Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.682
Filtrar
Más filtros











Intervalo de año de publicación
1.
Hepatol Commun ; 8(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38829196

RESUMEN

BACKGROUND: There is a need for novel noninvasive markers for metabolic dysfunction-associated steatotic liver disease (MASLD) to stratify patients at high risk for liver-related events including liver cancer and decompensation. In the present study, we used proteomic analysis of proteins in extracellular vesicles (EVs) to identify new biomarkers that change with fibrosis progression and can predict the development of liver-related events. METHODS: We analyzed serum EVs from 50 patients with MASLD assessed for liver fibrosis by biopsy and identified proteins that altered with advanced fibrosis. A further evaluation was conducted on another cohort of 463 patients with MASLD with biopsy. RESULTS: Eight candidate proteins were identified by proteomic analysis of serum EVs. Among them, serum levels of Fibulin-3, Fibulin-1, and Ficolin 1 correlated with their EV levels. In addition, serum Fibulin-3 and serum Fibulin-1 levels changed significantly with advanced fibrosis. Using another cohort with biopsy, we found that the serum Fibulin-3 concentration was significantly greater in those with advanced fibrosis but that the serum Fibulin-1 concentration was not significantly different. Multivariate Cox proportional hazards analysis revealed that a higher Fibrosis-4 (FIB-4) index and higher serum Fibulin-3 concentration were independent risk factors for liver-related events. When the cutoff value for the serum Fibulin-3 concentration was 6.0 µg/mL according to the Youden index of AUROCs, patients with high serum Fibulin-3 significantly more frequently developed liver-related events than did other patients. Validation using another cohort of 226 patients with clinically diagnosed MASLD confirmed that high serum Fibulin-3 levels are associated with a greater frequency of liver-related events. CONCLUSIONS: Serum Fibulin-3 was identified as a biomarker for predicting liver-related events in patients with MASLD.


Asunto(s)
Biomarcadores , Proteínas de Unión al Calcio , Proteínas de la Matriz Extracelular , Vesículas Extracelulares , Proteómica , Humanos , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Proteínas de la Matriz Extracelular/sangre , Vesículas Extracelulares/metabolismo , Proteínas de Unión al Calcio/sangre , Cirrosis Hepática/sangre , Hígado Graso/sangre , Adulto , Anciano , Progresión de la Enfermedad
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731868

RESUMEN

Among gynecological cancers, endometrial cancer is the most common in developed countries. Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that contain proteins involved in immune response and apoptosis. A deep proteomic approach can help to identify dysregulated extracellular matrix (ECM) proteins in EVs correlated to key pathways for tumor development. In this study, we used a proteomics approach correlating the two acquisitions-data-dependent acquisition (DDA) and data-independent acquisition (DIA)-on EVs from the conditioned medium of four cell lines identifying 428 ECM proteins. After protein quantification and statistical analysis, we found significant changes in the abundance (p < 0.05) of 67 proteins. Our bioinformatic analysis identified 26 pathways associated with the ECM. Western blotting analysis on 13 patients with type 1 and type 2 EC and 13 endometrial samples confirmed an altered abundance of MMP2. Our proteomics analysis identified the dysregulated ECM proteins involved in cancer growth. Our data can open the path to other studies for understanding the interaction among cancer cells and the rearrangement of the ECM.


Asunto(s)
Neoplasias Endometriales , Proteínas de la Matriz Extracelular , Matriz Extracelular , Vesículas Extracelulares , Proteómica , Humanos , Femenino , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Proteómica/métodos , Vesículas Extracelulares/metabolismo , Matriz Extracelular/metabolismo , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/metabolismo , Persona de Mediana Edad , Biología Computacional/métodos , Metaloproteinasa 2 de la Matriz/metabolismo
3.
Nat Commun ; 15(1): 4235, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762489

RESUMEN

Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.


Asunto(s)
COVID-19 , Células Endoteliales , Pulmón , Activación de Macrófagos , SARS-CoV-2 , Animales , Humanos , COVID-19/inmunología , COVID-19/virología , COVID-19/metabolismo , COVID-19/patología , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/virología , Células Endoteliales/inmunología , SARS-CoV-2/fisiología , Pulmón/virología , Pulmón/patología , Pulmón/inmunología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Ratones Endogámicos C57BL , Neumonía Viral/inmunología , Neumonía Viral/patología , Neumonía Viral/virología , Neumonía Viral/metabolismo , Masculino , Macrófagos/metabolismo , Macrófagos/inmunología , Femenino , Ratones Noqueados , Proteínas de la Matriz Extracelular
4.
Sci Rep ; 14(1): 10524, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719976

RESUMEN

Extracellular matrix diseases like fibrosis are elusive to diagnose early on, to avoid complete loss of organ function or even cancer progression, making early diagnosis crucial. Imaging the matrix densities of proteins like collagen in fixed tissue sections with suitable stains and labels is a standard for diagnosis and staging. However, fine changes in matrix density are difficult to realize by conventional histological staining and microscopy as the matrix fibrils are finer than the resolving capacity of these microscopes. The dyes further blur the outline of the matrix and add a background that bottlenecks high-precision early diagnosis of matrix diseases. Here we demonstrate the multiple signal classification method-MUSICAL-otherwise a computational super-resolution microscopy technique to precisely estimate matrix density in fixed tissue sections using fibril autofluorescence with image stacks acquired on a conventional epifluorescence microscope. We validated the diagnostic and staging performance of the method in extracted collagen fibrils, mouse skin during repair, and pre-cancers in human oral mucosa. The method enables early high-precision label-free diagnosis of matrix-associated fibrotic diseases without needing additional infrastructure or rigorous clinical training.


Asunto(s)
Microscopía Fluorescente , Animales , Ratones , Humanos , Microscopía Fluorescente/métodos , Proteínas de la Matriz Extracelular/metabolismo , Imagen Óptica/métodos , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Mucosa Bucal/metabolismo , Mucosa Bucal/patología , Piel/metabolismo , Piel/patología
5.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791371

RESUMEN

The process of aging is intimately linked to alterations at the tissue and cellular levels. Currently, the role of senescent cells in the tissue microenvironment is still being investigated. Despite common characteristics, different cell populations undergo distinctive morphofunctional changes during senescence. Mesenchymal stem cells (MSCs) play a pivotal role in maintaining tissue homeostasis. A multitude of studies have examined alterations in the cytokine profile that determine their regulatory function. The extracellular matrix (ECM) of MSCs is a less studied aspect of their biology. It has been shown to modulate the activity of neighboring cells. Therefore, investigating age-related changes in the MSC matrisome is crucial for understanding the mechanisms of tissue niche ageing. This study conducted a broad proteomic analysis of the matrisome of separated fractions of senescent MSCs, including the ECM, conditioned medium (CM), and cell lysate. This is the first time such an analysis has been conducted. It has been established that there is a shift in production towards regulatory molecules and a significant downregulation of the main structural and adhesion proteins of the ECM, particularly collagens, fibulins, and fibrilins. Additionally, a decrease in the levels of cathepsins, galectins, S100 proteins, and other proteins with cytoprotective, anti-inflammatory, and antifibrotic properties has been observed. However, the level of inflammatory proteins and regulators of profibrotic pathways increases. Additionally, there is an upregulation of proteins that can directly cause prosenescent effects on microenvironmental cells (SERPINE1, THBS1, and GDF15). These changes confirm that senescent MSCs can have a negative impact on other cells in the tissue niche, not only through cytokine signals but also through the remodeled ECM.


Asunto(s)
Senescencia Celular , Matriz Extracelular , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Matriz Extracelular/metabolismo , Proteómica/métodos , Proteoma/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Células Cultivadas , Medios de Cultivo Condicionados/farmacología
6.
Int Immunopharmacol ; 134: 112180, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38733822

RESUMEN

TGFBI, an extracellular matrix protein induced by transforming growth factor ß, has been found to exhibit aberrant expression in various types of cancer. TGFBI plays a crucial role in tumor cell proliferation, angiogenesis, and apoptosis. It also facilitates invasion and metastasis in various types of cancer, including colon, head and neck squamous, renal, and prostate cancers. TGFBI, a prominent p-EMT marker, strongly correlates with lymph node metastasis. TGFBI demonstrates immunosuppressive effects within the tumor immune microenvironment. Targeted therapy directed at TGFBI shows promise as a potential strategy to combat cancer. Hence, a comprehensive review was conducted to examine the impact of TGFBI on various aspects of tumor biology, including cell proliferation, angiogenesis, invasion, metastasis, apoptosis, and the immune microenvironment. This review also delved into the underlying biochemical mechanisms to enhance our understanding of the research advancements related to TGFBI in the context of tumors.


Asunto(s)
Neoplasias , Factor de Crecimiento Transformador beta , Microambiente Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Animales , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Terapia Molecular Dirigida , Proteínas de la Matriz Extracelular/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/inmunología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
7.
JCI Insight ; 9(9)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716730

RESUMEN

Lung cancer is the leading cause of cancer-related deaths in the world, and non-small cell lung cancer (NSCLC) is the most common subset. We previously found that infiltration of tumor inflammatory monocytes (TIMs) into lung squamous carcinoma (LUSC) tumors is associated with increased metastases and poor survival. To further understand how TIMs promote metastases, we compared RNA-Seq profiles of TIMs from several LUSC metastatic models with inflammatory monocytes (IMs) of non-tumor-bearing controls. We identified Spon1 as upregulated in TIMs and found that Spon1 expression in LUSC tumors corresponded with poor survival and enrichment of collagen extracellular matrix signatures. We observed SPON1+ TIMs mediate their effects directly through LRP8 on NSCLC cells, which resulted in TGF-ß1 activation and robust production of fibrillar collagens. Using several orthogonal approaches, we demonstrated that SPON1+ TIMs were sufficient to promote NSCLC metastases. Additionally, we found that Spon1 loss in the host, or Lrp8 loss in cancer cells, resulted in a significant decrease of both high-density collagen matrices and metastases. Finally, we confirmed the relevance of the SPON1/LRP8/TGF-ß1 axis with collagen production and survival in patients with NSCLC. Taken together, our study describes how SPON1+ TIMs promote collagen remodeling and NSCLC metastases through an LRP8/TGF-ß1 signaling axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Monocitos , Transducción de Señal , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/secundario , Línea Celular Tumoral , Colágeno/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Monocitos/metabolismo , Monocitos/patología , Metástasis de la Neoplasia , Factor de Crecimiento Transformador beta1/metabolismo
8.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732222

RESUMEN

Colorectal cancer (CRC) is one of the most common neoplasms in developed countries, with increasing incidence and mortality, even in young people. A variety of serum markers have been associated with CRC (CEA, CA 19-9), but neither should be used as a screening tool for the diagnosis or evolution staging of CRC. The sensitivity and specificity of these markers are not as good as is required, so new ones need to be found. Matrix Gla protein and PIVKA II are involved in carcinogenesis, but few studies have evaluated their usefulness in predicting the presence and severity of CRC. Two hundred patients were divided into three groups: 80 patients were included in the control group; 80 with CRC and without hepatic metastasis were included in Group 1; 40 patients with CRC and hepatic metastasis were included in Group 2. Vitamin K-dependent proteins (VKDPs) levels in plasma were determined. Patients with CRC without methastasis (Group 1) and CRC patients with methastasis (Group 2) presented significantly higher values of CEA, CA 19-9, PIVKA II (310.05 ± 38.22 vs. 430.13 ± 122.13 vs. 20.23 ± 10.90), and ucMGP (14,300.00 ± 2387.02 vs. 13,410.52 ± 2243.16 vs. 1780.31 ± 864.70) compared to control group (Group 0). Interestingly, Group 1 presented the greatest PIVKA II values. Out of all the markers, significant differences between the histological subgroups were found only for ucMGP, but only in non-metastatic CRC. Studying the discrimination capacity between the patients with CRC vs. those without, no significant differences were found between the classical tumor markers and the VKDP AUROC curves (PIVKA II and ucMGP AUROCs = 1). For the metastatic stage, the sensitivity and specificity of the VKDPs were lower in comparison with those of CA 19-9 and CEA, respectively (PIVKA II AUROC = 0.789, ucMGP AUROC = 0.608). The serum levels of these VKDPs are significantly altered in patients with colorectal carcinoma; it is possible to find additional value of these in the early stages of the disease.


Asunto(s)
Biomarcadores de Tumor , Proteínas de Unión al Calcio , Neoplasias Colorrectales , Proteína Gla de la Matriz , Protrombina , Humanos , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/patología , Masculino , Femenino , Biomarcadores de Tumor/sangre , Persona de Mediana Edad , Protrombina/metabolismo , Proteínas de Unión al Calcio/sangre , Anciano , Proteínas de la Matriz Extracelular/sangre , Precursores de Proteínas/sangre , Adulto , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/secundario , Vitamina K/sangre , Curva ROC , Antígeno CA-19-9/sangre , Antígeno Carcinoembrionario/sangre , Biomarcadores
9.
Front Immunol ; 15: 1363834, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633247

RESUMEN

Background: Hyaluronan-mediated motility receptor (HMMR) is overexpressed in multiple carcinomas and influences the development and treatment of several cancers. However, its role in hepatocellular carcinoma (HCC) remains unclear. Methods: The "limma" and "GSVA" packages in R were used to perform differential expression analysis and to assess the activity of signalling pathways, respectively. InferCNV was used to infer copy number variation (CNV) for each hepatocyte and "CellChat" was used to analyse intercellular communication networks. Recursive partitioning analysis (RPA) was used to re-stage HCC patients. The IC50 values of various drugs were evaluated using the "pRRophetic" package. In addition, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to confirm HMMR expression in an HCC tissue microarray. Flow cytometry (FCM) and cloning, Edu and wound healing assays were used to explore the capacity of HMMR to regulate HCC tumour. Results: Multiple cohort studies and qRT-PCR demonstrated that HMMR was overexpressed in HCC tissue compared with normal tissue. In addition, HMMR had excellent diagnostic performance. HMMR knockdown inhibited the proliferation and migration of HCC cells in vitro. Moreover, high HMMR expression was associated with "G2M checkpoint" and "E2F targets" in bulk RNA and scRNA-seq, and FCM confirmed that HMMR could regulate the cell cycle. In addition, HMMR was involved in the regulation of the tumour immune microenvironment via immune cell infiltration and intercellular interactions. Furthermore, HMMR was positively associated with genomic heterogeneity with patients with high HMMR expression potentially benefitting more from immunotherapy. Moreover, HMMR was associated with poor prognosis in patients with HCC and the re-staging by recursive partitioning analysis (RPA) gave a good prognosis prediction value and could guide chemotherapy and targeted therapy. Conclusion: The results of the present study show that HMMR could play a role in the diagnosis, prognosis, and treatments of patients with HCC based on bulk RNA-seq and scRAN-seq analyses and is a promising molecular marker for HCC.


Asunto(s)
Carcinoma Hepatocelular , Receptores de Hialuranos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Variaciones en el Número de Copia de ADN , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Análisis de Expresión Génica de una Sola Célula , Microambiente Tumoral/genética
10.
Pathology ; 56(4): 516-527, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570266

RESUMEN

Matrix Gla protein (MGP) and trichorhinophalangeal syndrome type 1 (TRPS1) have recently emerged as novel breast-specific immunohistochemical (IHC) markers, particularly for triple-negative breast cancer (TNBC) and metaplastic carcinoma. The present study aimed to validate and compare the expression of MGP, TRPS1 and GATA binding protein 3 (GATA3) in metastatic breast carcinoma (MBC), invasive breast carcinoma (IBC) with special features, including special types of invasive breast carcinoma (IBC-STs) and invasive breast carcinoma of no special type with unique features, and mammary and non-mammary salivary gland-type tumours (SGTs). Among all enrolled cases, MGP, TRPS1 and GATA3 had comparable high positivity for ER/PR-positive (p=0.148) and HER2-positive (p=0.310) breast carcinoma (BC), while GATA3 positivity was significantly lower in TNBC (p<0.001). Similarly, the positive rates of MGP and TRPS1 in MBCs (99.4%), were higher than in GATA3 (90.9%, p<0.001). Among the IBC-STs, 98.4% of invasive lobular carcinomas (ILCs) were positive for all three markers. Among neuroendocrine tumours (NTs), all cases were positive for TRPS1 and GATA3, while MGP positivity was relatively low (81.8%, p=0.313). In the neuroendocrine carcinoma (NC) subgroup, all cases were positive for GATA3 and MGP, while one case was negative for TRPS1. All carcinomas with apocrine differentiation (APOs) were positive for GATA3 and MGP, while only 60% of the cases demonstrated moderate staining for TRPS1. Among mammary SGTs, MGP demonstrated the highest positivity (100%), followed by TRPS1 (96.0%) and GATA3 (72.0%). Positive staining for these markers was also frequently observed in non-mammary SGTs. Our findings further validate the high sensitivity of MGP and TRPS1 in MBCs, IBC-STs, and breast SGTs. However, none of these markers are capable of distinguishing between mammary and non-mammary SGTs.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Proteínas de Unión al Calcio , Proteínas de Unión al ADN , Proteínas de la Matriz Extracelular , Factor de Transcripción GATA3 , Proteína Gla de la Matriz , Proteínas Represoras , Neoplasias de las Glándulas Salivales , Factores de Transcripción , Humanos , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/análisis , Femenino , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Proteínas Represoras/metabolismo , Persona de Mediana Edad , Factores de Transcripción/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/análisis , Neoplasias de las Glándulas Salivales/patología , Neoplasias de las Glándulas Salivales/diagnóstico , Neoplasias de las Glándulas Salivales/metabolismo , Adulto , Proteínas de la Matriz Extracelular/metabolismo , Anciano , Proteínas de Unión al ADN/metabolismo , Inmunohistoquímica , Sensibilidad y Especificidad , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/metabolismo , Anciano de 80 o más Años
11.
Cancer Res ; 84(7): 958-960, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558132

RESUMEN

The extracellular matrix (ECM) has always been studied in the context of the structural support it provides tissues. However, more recently, it has become clear that ECM proteins do more to regulate biological processes relevant to cancer progression: from activating complex signaling pathways to presenting soluble growth factors. In 2009, Ulrich and colleagues provided evidence that the physical properties of the ECM could also contribute to glioblastoma tumor cell proliferation and invasion using tunable hydrogels, emphasizing a role for tumor rigidity in central nervous system cancer progression. Here, we will discuss the results of this landmark article, as well as highlight other work that has shown the importance of tissue stiffness in glioblastoma and other tumor types in the tumor microenvironment. Finally, we will discuss how this research has led to the development of novel treatments for cancer that target tumor rigidity. See related article by Ulrich and colleagues, Cancer Res 2009;69:4167-74.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proliferación Celular , Hidrogeles/química , Microambiente Tumoral
12.
Medicine (Baltimore) ; 103(15): e37473, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608120

RESUMEN

Chronic renal failure (CRF) causes a reduction in glomerular filtration rate and damage to renal parenchyma. Fushengong decoction (FSGD) showed improvement in renal function in CRF rats. This study aims to analyze the differentially expressed proteins in CRF patients treated with Western medicine alone or in combination with FSGD. Sixty patients with CRF recruited from Yongchuan Traditional Chinese Medicine Hospital affiliated to Chongqing Medical University were randomly assigned into control (treated with Western medicine alone) and observation groups (received additional FSGD treatment thrice daily for 8 weeks). The clinical efficacy and changes in serum Bun, serum creatinine, Cystatin C, and transforming growth factor beta 1 (TGF-ß1) before and after treatment were observed. We employed isotope relative labeling absolute quantification labeling and liquid chromatography-mass spectrometry to identify differentially expressed proteins and carried out bioinformatics Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Patients in the observation group showed greater clinical improvement and lower levels of serum Bun, serum creatinine, Cyc-c, and TGF-ß1 than the control group. We identified 32 differentially up-regulated and 52 down-regulated proteins in the observation group. These proteins are involved in the blood coagulation system, protein serine/threonine kinase activity, and TGF-ß, which are closely related to the pathogenesis of CRF. Protein-protein-interaction network analysis indicated that candidate proteins fibronectin 1, fibrinogen alpha chain, vitronectin, and Serpin Family C Member 1 were in the key nodes. This study provided an experimental basis suggesting that FSGD combined with Western medicine could significantly improve renal function and renal fibrosis of CRF patients, which may be through the regulation of fibronectin 1, fibrinogen alpha chain, vitronectin, Serpin Family C Member 1, TGF-ß, and the complement coagulation pathway (see Graphical abstract S1, Supplemental Digital Content, http://links.lww.com/MD/L947).


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Serpinas , Animales , Humanos , Ratas , Creatinina , Proteínas de la Matriz Extracelular , Fibrinógeno , Fibronectinas , Fallo Renal Crónico/tratamiento farmacológico , Insuficiencia Renal Crónica/tratamiento farmacológico , Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta1 , Vitronectina
13.
BMC Cardiovasc Disord ; 24(1): 197, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580957

RESUMEN

BACKGROUND: Heart failure (HF) is a heterogeneous syndrome that affects millions worldwide, resulting in substantial health and economic burdens. However, the molecular mechanism of HF pathogenesis remains unclear. METHODS: HF-related key genes were screened by a bioinformatics approach.The impacts of HAPLN1 knockdown on Angiotensin II (Ang II)-induced AC16 cells were assessed through a series of cell function experiments. Enzyme-linked immunosorbent assay (ELISA) was used to measure levels of oxidative stress and apoptosis-related factors. The HF rat model was induced by subcutaneous injection isoprenaline and histopathologic changes in the cardiac tissue were assessed by hematoxylin and eosin (HE) staining and echocardiographic index. Downstream pathways regulated by HAPLN1 was predicted through bioinformatics and then confirmed in vivo and in vitro by western blot. RESULTS: Six hub genes were screened, of which HAPLN1, FMOD, NPPB, NPPA, and COMP were overexpressed, whereas NPPC was downregulated in HF. Further research found that silencing HAPLN1 promoted cell viability and reduced apoptosis in Ang II-induced AC16 cells. HAPLN1 knockdown promoted left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS), while decreasing left ventricular end-systolic volume (LVESV) in the HF rat model. HAPLN1 knockdown promoted the levels of GSH and suppressed the levels of MDA, LDH, TNF-α, and IL-6. Mechanistically, silencing HAPLN1 activated the PKA pathway, which were confirmed both in vivo and in vitro. CONCLUSION: HAPLN1 knockdown inhibited the progression of HF by activating the PKA pathway, which may provide novel perspectives on the management of HF.


Asunto(s)
Proteínas de la Matriz Extracelular , Insuficiencia Cardíaca , Función Ventricular Izquierda , Animales , Ratas , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Volumen Sistólico , Proteoglicanos/genética , Proteoglicanos/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
14.
FASEB J ; 38(7): e23609, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593345

RESUMEN

PTPRD, a well-established tumor suppressor gene, encodes the protein tyrosine phosphatase-type D. This protein consists of three immunoglobulin-like (Ig) domains, four to eight fibronectin type 3 (FN) domains, a single transmembrane segment, and two cytoplasmic tandem tyrosine phosphatase domains. PTPRD is known to harbor various cancer-associated point mutations. While it is assumed that PTPRD regulates cellular functions as a tumor suppressor through the tyrosine phosphatase activity in the intracellular region, the function of its extracellular domain (ECD) in cancer is not well understood. In this study, we systematically examined the impact of 92 cancer-associated point mutations within the ECD. We found that 69.6% (64 out of 92) of these mutations suppressed total protein expression and/or plasma membrane localization. Notably, almost all mutations (20 out of 21) within the region between the last FN domain and transmembrane segment affected protein expression and/or localization, highlighting the importance of this region for protein stability. We further found that some mutations within the Ig domains adjacent to the glycosaminoglycan-binding pocket enhanced PTPRD's binding ability to heparan sulfate proteoglycans (HSPGs). This interaction is proposed to suppress phosphatase activity. Our findings therefore suggest that HSPG-mediated attenuation of phosphatase activity may be involved in tumorigenic processes through PTPRD dysregulation.


Asunto(s)
Proteoglicanos de Heparán Sulfato , Neoplasias , Humanos , Proteoglicanos de Heparán Sulfato/metabolismo , Mutación Puntual , Proteínas de la Matriz Extracelular/genética , Inmunoglobulinas , Estabilidad Proteica , Tirosina/genética , Monoéster Fosfórico Hidrolasas/genética , Heparitina Sulfato , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo
15.
FASEB J ; 38(7): e23600, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38572599

RESUMEN

Odontoblast differentiation depends on the orderly recruitment of transcriptional factors (TFs) in the transcriptional regulatory network. The depletion of crucial TFs disturbs dynamic alteration of the chromatin landscape and gene expression profile, leading to developmental defects. Our previous studies have revealed that the basic leucine zipper (bZIP) TF family is crucial in odontoblastic differentiation, but the function of bZIP TF family member XBP1 is still unknown. Here, we showed the stage-specific expression patterns of the spliced form Xbp1s during tooth development. Elevated Xbp1 expression and nuclear translocation of XBP1S in mesenchymal stem cells (MSCs) were induced by differentiation medium in vitro. Diminution of Xbp1 expression impaired the odontogenic differentiation potential of MSCs. The further integration of ATAC-seq and RNA-seq identified Hspa9 as a direct downstream target, an essential mitochondrial chaperonin gene that modulated mitochondrial homeostasis. The amelioration of mitochondrial dysfunction rescued the impaired odontogenic differentiation potential of MSCs caused by the diminution of Xbp1. Furthermore, the overexpression of Hspa9 rescued Xbp1-deficient defects in odontoblastic differentiation. Our study illustrates the crucial role of Xbp1 in odontoblastic differentiation via modulating mitochondrial homeostasis and brings evidence to the therapy of mitochondrial diseases caused by genetic defects.


Asunto(s)
Proteínas de la Matriz Extracelular , Células Madre Mesenquimatosas , Proteínas de la Matriz Extracelular/metabolismo , Diferenciación Celular , Factores de Transcripción/genética , Células Madre Mesenquimatosas/metabolismo , Homeostasis
16.
Sci Rep ; 14(1): 9497, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664418

RESUMEN

Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFß/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFß/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFß-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFß-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.


Asunto(s)
Anomalías Múltiples , Proteínas Adaptadoras Transductoras de Señales , Fisura del Paladar , Hipoplasia del Esmalte Dental , Exoftalmia , Fibroblastos , Fibrosis , Encía , Osteosclerosis , Proteómica , Transducción de Señal , Factores de Transcripción , Factor de Crecimiento Transformador beta , Proteínas Señalizadoras YAP , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Encía/metabolismo , Encía/patología , Proteómica/métodos , Fibrosis/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Osteosclerosis/metabolismo , Osteosclerosis/genética , Osteosclerosis/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Hipoplasia del Esmalte Dental/metabolismo , Hipoplasia del Esmalte Dental/genética , Hipoplasia del Esmalte Dental/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Microcefalia/metabolismo , Microcefalia/genética , Microcefalia/patología , Femenino , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Masculino , Transactivadores/metabolismo , Transactivadores/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Quinasa de la Caseína I/metabolismo , Quinasa de la Caseína I/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Amelogénesis Imperfecta/metabolismo , Amelogénesis Imperfecta/genética , Amelogénesis Imperfecta/patología , Células Cultivadas
17.
Am J Physiol Renal Physiol ; 326(6): F1016-F1031, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38601985

RESUMEN

Esm-1, endothelial cell-specific molecule-1, is a susceptibility gene for diabetic kidney disease (DKD) and is a secreted proteoglycan, with notable expression in kidney, which attenuates inflammation and albuminuria. However, little is known about Esm1 expression in mature tissues in the presence or absence of diabetes. We utilized publicly available single-cell RNA sequencing data to characterize Esm1 expression in 27,786 renal endothelial cells (RECs) obtained from three mouse and four human databases. We validated our findings using bulk transcriptome data from 20 healthy subjects and 41 patients with DKD and using RNAscope. In both mice and humans, Esm1 is expressed in a subset of all REC types and represents a minority of glomerular RECs. In patients, Esm1(+) cells exhibit conserved enrichment for blood vessel development genes. With diabetes, these cells are fewer in number and shift expression toward chemotaxis pathways. Esm1 correlates with a majority of genes within these pathways, delineating a glomerular transcriptional polarization reflected by the magnitude of Esm1 deficiency. Diabetes correlates with lower Esm1 expression and with changes in the functional characterization of Esm1(+) cells. Thus, Esm1 appears to be a marker for glomerular transcriptional polarization in DKD.NEW & NOTEWORTHY Esm-1 is primarily expressed in glomerular endothelium in humans. Cells expressing Esm1 exhibit a high degree of conservation in the enrichment of genes related to blood vessel development. In the context of diabetes, these cells are reduced in number and show a significant transcriptional shift toward the chemotaxis pathway. In diabetes, there is a transcriptional polarization in the glomerulus that is reflected by the degree of Esm1 deficiency.


Asunto(s)
Nefropatías Diabéticas , Células Endoteliales , Proteoglicanos , Humanos , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Animales , Proteoglicanos/genética , Proteoglicanos/metabolismo , Células Endoteliales/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Estudios de Casos y Controles , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Transcriptoma , Ratones , Transcripción Genética , Quimiotaxis , Proteínas de Neoplasias
18.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612896

RESUMEN

Osteoarthritis (OA) is a prevalent degenerative joint disorder characterized by cartilage erosion, structural changes, and inflammation. Synovial fibroblasts play a crucial role in OA pathophysiology, with abnormal fibroblastic cells contributing significantly to joint pathology. Fibrocytes, expressing markers of both hematopoietic and stromal cells, are implicated in inflammation and fibrosis, yet their marker and role in OA remain unclear. ENTPD1, an ectonucleotidase involved in purinergic signaling and expressed in specific fibroblasts in fibrotic conditions, led us to speculate that ENTPD1 plays a role in OA pathology by being expressed in fibrocytes. This study aimed to investigate the phenotype of ENTPD1+CD55+ and ENTPD1-CD55+ synovial fibroblasts in OA patients. Proteomic analysis revealed a distinct molecular profile in ENTPD1+CD55+ cells, including the upregulation of fibrocyte markers and extracellular matrix-related proteins. Pathway analysis suggested shared mechanisms between OA and rheumatoid arthritis. Correlation analysis revealed an association between ENTPD1+CD55+ fibrocytes and resting pain in OA. These findings highlight the potential involvement of ENTPD1 in OA pain and suggest avenues for targeted therapeutic strategies. Further research is needed to elucidate the underlying molecular mechanisms and validate potential therapeutic targets.


Asunto(s)
Fibroblastos , Proteómica , Humanos , Membrana Sinovial , Antígenos CD55 , Proteínas de la Matriz Extracelular , Inflamación , Dolor
19.
J Matern Fetal Neonatal Med ; 37(1): 2332914, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38522947

RESUMEN

BACKGROUND: Bronchopulmonary dysplasia (BPD) has a lasting effect on the respiratory function of infants, imposing chronic health burdens. BPD is influenced by various prenatal, postnatal, and genetic factors. This study explored the connection between BPD and home oxygen therapy (HOT), and then we examined the association between HOT and a specific single-nucleotide polymorphism (SNP) in the hyaluronan and proteoglycan link protein 1 (HAPLN1) gene among premature Japanese infants. MATERIALS AND METHODS: Prenatal and postnatal data from 212 premature infants were collected and analyzed by four SNPs (rs975563, rs10942332, rs179851, and rs4703570) around HAPLN1 using the TaqMan polymerase chain reaction method. The clinical characteristics and genotype frequencies of HAPLN1 were assessed and compared between HOT and non-HOT groups. RESULTS: Individuals with AA/AC genotypes in the rs4703570 SNP exhibited significantly higher HOT rates at discharge than those with CC homozygotes (odds ratio, 1.20, 95% confidence interval, 1.07-1.35, p = .038). A logistic regression analysis determined that CC homozygotes in the rs4703570 SNP did not show a statistically significant independent association with HOT at discharge. CONCLUSIONS: Although our study did not reveal a correlation between HAPLN1 and the onset of BPD, we observed that individuals with CC homozygosity at the rs4703570 SNP exhibit a reduced risk of HOT.


Asunto(s)
Displasia Broncopulmonar , Proteínas de la Matriz Extracelular , Ácido Hialurónico , Recién Nacido , Lactante , Femenino , Humanos , Embarazo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/terapia , Japón , Recien Nacido Prematuro , Proteoglicanos/genética , Oxígeno
20.
Nat Aging ; 4(3): 350-363, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38472454

RESUMEN

Melanoma, the most lethal form of skin cancer, often has worse outcomes in older patients. We previously demonstrated that an age-related decrease in the secreted extracellular matrix (ECM) protein HAPLN1 has a role in slowing melanoma progression. Here we show that HAPLN1 in the dermal ECM is sufficient to maintain the integrity of melanoma-associated blood vessels, as indicated by increased collagen and VE-cadherin expression. Specifically, we show that HAPLN1 in the ECM increases hyaluronic acid and decreases endothelial cell expression of ICAM1. ICAM1 phosphorylates and internalizes VE-cadherin, a critical determinant of vascular integrity, resulting in permeable blood vessels. We found that blocking ICAM1 reduces tumor size and metastasis in older mice. These results suggest that HAPLN1 alters endothelial ICAM1expression in an indirect, matrix-dependent manner. Targeting ICAM1 could be a potential treatment strategy for older patients with melanoma, emphasizing the role of aging in tumorigenesis.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Anciano , Animales , Humanos , Ratones , Colágeno/metabolismo , Proteínas de la Matriz Extracelular/genética , Molécula 1 de Adhesión Intercelular/genética , Melanoma/genética , Neoplasias Cutáneas/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA