Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nature ; 624(7992): 672-681, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935376

RESUMEN

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sitios de Unión , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Ligandos , Simulación de Dinámica Molecular , Mutación , Polifarmacología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Especificidad de la Especie , Especificidad por Sustrato
2.
Nature ; 613(7943): 383-390, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599982

RESUMEN

Specific, regulated modification of RNAs is important for proper gene expression1,2. tRNAs are rich with various chemical modifications that affect their stability and function3,4. 7-Methylguanosine (m7G) at tRNA position 46 is a conserved modification that modulates steady-state tRNA levels to affect cell growth5,6. The METTL1-WDR4 complex generates m7G46 in humans, and dysregulation of METTL1-WDR4 has been linked to brain malformation and multiple cancers7-22. Here we show how METTL1 and WDR4 cooperate to recognize RNA substrates and catalyse methylation. A crystal structure of METTL1-WDR4 and cryo-electron microscopy structures of METTL1-WDR4-tRNA show that the composite protein surface recognizes the tRNA elbow through shape complementarity. The cryo-electron microscopy structures of METTL1-WDR4-tRNA with S-adenosylmethionine or S-adenosylhomocysteine along with METTL1 crystal structures provide additional insights into the catalytic mechanism by revealing the active site in multiple states. The METTL1 N terminus couples cofactor binding with conformational changes in the tRNA, the catalytic loop and the WDR4 C terminus, acting as the switch to activate m7G methylation. Thus, our structural models explain how post-translational modifications of the METTL1 N terminus can regulate methylation. Together, our work elucidates the core and regulatory mechanisms underlying m7G modification by METTL1, providing the framework to understand its contribution to biology and disease.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Unión al GTP , Metilación , Metiltransferasas , Procesamiento Postranscripcional del ARN , ARN de Transferencia , Humanos , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Metiltransferasas/química , Metiltransferasas/metabolismo , Metiltransferasas/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato , Biocatálisis
3.
FEBS J ; 289(2): 386-393, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33835690

RESUMEN

The C-X-C motif chemokine CXCL8 (interleukin-8, IL-8) and its receptor chemokine receptor 2 (CXCR2) mediate neutrophil migration during cell development and inflammatory responses and thus are related to numerous inflammatory diseases and cancers. We have determined the cryo-electron microscopy structure of CXCL8 bound CXCR2 coupled to Gi protein, as well as the crystal structure of inactive CXCR2 in complex with a designed allosteric antagonist. These results reveal the binding modes between CXCL8 and CXCR2, CXCR2 and G protein, and the detailed binding pattern of the allosteric antagonist, 00767013. Further structural analysis of the inactive- and active- states of CXCR2 reveals the unique shallow-pocket activation mechanism of C-X-C chemokine receptors and promotes our understanding on how a G protein-coupled receptor (GPCR) is activated by an endogenous protein molecule. In addition, the cholesterol molecule is observed in the activated CXCR2 structure, providing the structural basis of the potential allosteric modulation role of cholesterol in chemokine receptors.


Asunto(s)
Proteínas de Unión al GTP/genética , Inflamación/genética , Interleucina-8/genética , Receptores de Interleucina-8B/genética , Regulación Alostérica/genética , Movimiento Celular/genética , Proteínas de Unión al GTP/ultraestructura , Humanos , Inflamación/patología , Interleucina-8/ultraestructura , Neutrófilos/metabolismo , Unión Proteica/genética , Conformación Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Interleucina-8B/ultraestructura , Transducción de Señal/genética
4.
Nat Commun ; 7: 13563, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27882919

RESUMEN

Cotranslational chaperones assist in de novo folding of nascent polypeptides in all organisms. In yeast, the heterodimeric ribosome-associated complex (RAC) forms a unique chaperone triad with the Hsp70 homologue Ssb. We report the X-ray structure of full length Ssb in the ATP-bound open conformation at 2.6 Å resolution and identify a positively charged region in the α-helical lid domain (SBDα), which is present in all members of the Ssb-subfamily of Hsp70s. Mutational analysis demonstrates that this region is strictly required for ribosome binding. Crosslinking shows that Ssb binds close to the tunnel exit via contacts with both, ribosomal proteins and rRNA, and that specific contacts can be correlated with switching between the open (ATP-bound) and closed (ADP-bound) conformation. Taken together, our data reveal how Ssb dynamics on the ribosome allows for the efficient interaction with nascent chains upon RAC-mediated activation of ATP hydrolysis.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Elongación de Péptidos/metabolismo , Conformación Proteica en Hélice alfa , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al GTP/ultraestructura , Proteínas HSP70 de Choque Térmico/ultraestructura , Factores de Elongación de Péptidos/ultraestructura , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/ultraestructura
5.
Nature ; 534(7605): 133-7, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251291

RESUMEN

Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Transporte Activo de Núcleo Celular , Secuencia de Bases , Dominio Catalítico , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Citoplasma/metabolismo , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/metabolismo , ADN Espaciador Ribosómico/ultraestructura , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Unión Proteica , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Hongos/ultraestructura , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/aislamiento & purificación , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Rotación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
6.
Cell Tissue Res ; 358(3): 793-805, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25209703

RESUMEN

Transglutaminase type II (TG2) is a pleiotropic enzyme that exhibits various activities unrelated to its originally identified functions. Apart from post-translational modifications of proteins (peculiar to the transglutaminase family enzymes), TG2 is involved in diverse biological functions, including cell death, signaling, cytoskeleton rearrangements, displaying enzymatic activities, G-protein and non-enzymatic biological functions. It is involved in a variety of human diseases such as celiac disease, diabetes, neurodegenerative diseases, inflammatory disorders and cancer. Regulatory mechanisms might exist through which cells control multifunctional protein expression as a function of their sub-cellular localization. The definition of the tissue and cellular distribution of such proteins is important for the determination of their function(s). We investigate the sub-cellular localization of TG2 by confocal and immunoelectron microscopy techniques in order to gain an understanding of its properties. The culture conditions of human sarcoma cells (2fTGH cells), human embryonic kidney cells (HEK293(TG)) and human neuroblastoma cells (SK-n-BE(2)) are modulated to induce various stimuli. Human tissue samples of myocardium and gut mucosa (diseased and healthy) are also analyzed. Immuno-gold labeling indicates that TG2 is localized in the nucleus, mitochondria and endoplasmic reticulum under physiological conditions but that this is not a stable association, since different locations or different amounts of TG2 can be observed depending on stress stimuli or the state of activity of the cell. We describe a possible unrecognized location of TG2. Our findings thus provide useful insights regarding the functions and regulation of this pleiotropic enzyme.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Espacio Intracelular/enzimología , Transglutaminasas/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Doxorrubicina/farmacología , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Proteínas de Unión al GTP/ultraestructura , Células HEK293 , Humanos , Mucosa Intestinal/patología , Mucosa Intestinal/ultraestructura , Espacio Intracelular/efectos de los fármacos , Modelos Biológicos , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Miofibrillas/ultraestructura , Neuroblastoma/patología , Neuroblastoma/ultraestructura , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transporte de Proteínas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Transglutaminasas/ultraestructura
7.
Acta Histochem ; 98(4): 399-409, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8960304

RESUMEN

Heterotrimeric GTP-binding proteins (G-proteins) have been shown to play an important role in cellular signalling. However, G-protein involvement in the intracellular spreading of bacterial pathogens is still poorly understood. In this study, antibodies, that recognize G-protein alpha-subunits (anti-G alpha), were used to investigate the localization of G-proteins in the macrophage-like cell line P388D1 and E. coli, also in their L-forms, during phagocytosis. In E. coli, anti-G alpha-binding sites were detected preferably in the cell wall and septa of the whole bacterial forms as well as in the cytoplasm of L-forms. Western blotting of bacterial lysates demonstrated protein bands with positive immunoreaction to antibodies against Gs alpha, Gi alpha, and Gcommon alpha with a higher affinity to the antibody against Gs alpha. Immunoreaction with the anti-Gs alpha-antibody was markedly higher in pathogenic strains of E. coli. Because of the conserved structure in all GTP-binding proteins which seem to derive from a single primordial protein involved in signal transduction mechanisms, it is reasonable to assume that some anti-Ga-positive proteins in E. coli might be related to G-proteins of higher organisms. A putative candidate for bacterial G-proteins seems to be a 36 kDa protein. Enhancement in G-protein immunostaining in the cytoplasm of macrophages around the internalized bacteria testifies to the involvement of G-proteins in mediation of endocytosis responses of phagocytes.


Asunto(s)
Escherichia coli/metabolismo , Proteínas de Unión al GTP/análisis , Macrófagos/metabolismo , Fagocitosis/fisiología , Animales , Anticuerpos/análisis , Western Blotting , Escherichia coli/inmunología , Proteínas de Unión al GTP/ultraestructura , Macrófagos/inmunología , Macrófagos/ultraestructura , Ratones , Microscopía Electrónica , Microscopía Electrónica de Rastreo , Transducción de Señal
8.
Cell Growth Differ ; 6(11): 1477-83, 1995 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8562486

RESUMEN

Tuberous sclerosis (TS) is an autosomal dominant multisystem disorder characterized by the widespread development of hamartomas in many tissues and organs. TSC2 is predicted to encode a 1784-amino acid tumor suppressor protein that may function, in part, as a GTPase-activating protein for Rap1. Given the high incidence of central nervous system abnormalities in individuals affected with tuberous sclerosis, the expression of TSC2 in developing and adult nervous system tissues was examined. Reverse transcription-PCR, Northern blot, and in situ hybridization analyses demonstrated high levels of expression of TSC2 in the adult brain and developing central nervous system. Abundant TSC2 expression was detected in the adult cerebellum, hippocampus, and olfactory bulb, with lower levels of expression observed in other tissues, including heart and kidney. This enrichment of TSC2 expression in neurons in the central nervous system suggests unique roles for this tumor suppressor gene product in the development and differentiation of nervous system tissues.


Asunto(s)
Cerebelo/fisiología , Médula Espinal/fisiología , Esclerosis Tuberosa/genética , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Proteínas de Unión al GTP/ultraestructura , Proteínas Activadoras de GTPasa , Expresión Génica/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Hibridación in Situ , Ratones , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Proteínas/ultraestructura , ARN Mensajero/análisis , Ratas , Médula Espinal/embriología , Factores de Transcripción/ultraestructura , Proteínas de Unión al GTP rap , Proteínas Activadoras de ras GTPasa
9.
Brain Res Dev Brain Res ; 87(1): 77-86, 1995 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-7554235

RESUMEN

The GTP-binding protein, G(o), is present at very high concentration in the neuronal growth cone membrane. The expression of activated mutants of the a subunit of G(o) increases neurite outgrowth. To determine the intracellular mechanism for this outgrowth, we have examined activated alpha o-dependent outgrowth in the presence of agents which modulate different signal transduction cascades. Activation of protein kinase C with phorbol esters or with diacylglycerol prevents the alpha o-dependent increase in neurite extension. Inhibition of protein kinase C with staurosporine, with H7, or with long-term, high dose phorbol ester treatment resulted in greater neurite elongation, and no further increase after activated alpha o transfection. The protein phosphatase inhibitor, okadaic acid, also blocked the effect of activated alpha o. In contrast, tyrosine kinase inhibitors and agents which alter cAMP levels did not alter activated alpha o-dependent neurite extension. We tested a number of compounds which alter intracellular calcium levels. TMB-8 and thapsigargin prevented an increase in outgrowth by activated alpha o, but diltiazem, Bay K8644 and dantrolene had no effect on activated alpha o-dependent outgrowth. These studies suggest that activated alpha o increases neurite outgrowth by inhibiting protein kinase C and by modulating intracellular calcium release.


Asunto(s)
Proteínas de Unión al GTP/ultraestructura , Neuritas/fisiología , Células PC12/fisiología , Proteína Quinasa C/fisiología , Alcaloides/farmacología , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Éteres Cíclicos/farmacología , Proteínas de Unión al GTP/genética , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología , Mutación/fisiología , Ácido Ocadaico , Células PC12/ultraestructura , Proteína Quinasa C/agonistas , Ratas , Sistemas de Mensajero Secundario/fisiología , Estaurosporina , Terpenos/farmacología , Tapsigargina , Transfección
10.
Proc Natl Acad Sci U S A ; 92(5): 1272-6, 1995 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-7877967

RESUMEN

Although Ras residue phenylalanine-156 (F156) is strictly conserved in all members of the Ras superfamily of proteins, it is located outside of the consensus GDP/GTP-binding pocket. Its location within the hydrophobic core of Ras suggests that its strict conservation reflects a crucial role in structural stability. However, mutation of the equivalent residue (F157L) in the Drosophila Ras-related protein Rap results in a gain-of-function phenotype, suggesting an alternative role for this residue. Therefore, we have introduced an F156L mutation into Ras to evaluate the role of this residue in Ras structure and function. Whereas introduction of this mutation activated the transforming potential of wild-type Ras, it did not impair that of oncogenic Ras. Further, Ras (156L) exhibited an extremely rapid off rate for bound GDP/GTP in vitro and showed increased levels of Ras.GTP in vivo. To determine the structural basis for these altered properties, we used high-resolution nuclear magnetic resonance spectroscopy. The F156L mutation caused loss of contact with residues 6, 23, 55, and 79, resulting in disruption of secondary structure in alpha-helix 1 and in beta-sheets 1-5. These major structural changes contrast with the isolated alterations induced by oncogenic mutation (residues 12 or 61) that perturb GTPase activity, and instead, weaken Ras contacts with Mg2+ and its guanine nucleotide substrate and result in increased rates of GDP/GTP dissociation. Altogether, these observations demonstrate the essential role of this conserved residue in Ras structure and its function as a regulated GDP/GTP switch.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Genes ras , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células 3T3 , Animales , Transformación Celular Neoplásica , Proteínas de Unión al GTP/ultraestructura , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fenilalanina , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/ultraestructura , Relación Estructura-Actividad
11.
Rev Prat ; 44(9): 1163-7, 1994 May 01.
Artículo en Francés | MEDLINE | ID: mdl-7939337

RESUMEN

The superfamily of G protein-coupled receptors plays a major role in the transmission and amplification of extracellular stimuli. These membrane receptors have a common structure made of a single polypeptide chain including seven transmembrane spanning domains. The comparison of amino acid sequences of the various G protein-coupled receptors reveals several conserved amino acids and regions playing a key role in ligand binding, G protein coupling, and activation of intracellular second messengers. Mutations of amino acid sequences of seven transmembrane domain receptors and their coupled G proteins are responsible for various human diseases including certain kinds of cancer.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/ultraestructura , Humanos , Receptores de Superficie Celular/química
13.
Cell ; 75(3): 543-55, 1993 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-8221893

RESUMEN

Heritable inactivation of genes occurs in specific chromosomal domains located at the silent mating type loci and at telomeres of S. cerevisiae. The SIR genes (for silent information regulators) are trans-acting factors required for this repression mechanism. We show here that the SIR3 and SIR4 gene products have a sub-nuclear localization similar to the telomere-associated RAP1 protein, which is found primarily in foci at the nuclear periphery of fixed yeast spheroplasts. In strains deficient for either SIR3 or SIR4, telomeres lose their perinuclear localization, as monitored by RAP1 immunofluorescence. The length of the telomeric repeat shortens in sir3 and sir4 mutant strains, and the mitotic stability of chromosome V is reduced. These data suggest that SIR3 and SIR4 are required for both the integrity and subnuclear localization of yeast telomeres, the loss of which correlates with loss of telomere-associated gene repression.


Asunto(s)
Núcleo Celular/ultraestructura , Proteínas Fúngicas/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae , Telómero/ultraestructura , Transactivadores/ultraestructura , Compartimento Celular , Técnica del Anticuerpo Fluorescente , Proteínas Fúngicas/genética , Proteínas de Unión al GTP/ultraestructura , Regulación Fúngica de la Expresión Génica , Factor de Apareamiento , Mitosis , Mutagénesis , Mutación , Péptidos/genética , Saccharomyces cerevisiae/genética , Transactivadores/genética , Proteínas de Unión al GTP rap
14.
J Mol Biol ; 224(4): 1127-41, 1992 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-1314905

RESUMEN

The crystal structure of guanylate kinase from Saccharomyces cerevisiae complexed with its substrate GMP has been refined at a resolution of 2.0 A. The final crystallographic R-factor is 17.3% in the resolution range 7.0 A to 2.0 A for all reflections of the 100% complete data set. The final model has standard geometry with root-mean-square deviations of 0.016 A in bond lengths and 3.0 in bond angles. It consists of all 186 amino acid residues, the N-terminal acetyl group, the substrate GMP, one sulfate ion and 174 water molecules. Guanylate kinase is structurally related to adenylate kinases and G-proteins with respect to its central beta-sheet with connecting helices and the giant anion hole that binds nucleoside triphosphates. These nucleotides are ATP and GTP for the kinases and GTP for the G-proteins. The chain segment binding the substrate GMP of guanylate kinase differs grossly from the respective part of the adenylate kinases; it has no counterpart in the G-proteins. The binding mode of GMP is described in detail. Probably, the observed structure represents one of several structurally quite different intermediate states of the catalytic cycle.


Asunto(s)
Guanosina Monofosfato , Nucleósido-Fosfato Quinasa/ultraestructura , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía , Proteínas de Unión al GTP/ultraestructura , Guanosina Monofosfato/metabolismo , Guanilato-Quinasas , Modelos Moleculares , Datos de Secuencia Molecular , Movimiento (Física) , Conformación Proteica , Saccharomyces cerevisiae/enzimología , Solventes , Sulfatos/metabolismo , Temperatura , Agua , Difracción de Rayos X
15.
J Mol Biol ; 217(3): 503-16, 1991 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-1899707

RESUMEN

The biological functions of ras proteins are controlled by the bound guanine nucleotide GDP or GTP. The GTP-bound conformation is biologically active, and is rapidly deactivated to the GDP-bound conformation through interaction with GAP (GTPase Activating Protein). Most transforming mutants of ras proteins have drastically reduced GTP hydrolysis rates even in the presence of GAP. The crystal structures of the GDP complexes of ras proteins at 2.2 A resolution reveal the detailed interaction between the ras proteins and the GDP molecule. All the currently known transforming mutation positions are clustered around the bound guanine nucleotide molecule. The presumed "effector" region and the GAP recognition region are both highly exposed. No significant structural differences were found between the GDP complexes of normal ras protein and the oncogenic mutant with valine at position 12, except the side-chain of the valine residue. However, comparison with GTP-analog complexes of ras proteins suggests that the valine side-chain may inhibit GTP hydrolysis in two possible ways: (1) interacting directly with the gamma-phosphate and altering its orientation or the conformation of protein residues around the phosphates; and/or (2) preventing either the departure of gamma-phosphate on GTP hydrolysis or the entrance of a nucleophilic group to attack the gamma-phosphate. The structural similarity between ras protein and the bacterial elongation factor Tu suggests that their common structural motif might be conserved for other guanine nucleotide binding proteins.


Asunto(s)
Proteínas de Unión al GTP/ultraestructura , Proteína Oncogénica p21(ras)/ultraestructura , Proteínas Proto-Oncogénicas p21(ras)/ultraestructura , Secuencia de Aminoácidos , Clonación Molecular , Simulación por Computador , Cristalografía , Glicina/química , Guanosina Trifosfato/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Proteínas Recombinantes/ultraestructura , Sales (Química) , Solubilidad , Relación Estructura-Actividad , Valina/química , Difracción de Rayos X
16.
Ann Endocrinol (Paris) ; 52(6): 373-80, 1991.
Artículo en Francés | MEDLINE | ID: mdl-1824486

RESUMEN

Heterotrimeric G proteins belong to the superfamily of proteins which bind and hydrolyse GTP. Each of these GTPases acts as a molecular switch whose "on" and "off" states are triggered by binding and hydrolysis of GTP. Heterotrimeric G proteins (alpha beta gamma complex) transduce hormonal and sensory stimuli across the plasma membrane. The alpha chain contains the site of GTP binding and hydrolysis and the domains of interactions with receptors, effectors and beta gamma complex. GTP binding site is composed of five distinct domains denoted G1-5. Specific aminoacidic substitution or alteration in G2 and G3 domains triggers a decrease of GTP hydolysis, trapping the alpha chain in its active state. Such alterations are detected during cholera disease and in some secreting pituitary tumors. A genetic deficiency of the Gs alpha subunit also occurs in most patients who have Albright hereditary osteodystrophy.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Transducción de Señal/fisiología , Cólera/fisiopatología , Proteínas de Unión al GTP/clasificación , Proteínas de Unión al GTP/ultraestructura , Humanos , Neoplasias Hipofisarias/fisiopatología , Seudohipoparatiroidismo/fisiopatología
17.
Proc Natl Acad Sci U S A ; 87(11): 4363-7, 1990 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2161538

RESUMEN

Conditions were devised to demonstrate GTP-regulated coupling between the yeast STE2-encoded receptor and its cognate guanine nucleotide-binding protein (G protein). Treatment of partially purified membranes with guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S]) converted the receptor from a high-affinity state (Kd = 17 nM) to a much lower affinity state (Kd approximately 150 nM), as judged by three independent criteria: rate of ligand (alpha-factor) dissociation, equilibrium binding, and antagonist competition. Expression of STE2 from the GAL1 promoter in MATa/MAT alpha diploids, which do not express GPA1 (encoding G protein alpha subunit, G alpha), STE4 (encoding G protein beta subunit, G beta), and STE18 (encoding G protein gamma subunit, G gamma) but do express another G protein alpha subunit (product of GPA2), yielded a single class of low-affinity receptors that were GTP[gamma-S]-insensitive, indicating that STE2 gene product cannot couple productively with other G proteins, even in the absence of competition by its cognate G protein. By using gpa1, STE4, and ste18 mutations, it was found that all three G protein subunits were required for functional coupling, as judged by the absence of high-affinity receptors when any of the three gene products was altered. This finding demonstrates that G beta and G gamma subunits are essential for formation of a productive complex between a G alpha subunit and its corresponding receptor. Wild-type STE4 and STE18 gene products were not essential for membrane localization of the GPA1 gene product, as indicated by cell fractionation and immunological analyses, suggesting that G beta and G gamma subunits interact with the receptor or make the G alpha subunit competent to associate correctly with the receptor, or both.


Asunto(s)
Proteínas de Unión al GTP/ultraestructura , Receptores de Superficie Celular/fisiología , Receptores de Péptidos , Transducción de Señal , Factores de Transcripción , Membrana Celular/metabolismo , Proteínas de Unión al GTP/fisiología , Genes Fúngicos , Sustancias Macromoleculares , Factor de Apareamiento , Péptidos/metabolismo , Unión Proteica , Receptores del Factor de Conjugación , Saccharomyces cerevisiae , Relación Estructura-Actividad
19.
Nature ; 341(6239): 209-14, 1989 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-2476675

RESUMEN

The crystal structure of the guanine-nucleotide-binding domain of p21 (amino acids 1-166) complexed to the guanosine triphosphate analogue guanosine-5'-(beta, gamma-imido)triphosphate (GppNp) has been determined at a resolution of 2.6 A. The topological order of secondary structure elements is the same as that of the guanine-nucleotide-binding domain of bacterial elongation factor EF-Tu. Many interactions between nucleotide and protein have been identified. The effects of point mutations and the conservation of amino-acid sequence in the guanine-nucleotide-binding proteins are discussed.


Asunto(s)
Proteínas de Unión al GTP/ultraestructura , Proteínas Proto-Oncogénicas/ultraestructura , Sitios de Unión , Gráficos por Computador , Cristalografía , Epítopos , GTP Fosfohidrolasas , Proteínas de Unión al GTP/inmunología , Guanilil Imidodifosfato , Humanos , Magnesio , Fosfatos , Conformación Proteica , Proteínas Proto-Oncogénicas/inmunología , Proteínas Proto-Oncogénicas p21(ras)
20.
Science ; 243(4892): 804-7, 1989 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-2536957

RESUMEN

Signal transducing guanine nucleotide binding (G) proteins are heterotrimers with different alpha subunits that confer specificity for interactions with receptors and effectors. Eight to ten such G proteins couple a large number of receptors for hormones and neurotransmitters to at least eight different effectors. Although one G protein can interact with several receptors, a given G protein was thought to interact with but one effector. The recent finding that voltage-gated calcium channels are stimulated by purified Gs, which stimulates adenylyl cyclase, challenged this concept. However, purified Gs may have four distinct alpha-subunit polypeptides, produced by alternative splicing of messenger RNA. By using recombinant DNA techniques, three of the splice variants were synthesized in Escherichia coli and each variant was shown to stimulate both adenylyl cyclase and calcium channels. Thus, a single G protein alpha subunit may regulate more than one effector function.


Asunto(s)
Adenilil Ciclasas/fisiología , Canales de Calcio/fisiología , Proteínas de Unión al GTP/genética , Animales , Proteínas de Unión al GTP/fisiología , Proteínas de Unión al GTP/ultraestructura , Técnicas In Vitro , Sustancias Macromoleculares , Empalme del ARN , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA