosis/diagnóstico , Linfadenopatía/diagnóstico , Proteínas de Transporte de Nucleósidos
8.
J Virol ; 97(10): e0059123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768084

RESUMEN

IMPORTANCE: Alphaviruses threaten public health continuously, and Getah virus (GETV) is a re-emerging alphavirus that can potentially infect humans. Approved antiviral drugs and vaccines against alphaviruses are few available, but several host antiviral factors have been reported. Here, we used GETV as a model of alphaviruses to screen for additional host factors. Tetrachlorodibenzo-p-dioxin-inducible poly(ADP ribose) polymerase was identified to inhibit GETV replication by inducing ubiquitination of the glycoprotein E2, causing its degradation by recruiting the E3 ubiquitin ligase membrane-associated RING-CH8 (MARCH8). Using GETV as a model virus, focusing on the relationship between viral structural proteins and host factors to screen antiviral host factors provides new insights for antiviral studies on alphaviruses.


Asunto(s)
Alphavirus , Interacciones Microbiota-Huesped , Proteínas de Transporte de Nucleósidos , Poli(ADP-Ribosa) Polimerasas , Transcriptoma , Humanos , Alphavirus/crecimiento & desarrollo , Alphavirus/inmunología , Glicoproteínas/metabolismo , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ubiquitinación , Proteínas Estructurales Virales/metabolismo , Replicación Viral
9.
Front Immunol ; 14: 1061182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638031

RESUMEN

H syndrome is a rare autosomal recessive genetic disorder characterized by the following clinical features: cutaneous hyperpigmentation, hypertrichosis, hepatosplenomegaly, heart anomalies, hearing loss, hypogonadism, short stature, hallux valgus, hyperglycemia, fixed flexion contractures of the toe joints, and the proximal interphalangeal joints. In rare cases, autoinflammatory and lymphoproliferative manifestations have also been reported. This disorder is due to loss-of-function mutations in SLC29A3 gene, which encode the equilibrative nucleoside transporter ENT3. This deficiency leads to abnormal function and proliferation of histiocytes. H syndrome is part of the R-group of histiocytosis. We report two different cases, one was diagnosed in adulthood and the other in childhood. The first case reported is a 37-year-old woman suffering from H syndrome with an autoinflammatory systemic disease that begins in adulthood (fever and diffuse organ's infiltration) and with cutaneous, articular, auditory, and endocrinological manifestations since childhood. The second case reported is a 2-year-old girl with autoinflammatory, endocrine, and cutaneous symptoms (fever, lymphadenopathy, organomegaly, growth delay, and cutaneous hyperpigmentation). Homozygous mutations in SLC29A3 confirmed the diagnosis of H syndrome in both cases. Each patient was treated with Tocilizumab with a significant improvement for lymphoproliferative, autoinflammatory, and cutaneous manifestations. Both cases were reported to show the multiple characteristics of this rare syndrome, which can be diagnosed either in childhood or in adulthood. In addition, an overview of the literature suggested Tocilizumab efficiency.


Asunto(s)
Contractura , Pérdida Auditiva Sensorineural , Histiocitosis , Femenino , Humanos , Adulto , Preescolar , Histiocitosis/diagnóstico , Histiocitosis/tratamiento farmacológico , Histiocitosis/genética , Fiebre , Proteínas de Transporte de Nucleósidos/genética
10.
Pharm Res ; 40(11): 2541-2554, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37498500

RESUMEN

BACKGROUND: Cerebral vascular protection is critical for stroke treatment. Adenosine modulates vascular flow and exhibits neuroprotective effects, in which brain extracellular concentration of adenosine is dramatically increased during ischemic events and ischemia-reperfusion. Since the equilibrative nucleoside transporter-2 (Ent2) is important in regulating brain adenosine homeostasis, the present study aimed to investigate the role of Ent2 in mice with cerebral ischemia-reperfusion. METHODS: Cerebral ischemia-reperfusion injury was examined in mice with transient middle cerebral artery occlusion (tMCAO) for 90 minutes, followed by 24-hour reperfusion. Infarct volume, brain edema, neuroinflammation, microvascular structure, regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen (CMRO2), and the production of reactive oxygen species (ROS) were examined following the reperfusion. RESULTS: Ent2 deletion reduced the infarct volume, brain edema, and neuroinflammation in mice with cerebral ischemia-reperfusion. tMCAO-induced disruption of brain microvessels was ameliorated in Ent2-/- mice, with a reduced expression of matrix metalloproteinases-9 and aquaporin-4 proteins. Following the reperfusion, the rCBF of the wild-type (WT) mice was quickly restored to the baseline, whereas, in Ent2-/- mice, rCBF was slowly recovered initially, but was then higher than that in the WT mice at the later phase of reperfusion. The improved CMRO2 and reduced ROS level support the beneficial effects caused by the changes in the rCBF of Ent2-/- mice. Further studies showed that the protective effects of Ent2 deletion in mice with tMCAO involve adenosine receptor A2AR. CONCLUSIONS: Ent2 plays a critical role in modulating cerebral collateral circulation and ameliorating pathological events of brain ischemia and reperfusion injury.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Daño por Reperfusión , Animales , Ratones , Adenosina , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/patología , Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Proteínas de Transporte de Nucleósidos , Especies Reactivas de Oxígeno/metabolismo , Reperfusión , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
11.
Nat Commun ; 14(1): 3175, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264059

RESUMEN

Concentrative nucleoside transporters (CNTs) are active nucleoside influx systems, but their in vivo roles are poorly defined. By generating CNT1 knockout (KO) mice, here we identify a role of CNT1 in the renal reabsorption of nucleosides. Deletion of CNT1 in mice increases the urinary excretion of endogenous pyrimidine nucleosides with compensatory alterations in purine nucleoside metabolism. In addition, CNT1 KO mice exhibits high urinary excretion of the nucleoside analog gemcitabine (dFdC), which results in poor tumor growth control in CNT1 KO mice harboring syngeneic pancreatic tumors. Interestingly, increasing the dFdC dose to attain an area under the concentration-time curve level equivalent to that achieved by wild-type (WT) mice rescues antitumor efficacy. The findings provide new insights into how CNT1 regulates reabsorption of endogenous and synthetic nucleosides in murine kidneys and suggest that the functional status of CNTs may account for the optimal action of pyrimidine nucleoside analog therapeutics in humans.


Asunto(s)
Nucleósidos , Nucleósidos de Pirimidina , Humanos , Ratones , Animales , Nucleósidos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Eliminación Renal , Proteínas Portadoras/metabolismo , Antimetabolitos , Proteínas de Transporte de Nucleósidos/metabolismo , Riñón/metabolismo
12.
J Pharm Sci ; 112(10): 2676-2684, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37364771

RESUMEN

NDec is a novel combination of oral decitabine and tetrahydrouridine that is currently under clinical development for the treatment of sickle cell disease (SCD). Here, we investigate the potential for the tetrahydrouridine component of NDec to act as an inhibitor or substrate of key concentrative nucleoside transporters (CNT1-3) and equilibrative nucleoside transporters (ENT1-2). Nucleoside transporter inhibition and tetrahydrouridine accumulation assays were performed using Madin-Darby canine kidney strain II (MDCKII) cells overexpressing human CNT1, CNT2, CNT3, ENT1, and ENT2 transporters. Results showed that tetrahydrouridine did not influence CNT- or ENT-mediated uridine/adenosine accumulation in MDCKII cells at the concentrations tested (25 and 250 µM). Accumulation of tetrahydrouridine in MDCKII cells was initially shown to be mediated by CNT3 and ENT2. However, while time- and concentration-dependence experiments showed active accumulation of tetrahydrouridine in CNT3-expressing cells, allowing for estimation of Km (3,140 µM) and Vmax (1,600 pmol/mg protein/min), accumulation of tetrahydrouridine was not observed in ENT2-expressing cells. Potent CNT3 inhibitors are a class of drugs not generally prescribed to patients with SCD, except in certain specific circumstances. These data suggest that NDec can be administered safely with drugs that act as substrates and inhibitors of the nucleoside transporters included in this study.


Asunto(s)
Proteínas de Transporte de Nucleósidos , Nucleósidos , Humanos , Animales , Perros , Tetrahidrouridina , Tranportador Equilibrativo 1 de Nucleósido , Proteínas de Transporte de Membrana
13.
Proc Natl Acad Sci U S A ; 120(14): e2212387120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996110

RESUMEN

The purinergic signaling molecule adenosine (Ado) modulates many physiological and pathological functions in the brain. However, the exact source of extracellular Ado remains controversial. Here, utilizing a newly optimized genetically encoded GPCR-Activation-Based Ado fluorescent sensor (GRABAdo), we discovered that the neuronal activity-induced extracellular Ado elevation is due to direct Ado release from somatodendritic compartments of neurons, rather than from the axonal terminals, in the hippocampus. Pharmacological and genetic manipulations reveal that the Ado release depends on equilibrative nucleoside transporters but not the conventional vesicular release mechanisms. Compared with the fast-vesicular glutamate release, the Ado release is slow (~40 s) and requires calcium influx through L-type calcium channels. Thus, this study reveals an activity-dependent second-to-minute local Ado release from the somatodendritic compartments of neurons, potentially serving modulatory functions as a retrograde signal.


Asunto(s)
Adenosina , Neuronas , Adenosina/farmacología , Proteínas de Transporte de Nucleósidos/genética , Transducción de Señal/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo
14.
Toxicol Appl Pharmacol ; 463: 116427, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801311

RESUMEN

The nucleoside analog entecavir (ETV) is a first-line pharmacotherapy for chronic hepatitis B in adult and pediatric patients. However, due to insufficient data on placental transfer and its effects on pregnancy, ETV administration is not recommended for women after conception. To expand knowledge of safety, we focused on evaluating the contribution of nucleoside transporters (NBMPR sensitive ENTs and Na+ dependent CNTs) and efflux transporters, P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), and multidrug resistance-associated transporter 2 (ABCC2), to the placental kinetics of ETV. We observed that NBMPR and nucleosides (adenosine and/or uridine) inhibited [3H]ETV uptake into BeWo cells, microvillous membrane vesicles, and fresh villous fragments prepared from the human term placenta, while Na+ depletion had no effect. Using a dual perfusion study in an open-circuit setup, we showed that maternal-to-fetal and fetal-to-maternal clearances of [3H]ETV in the rat term placenta were decreased by NBMPR and uridine. Net efflux ratios calculated for bidirectional transport studies performed in MDCKII cells expressing human ABCB1, ABCG2, or ABCC2 were close to the value of one. Consistently, no significant decrease in fetal perfusate was observed in the closed-circuit setup of dual perfusion studies, suggesting that active efflux does not significantly reduce maternal-to-fetal transport. In conclusion, ENTs (most likely ENT1), but not CNTs, ABCB1, ABCG2, and ABCC2, contribute significantly to the placental kinetics of ETV. Future studies should investigate the placental/fetal toxicity of ETV, the impact of drug-drug interactions on ENT1, and interindividual variability in ENT1 expression on the placental uptake and fetal exposure to ETV.


Asunto(s)
Neoplasias de la Mama , Placenta , Animales , Niño , Femenino , Humanos , Embarazo , Ratas , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte de Nucleósidos/metabolismo , Proteínas de Transporte de Nucleósidos/farmacología , Nucleósidos/metabolismo , Nucleósidos/farmacología , Placenta/metabolismo , Ratas Wistar , Uridina
15.
Bone ; 167: 116615, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36402365

RESUMEN

Dysosteosclerosis (DSS) refers to skeletal dysplasias that radiographically feature focal appendicular osteosclerosis with variable platyspondyly. Genetic heterogeneity is increasingly reported for the DSS phenotype and now involves mutations of SLC29A3, TNFRSF11A, TCIRG1, LRRK1, and CSF1R. Typical radiological findings are widened radiolucent long bones with thin cortices yet dense irregular metaphyses, flattened vertebral bodies, dense ribs, and multiple fractures. However, the radiographic features of DSS evolve, and the metaphyseal and/or appendicular osteosclerosis variably fades with increasing patient age, likely due to some residual osteoclast function. Fractures are the principal presentation of DSS, and may even occur in infancy with SLC29A3-associated DSS. Cranial base sclerosis can lead to cranial nerve palsies such as optic atrophy, and may be the initial presentation, though not observed with SLC29A3-associated DSS. Gene-specific extra-skeletal features can be the main complication in some forms of DSS such as CSF1R- associated DSS. Further genetic heterogeneity is likely, especially for X-linked recessive DSS and cases currently with an unknown genetic defect. Distinguishing DSS can be challenging due to variable clinical and radiological features and an evolving phenotype. However, defining the DSS phenotype is important for predicting complications, prognosis, and instituting appropriate health surveillance and treatment.


Asunto(s)
Osteocondrodisplasias , Osteopetrosis , Osteosclerosis , ATPasas de Translocación de Protón Vacuolares , Humanos , Osteopetrosis/diagnóstico por imagen , Osteopetrosis/genética , Osteosclerosis/diagnóstico por imagen , Osteosclerosis/genética , Osteocondrodisplasias/genética , Mutación/genética , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas de Transporte de Nucleósidos/genética
16.
Molecules ; 27(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432150

RESUMEN

Among the scarce validated drug targets against Chagas disease (CD), caused by Trypanosoma cruzi, the parasite's nucleoside salvage system has recently attracted considerable attention. Although the trypanocidal activity of tubercidin (7-deazapurine) has long been known, the identification of a class of 7-substituted tubercidin analogs with potent in vitro and in vivo activity and much-enhanced selectivity has made nucleoside analogs among the most promising lead compounds against CD. Here, we investigate the recently identified TcrNT2 nucleoside transporter and its potential role in antimetabolite chemotherapy. TcrNT2, expressed in a Leishmania mexicana cell line lacking the NT1 nucleoside transporter locus, displayed very high selectivity and affinity for thymidine with a Km of 0.26 ± 0.05 µM. The selectivity was explained by interactions of 2-oxo, 4-oxo, 5-Me, 3'-hydroxy and 5'-hydroxy with the transporter binding pocket, whereas a hydroxy group at the 2' position was deleterious to binding. This made 5-halogenated 2'-deoxyuridine analogues good substrates but 5-F-2'-deoxyuridine displayed disappointing activity against T. cruzi trypomastigotes. By comparing the EC50 values of tubercidin and its 7-substituted analogues against L. mexicana Cas9, Cas9ΔNT1 and Cas9ΔNT1+TcrNT2 it was shown that TcrNT2 can take up tubercidin and, at a minimum, a subset of the analogs.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Proteínas de Transporte de Nucleósidos , Tubercidina , Transporte Biológico , Enfermedad de Chagas/tratamiento farmacológico , Desoxiuridina
17.
Pharmacol Ther ; 240: 108300, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36283452

RESUMEN

Adenosine compartmentalization has a profound impact on immune cell function by regulating adenosine localization and, therefore, extracellular signaling capabilities, which suppresses immune cell function in the tumor microenvironment. Nucleoside transporters, responsible for the translocation and cellular compartmentalization of hydrophilic adenosine, represent an understudied yet crucial component of adenosine disposition in the tumor microenvironment. In this review article, we will summarize what is known regarding nucleoside transporter's function within the purinome in relation to currently devised points of intervention (i.e., ectonucleotidases, adenosine receptors) for cancer immunotherapy, alterations in nucleoside transporter expression reported in cancer, and potential avenues for targeting of nucleoside transporters for the desired modulation of adenosine compartmentalization and action. Further, we put forward that nucleoside transporters are an unexplored therapeutic opportunity, and modulation of nucleoside transport processes could attenuate the pathogenic buildup of immunosuppressive adenosine in solid tumors, particularly those enriched with nucleoside transport proteins.


Asunto(s)
Neoplasias , Proteínas de Transporte de Nucleósidos , Humanos , Proteínas de Transporte de Nucleósidos/metabolismo , Adenosina/metabolismo , Nucleósidos , Receptores Purinérgicos P1/metabolismo , Neoplasias/tratamiento farmacológico , Inmunosupresores , Microambiente Tumoral
18.
Hum Genomics ; 16(1): 50, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289533

RESUMEN

BACKGROUND: Mature cystic teratomas of the ovary are the most common type of germ cell tumor, comprising 33% of ovarian tumors. Studying these tumors may result in a better understanding of their stepwise developmental processes and molecular bases and provide useful information for the development of tissue-engineering technologies. METHODS: In the present study, 9 mature cystic teratomas of the ovary were analyzed by whole-exome sequencing and the results were compared with the Catalogue of Somatic Mutations in Cancer and dbSNP databases. RESULTS: Mutations were validated in 15 genes with alterations in all 9 (100%) samples and changes in protein coding. The top 10 mutated genes were FLG, MUC17, MUC5B, RP1L1, NBPF1, GOLGA6L2, SLC29A3, SGK223, PTGFRN, and FAM186A. Moreover, 7 variants in exons with changes in protein coding are likely of importance in the development of mature cystic teratomas of the ovary, namely PTGFRN, DUSP5, MPP2, PHLDA1, PRR21, GOLGA6L2, and KRTAP4-2. CONCLUSIONS: These genetic alterations may play an important etiological role in teratoma formation. Moreover, novel mutations in DUSP5 and PHLDA1 genes found on whole-exome sequencing may help to explain the characteristics of teratomas.


Asunto(s)
Neoplasias Ováricas , Teratoma , Femenino , Humanos , Secuenciación del Exoma , Teratoma/genética , Teratoma/metabolismo , Teratoma/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Mutación , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Factores de Transcripción/genética , Proteínas de Transporte de Nucleósidos/genética
19.
Microbiol Spectr ; 10(4): e0113822, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913167

RESUMEN

Toyocamycin (TM) is an adenosine-analog antibiotic isolated from Streptomyces toyocaensis. It inhibits Candida albicans, several plant fungal pathogens, and human cells, but many fungi, including Saccharomyces cerevisiae, are much less susceptible to TM. Aiming to clarify why TM and its analogs tubercidin and 5-iodotubercidin are active against C. albicans but not S. cerevisiae, this study focused on the absence of purine nucleoside transport activity from S. cerevisiae. When the concentrative nucleoside transporter (CNT) of C. albicans was expressed in S. cerevisiae, the recombinant strain became sensitive to TM and its analogs. The expression of C. albicans purine nucleoside permease in S. cerevisiae did not result in sensitivity to TM. Clustered regularly interspaced short palindromic repeat-mediated disruption of CNT was performed in C. albicans. The CNTΔ strain of C. albicans became insensitive to TM and its analogs. These data suggest that the toxicity of TM and its analogs toward C. albicans results from their transport via CNT. Interestingly, S. cerevisiae also became sensitive to TM and its analogs if human CNT3 was introduced into cells. These findings enhance our understanding of the mechanisms of action of adenosine analogs toward Candida pathogens and human cells. IMPORTANCE We investigated the mechanism of toxicity of TM and its analogs to C. albicans. Inspired by the effect of the copresence of TM and purine nucleosides on cell growth of C. albicans, we investigated the involvement of CNT in the toxicity mechanism by expressing CNT of C. albicans (CaCNT) in S. cerevisiae and deleting CaCNT in C. albicans. Our examinations clearly demonstrated that CaCNT is responsible for the toxicity of TM to C. albicans. S. cerevisiae expressing the human ortholog of CaCNT also became sensitive to TM and its analogs, and the order of effects of the TM analogs was a little different between CaCNT- and hCNT3-expressing S. cerevisiae. These findings are beneficial for an understanding of the mechanisms of action of adenosine analogs toward Candida pathogens and human cells and also the development of new antifungal drugs.


Asunto(s)
Candida albicans , Proteínas de Transporte de Nucleósidos , Adenosina/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Humanos , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Nucleósidos de Purina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Toyocamicina/metabolismo
20.
Microbiol Spectr ; 10(4): e0154322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35862946

RESUMEN

Nucleoside transport is essential for maintaining intracellular nucleoside and nucleobase homeostasis for living cells. Here, we identified an uncharacterized GntR/HutC family transcriptional regulator, NagR2, renamed NupR (nucleoside permease regulator), that mainly controls nucleoside transport in the Bacillus thuringiensis BMB171 strain. The deletion or overexpression of nupR affected the bacteria's utilization of guanosine, adenosine, uridine, and cytidine rather than thymidine. We further demonstrated that zinc ion is an effector for the NupR, dissociating NupR from its target DNA. Moreover, the expression of nupR is inhibited by NupR, ComK, and PurR, while it is promoted by CcpA. Also, a purine riboswitch located in its 5' noncoding region influences the expression of nupR. Guanine is the ligand of the riboswitch, reducing the expression of nupR by terminating the transcription of nupR in advance. Hence, our results reveal an exquisite regulation mechanism enabling NupR to respond to multiple signals, control genes involved in nucleoside transport, and contribute to nucleoside substance utilization. Overall, this study provides essential clues for future studies exploring the function of the NupR homolog in other bacteria, such as Bacillus cereus, Bacillus anthracis, Klebsiella pneumoniae, and Streptococcus pneumoniae. IMPORTANCE The transport of nucleosides and their homeostasis within the cell are essential for growth and proliferation. Here, we have identified a novel transcription factor, NupR, which, to our knowledge, is the first GntR family transcription factor primarily involved in the regulation of nucleoside transport. Moreover, responding to diverse intracellular signals, NupR regulates nucleoside transport. It is vital for utilizing extracellular nucleosides and maintaining intracellular nucleoside homeostasis. NupR may also be involved in other pathways such as pH homeostasis, molybdenum cofactor biosynthesis, nitrate metabolism, and transport. In addition, nucleosides have various applications, such as antiviral drugs. Thus, the elucidation of the transport mechanism of nucleosides could be helpful for the construction of engineered strains for nucleoside production.


Asunto(s)
Bacillus thuringiensis , Riboswitch , Bacillus thuringiensis/genética , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Nucleósidos/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA