Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 955
Filtrar
1.
New Phytol ; 242(6): 2787-2802, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38693568

RESUMEN

Root-knot nematodes (RKN; Meloidogyne species) are plant pathogens that introduce several effectors in their hosts to facilitate infection. The actual targets and functioning mechanism of these effectors largely remain unexplored. This study illuminates the role and interplay of the Meloidogyne javanica nematode effector ROS suppressor (Mj-NEROSs) within the host plant environment. Mj-NEROSs suppresses INF1-induced cell death as well as flg22-induced callose deposition and reactive oxygen species (ROS) production. A transcriptome analysis highlighted the downregulation of ROS-related genes upon Mj-NEROSs expression. NEROSs interacts with the plant Rieske's iron-sulfur protein (ISP) as shown by yeast-two-hybrid and bimolecular fluorescence complementation. Secreted from the subventral pharyngeal glands into giant cells, Mj-NEROSs localizes in the plastids where it interacts with ISP, subsequently altering electron transport rates and ROS production. Moreover, our results demonstrate that isp Arabidopsis thaliana mutants exhibit increased susceptibility to M. javanica, indicating ISP importance for plant immunity. The interaction of a nematode effector with a plastid protein highlights the possible role of root plastids in plant defense, prompting many questions on the details of this process.


Asunto(s)
Arabidopsis , Complejo III de Transporte de Electrones , Inmunidad de la Planta , Plastidios , Especies Reactivas de Oxígeno , Tylenchoidea , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/parasitología , Arabidopsis/inmunología , Arabidopsis/genética , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Animales , Plastidios/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Unión Proteica , Mutación/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética
2.
Sci Rep ; 14(1): 10030, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693283

RESUMEN

Ditylenchus destructor is a migratory plant-parasitic nematode that severely harms many agriculturally important crops. The control of this pest is difficult, thus efficient strategies for its management in agricultural production are urgently required. Cathepsin L-like cysteine protease (CPL) is one important protease that has been shown to participate in various physiological and pathological processes. Here we decided to characterize the CPL gene (Dd-cpl-1) from D. destructor. Analysis of Dd-cpl-1 gene showed that Dd-cpl-1 gene contains a signal peptide, an I29 inhibitor domain with ERFNIN and GNFD motifs, and a peptidase C1 domain with four conserved active residues, showing evolutionary conservation with other nematode CPLs. RT-qPCR revealed that Dd-cpl-1 gene displayed high expression in third-stage juveniles (J3s) and female adults. In situ hybridization analysis demonstrated that Dd-cpl-1 was expressed in the digestive system and reproductive organs. Silencing Dd-cpl-1 in 1-cell stage eggs of D. destructor by RNAi resulted in a severely delay in development or even in abortive morphogenesis during embryogenesis. The RNAi-mediated silencing of Dd-cpl-1 in J2s and J3s resulted in a developmental arrest phenotype in J3 stage. In addition, silencing Dd-cpl-1 gene expression in female adults led to a 57.43% decrease in egg production. Finally, Dd-cpl-1 RNAi-treated nematodes showed a significant reduction in host colonization and infection. Overall, our results indicate that Dd-CPL-1 plays multiple roles in D. destructor ontogenesis and could serve as a new potential target for controlling D. destructor.


Asunto(s)
Catepsina L , Animales , Catepsina L/genética , Catepsina L/metabolismo , Interferencia de ARN , Femenino , Silenciador del Gen , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Filogenia , Tylenchoidea/genética , Tylenchoidea/fisiología , Secuencia de Aminoácidos
3.
Biochem J ; 481(11): 717-739, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38752933

RESUMEN

Typical Kunitz proteins (I2 family of the MEROPS database, Kunitz-A family) are metazoan competitive inhibitors of serine peptidases that form tight complexes of 1:1 stoichiometry, mimicking substrates. The cestode Echinococcus granulosus, the dog tapeworm causing cystic echinococcosis in humans and livestock, encodes an expanded family of monodomain Kunitz proteins, some of which are secreted to the dog host interface. The Kunitz protein EgKU-7 contains, in addition to the Kunitz domain with the anti-peptidase loop comprising a critical arginine, a C-terminal extension of ∼20 amino acids. Kinetic, electrophoretic, and mass spectrometry studies using EgKU-7, a C-terminally truncated variant, and a mutant in which the critical arginine was substituted by alanine, show that EgKU-7 is a tight inhibitor of bovine and canine trypsins with the unusual property of possessing two instead of one site of interaction with the peptidases. One site resides in the anti-peptidase loop and is partially hydrolyzed by bovine but not canine trypsins, suggesting specificity for the target enzymes. The other site is located in the C-terminal extension. This extension can be hydrolyzed in a particular arginine by cationic bovine and canine trypsins but not by anionic canine trypsin. This is the first time to our knowledge that a monodomain Kunitz-A protein is reported to have two interaction sites with its target. Considering that putative orthologs of EgKU-7 are present in other cestodes, our finding unveils a novel piece in the repertoire of peptidase-inhibitor interactions and adds new notes to the evolutionary host-parasite concerto.


Asunto(s)
Echinococcus granulosus , Proteínas del Helminto , Echinococcus granulosus/enzimología , Echinococcus granulosus/genética , Echinococcus granulosus/metabolismo , Animales , Perros , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/química , Inhibidores de Tripsina/metabolismo , Inhibidores de Tripsina/química , Bovinos , Secuencia de Aminoácidos , Tripsina/química , Tripsina/metabolismo
4.
J Proteomics ; 301: 105191, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697285

RESUMEN

Cystic echinococcosis is a zoonotic disease resulting from infection caused by the larval stage of Echinococcus granulosus. This study aimed to assess the specific proteins that are potential candidates for the development of a vaccine against E. granulosus. The data-independent acquisition approach was employed to identify differentially expressed proteins (DEPs) in E. granulosus samples. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was employed to identify several noteworthy proteins. Results: The DEPs in E. granulosus samples were identified (245 pericystic wall vs. parasite-free yellowish granuloma (PYG, 1725 PY vs. PYG, 2274 PN vs. PYG). Further examination of these distinct proteins revealed their predominant enrichment in metabolic pathways, amyotrophic lateral sclerosis, and neurodegeneration-associated pathways. Notably, among these DEPs, SH3BGRL, MST1, TAGLN2, FABP5, UBE2V2, and RARRES2 exhibited significantly higher expression levels in the PYG group compared with the PY group (P < 0.05). The findings may contribute to the understanding of the pathological mechanisms underlying echinococcosis, providing valuable insights into the development of more effective diagnostic tools, treatment modalities, and preventive strategies. SIGNIFICANCE: CE is a major public health hazard in the western regions of China, Central Asia, South America, the Mediterranean countries, and eastern Africa. Echinococcus granulosus is responsible for zoonotic disease through infection Our analysis focuses on the proteins in various samples by data-dependent acquisition (DIA) for proteomic analysis. The importance of this research is to develop new strategies and targets to protect against E. granulosus infections in humans.


Asunto(s)
Echinococcus granulosus , Proteómica , Proteómica/métodos , Humanos , Echinococcus granulosus/metabolismo , Animales , Proteínas del Helminto/metabolismo , Proteínas del Helminto/análisis , Equinococosis Hepática/metabolismo , Equinococosis Hepática/parasitología , Proteoma/análisis , Proteoma/metabolismo
5.
Acta Trop ; 255: 107247, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729330

RESUMEN

Fatty acid binding proteins (FABPs) have emerged as attractive vaccination candidates for several platyhelminth species. To explore the physiological functions of Echinococcus multilocularis (E. multilocularis) FABP, the molecular characteristics of EmFABP1 were analyzed by online software, and the regulatory roles of rEmFABP1 protein in murine macrophages were further investigated. The emfabp1 gene encodes 133 amino acids with the characteristic ß-barrel shape of the cytoplasmic FABP family. Natural EmFABP1 protein is predominantly expressed in protoscoleces tegument and germinal layer cells and is also detected in cyst fluid and exosomes of E. multilocularis. rEmFABP1 protein demonstrated a notable suppression of phagocytic activity and nitric oxide production in murine macrophages. Additionally, the protein was observed to promote apoptosis and regulate cytokine expression in macrophages. These findings suggested that E. multilocularis FABP1 is critical in modifying macrophage physiological processes and that this protein may have immunomodulatory roles during infection.


Asunto(s)
Echinococcus multilocularis , Proteínas de Unión a Ácidos Grasos , Proteínas del Helminto , Macrófagos , Fagocitosis , Animales , Echinococcus multilocularis/genética , Echinococcus multilocularis/inmunología , Macrófagos/inmunología , Macrófagos/parasitología , Ratones , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Proteínas del Helminto/inmunología , Óxido Nítrico/metabolismo , Apoptosis , Citocinas/metabolismo , Células RAW 264.7
6.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673861

RESUMEN

Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.


Asunto(s)
Arabidopsis , Betaína , Péptido Sintasas , Tylenchoidea , Betaína/metabolismo , Animales , Tylenchoidea/metabolismo , Tylenchoidea/genética , Arabidopsis/parasitología , Arabidopsis/metabolismo , Arabidopsis/genética , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Nematodos/metabolismo , Nematodos/genética
7.
PLoS Pathog ; 20(4): e1012153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598555

RESUMEN

Schistosomiasis is a fatal zoonotic parasitic disease that also threatens human health. The main pathological features of schistosomiasis are granulomatous inflammation and subsequent liver fibrosis, which is a complex, chronic, and progressive disease. Extracellular vesicles (EVs) derived from schistosome eggs are broadly involved in host-parasite communication and act as important contributors to schistosome-induced liver fibrosis. However, it remains unclear whether substances secreted by the EVs of Schistosoma japonicum, a long-term parasitic "partner" in the hepatic portal vein of the host, also participate in liver fibrosis. Here, we report that EVs derived from S. japonicum worms attenuated liver fibrosis by delivering sja-let-7 into hepatic stellate cells (HSCs). Mechanistically, activation of HSCs was reduced by targeting collagen type I alpha 2 chain (Col1α2) and downregulation of the TGF-ß/Smad signaling pathway both in vivo and in vitro. Overall, these results contribute to further understanding of the molecular mechanisms underlying host-parasite interactions and identified the sja-let-7/Col1α2/TGF-ß/Smad axis as a potential target for treatment of schistosomiasis-related liver fibrosis.


Asunto(s)
Vesículas Extracelulares , Cirrosis Hepática , Schistosoma japonicum , Esquistosomiasis Japónica , Animales , Vesículas Extracelulares/metabolismo , Cirrosis Hepática/parasitología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Esquistosomiasis Japónica/metabolismo , Esquistosomiasis Japónica/parasitología , Esquistosomiasis Japónica/patología , Ratones , Interacciones Huésped-Parásitos/fisiología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/parasitología , Células Estrelladas Hepáticas/patología , MicroARNs/metabolismo , MicroARNs/genética , Transducción de Señal , Humanos , Proteínas del Helminto/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ratones Endogámicos C57BL
8.
Exp Parasitol ; 261: 108765, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679126

RESUMEN

Toxocara is a genus of nematodes, which infects a variety of hosts, principally dogs and cats, with potential zoonotic risks to humans. Toxocara spp. larvae are capable of migrating throughout the host tissues, eliciting eosinophilic and granulomatous reactions, while surviving for extended periods of time, unchanged, in the host. It is postulated that larvae are capable of altering the host's immune response through the release of excretory-secretory products, containing both proteins and extracellular vesicles (EVs). The study of EVs has increased exponentially in recent years, largely due to their potential use as a diagnostic tool, and in molecular therapy. To this end, there have been multiple isolation methods described for the study of EVs. Here, we use nanoparticle tracking to compare the yield, size distribution, and % labelling of EV samples acquired through various reported methods, from larval cultures of Toxocara canis and T. cati containing Toxocara excretory-secretory products (TES). The methods tested include ultracentrifugation, polymer precipitation, magnetic immunoprecipitation, size exclusion chromatography, and ultrafiltration. Based on these findings, ultrafiltration produces the best results in terms of yield, expected particle size, and % labelling of sample. Transmission electron microscopy confirmed the presence of EVs with characteristic cup-shaped morphology. These findings can serve as a guide for those investigating EVs, particularly those released from multicellular organisms, such as helminths, for which few comparative analyses have been performed.


Asunto(s)
Cromatografía en Gel , Exosomas , Vesículas Extracelulares , Microscopía Electrónica de Transmisión , Toxocara canis , Toxocara , Ultracentrifugación , Animales , Toxocara/aislamiento & purificación , Toxocara/metabolismo , Toxocara/química , Toxocara canis/química , Exosomas/química , Exosomas/ultraestructura , Exosomas/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestructura , Vesículas Extracelulares/metabolismo , Perros , Larva , Inmunoprecipitación , Toxocariasis/parasitología , Gatos , Nanopartículas/química , Tamaño de la Partícula , Proteínas del Helminto/análisis , Proteínas del Helminto/metabolismo , Proteínas del Helminto/química , Proteínas del Helminto/aislamiento & purificación
9.
Plant J ; 118(5): 1500-1515, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38516730

RESUMEN

Meloidogyne incognita is one of the most widely distributed plant-parasitic nematodes and causes severe economic losses annually. The parasite produces effector proteins that play essential roles in successful parasitism. Here, we identified one such effector named MiCE108, which is exclusively expressed within the nematode subventral esophageal gland cells and is upregulated in the early parasitic stage of M. incognita. A yeast signal sequence trap assay showed that MiCE108 contains a functional signal peptide for secretion. Virus-induced gene silencing of MiCE108 impaired the parasitism of M. incognita in Nicotiana benthamiana. The ectopic expression of MiCE108 in Arabidopsis suppressed the deposition of callose, the generation of reactive oxygen species, and the expression of marker genes for bacterial flagellin epitope flg22-triggered immunity, resulting in increased susceptibility to M. incognita, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst) DC3000. The MiCE108 protein physically associates with the plant defense protease RD21A and promotes its degradation via the endosomal-dependent pathway, or 26S proteasome. Consistent with this, knockout of RD21A compromises the innate immunity of Arabidopsis and increases its susceptibility to a broad range of pathogens, including M. incognita, strongly indicating a role in defense against this nematode. Together, our data suggest that M. incognita deploys the effector MiCE108 to target Arabidopsis cysteine protease RD21A and affect its stability, thereby suppressing plant innate immunity and facilitating parasitism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Nicotiana , Enfermedades de las Plantas , Tylenchoidea , Animales , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/parasitología , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Nicotiana/genética , Nicotiana/parasitología , Nicotiana/inmunología , Nicotiana/metabolismo , Pseudomonas syringae/fisiología , Pseudomonas syringae/patogenicidad , Botrytis/fisiología , Botrytis/patogenicidad , Proteasas de Cisteína/metabolismo , Proteasas de Cisteína/genética , Inmunidad de la Planta , Interacciones Huésped-Parásitos , Raíces de Plantas/parasitología , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética
10.
PLoS Negl Trop Dis ; 18(1): e0011872, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190388

RESUMEN

BACKGROUND: Gut epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism by which larval penetration of gut epithelium is not completely elucidated. Previous studies showed that proteases secreted by T. spiralis intestinal infective larvae (IIL) degraded tight junctions (TJs) proteins of gut epithelium and mediated larval invasion. A new T. spiralis serine proteinase (TsSPc) was identified in the IIL surface proteins and ES proteins, rTsSPc bound to the intestinal epithelial cell (IECs) and promoted larval invasion of IECs. The aim of this study was to characterize the interacted proteins of TsSPc and IECs, and to investigate the molecular mechanisms of TsSPc mediating larval invasion of gut mucosa. METHODOLOGY/PRINCIPAL FINDING: IIFT results showed natural TsSPc was detected in infected murine intestine at 6, 12 hours post infection (hpi) and 3 dpi. The results of GST pull-down, mass spectrometry (MS) and Co-IP indicated that rTsSPc bound and interacted specifically with receptor for activated protein C kinase 1 (RACK1) in Caco-2 cells. rTsSPc did not directly hydrolyze the TJs proteins. qPCR and Western blot showed that rTsSPc up-regulated RACK1 expression, activated MAPK/ERK1/2 pathway, reduced the expression levels of gut TJs (occludin and claudin-1) and adherent protein E-cad, increased the paracellular permeability and damaged the integrity of intestinal epithelial barrier. Moreover, the RACK1 inhibitor HO and ERK1/2 pathway inhibitor PD98059 abolished the rTsSPc activating ERK1/2 pathway, they also inhibited and abrogated the rTsSPc down-regulating expression of occludin, claudin-1 and E-cad in Caco-2 monolayer and infected murine intestine, impeded larval invasion and improved intestinal epithelial integrity and barrier function, reduced intestinal worm burdens and alleviated intestinal inflammation. CONCLUSIONS: rTsSPc bound to RACK1 receptor in gut epithelium, activated MAPK/ERK1/2 pathway, decreased the expression of gut epithelial TJs proteins and disrupted the epithelial integrity, consequently mediated T. spiralis larval invasion of gut epithelium. The results are valuable to understand T. spiralis invasion mechanism, and TsSPc might be regarded as a vaccine target against T. spiralis invasion and infection.


Asunto(s)
Trichinella spiralis , Triquinelosis , Humanos , Animales , Ratones , Larva/fisiología , Serina Proteasas/genética , Células CACO-2 , Claudina-1/metabolismo , Sistema de Señalización de MAP Quinasas , Ocludina/metabolismo , Proteínas del Helminto/metabolismo , Células Epiteliales/metabolismo , Ratones Endogámicos BALB C , Mucosa Intestinal/metabolismo , Receptores de Cinasa C Activada/metabolismo , Proteínas de Neoplasias/genética
11.
Int J Biol Macromol ; 257(Pt 2): 128728, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092101

RESUMEN

Trichinellosis is a zoonotic parasitic disease that poses threats to human health, the meat industry, food safety, and huge financial losses. The critical stage of Trichinella spiralis (T. spiralis) infection is the invasion of intestinal larvae into the host's intestinal epithelial cells (IECs). T. spiralis Cathepsin B (TsCB) specifically interacts with IECs to facilitate the invasion of larvae. This study aims to look at how TsCB affects mouse IECs. TsCB was successfully cloned, expressed, and characterized, demonstrating its natural cysteine protease hydrolysis activity. A total of 140 proteins that interact with rTsCB were identified by GST pull-down combined with LC-MS/MS, including type I collagen, an essential component of the host's intestinal epithelial barrier system and intimately related to intestinal epithelial damage. TsCB transcription and expression levels rise, whereas type I collagen in the host's intestinal mucosa declines when the T. spiralis larvae invaded. Besides, it was discovered that TsCB bound to and degraded type I collagen of the host's intestine. This research can serve as a foundation for clarifying how T. spiralis invades the host's intestinal barrier and might provide information on potential targets for the creation of novel treatments to treat parasite illnesses.


Asunto(s)
Trichinella spiralis , Triquinelosis , Animales , Ratones , Humanos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Catepsina B/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Intestinos , Triquinelosis/metabolismo , Triquinelosis/parasitología , Larva/metabolismo , Ratones Endogámicos BALB C , Proteínas del Helminto/metabolismo
12.
Acta Trop ; 249: 107076, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37977254

RESUMEN

The research aimed to describe a new Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1) and investigate its functions in the larval invasion of intestinal epithelial cells (IECs). The gene TsDPP1 was successfully replicated and produced in Escherichia coli BL21 (DE3), showing a strong immune response. TsDPP1 was detected in diverse stages of T. spiralis and showed significant expression in the intestine infective larvae (IIL) and adult worms at 6 days post infection, as confirmed by qPCR and Western blot analysis. The primary localization of TsDPP1 in this parasite was observed in cuticles, stichosomes, and embryos by using the indirect immunofluorescence assay (IIFA). rTsDPP1 exhibited the enzymatic function of natural dipeptidyl peptidase and showed specific binding to IECs, and the binding site was found to be localized on cell membrane. Following transfection with dsRNA-TsDPP1, the expression of TsDPP1 mRNA and protein in muscle larvae (ML) were decreased by approximately 63.52 % and 58.68 %, correspondingly. The activity of TsDPP1 in the ML and IIL treated with dsRNA-TsDPP1 was reduced by 42.98 % and 45.07 %, respectively. The acceleration of larval invasion of IECs was observed with rTsDPP1, while the invasion was suppressed by anti-rTsDPP1 serum. The ability of the larvae treated with dsRNA-TsDPP1 to invade IECs was hindered by 31.23 %. In mice infected with dsRNA-treated ML, the intestinal IIL, and adults experienced a significant decrease in worm burdens and a noticeable reduction in adult female length and fecundity compared to the PBS group. These findings indicated that TsDPP1 significantly impedes the invasion, growth, and reproductive capacity of T. spiralis in intestines, suggesting its potential as a target for anti-Trichinella vaccines.


Asunto(s)
Catepsina C , Proteínas del Helminto , Mucosa Intestinal , Trichinella spiralis , Triquinelosis , Animales , Femenino , Ratones , Células Epiteliales/parasitología , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Larva/patogenicidad , Ratones Endogámicos BALB C , Trichinella spiralis/genética , Trichinella spiralis/patogenicidad , Triquinelosis/parasitología , Catepsina C/genética , Catepsina C/metabolismo , Mucosa Intestinal/parasitología
13.
Front Cell Infect Microbiol ; 13: 1306567, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38145042

RESUMEN

Human trichinellosis is a parasitic infection caused by roundworms belonging to the genus Trichinella, especially Trichinella spiralis. Early and accurate clinical diagnoses of trichinellosis are required for efficacious prognosis and treatment. Current drug therapies are limited by antiparasitic resistance, poor absorption, and an inability to kill the encapsulating muscle-stage larvae. Therefore, reliable biomarkers and drug targets for novel diagnostic approaches and anthelmintic drugs are required. In this study, metabolite profiles of T. spiralis adult worms and muscle larvae were obtained using mass spectrometry-based metabolomics. In addition, metabolite-based biomarkers of T. spiralis excretory-secretory products and their related metabolic pathways were characterized. The metabolic profiling identified major, related metabolic pathways involving adenosine monophosphate (AMP)-dependent synthetase/ligase and glycolysis/gluconeogenesis in T. spiralis adult worms and muscle larvae, respectively. These pathways are potential drug targets for the treatment of the intestinal and muscular phases of infection. The metabolome of larva excretory-secretory products was characterized, with amino acid permease and carbohydrate kinase being identified as key metabolic pathways. Among six metabolites, decanoyl-l-carnitine and 2,3-dinor-6-keto prostaglandin F1α-d9 were identified as potential metabolite-based biomarkers that might be related to the host inflammatory processes. In summary, this study compared the relationships between the metabolic profiles of two T. spiralis growth stages. Importantly, the main metabolites and metabolic pathways identified may aid the development of novel clinical diagnostics and therapeutics for human trichinellosis and other related helminthic infections.


Asunto(s)
Trichinella spiralis , Triquinelosis , Animales , Humanos , Triquinelosis/diagnóstico , Antígenos Helmínticos , Proteínas del Helminto/metabolismo , Larva/fisiología , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Antihelmínticos , Músculos , Biomarcadores
14.
Parasit Vectors ; 16(1): 350, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803469

RESUMEN

BACKGROUND: Cystic echinococcosis (CE) is a life-threatening zoonotic disease caused by the larval stage of Echinococcus granulosus sensu lato, which employs various strategies to evade the host immune system for survival. Recent advances have revealed the role of annexins as excretory/secretory products, providing new insights into the immune regulation by these proteins in the pathogenesis of CE. METHODS: Echinococcus granulosus annexin B proteins EgANXB2, EgANXB18, EgANXB20, and EgANXB23 were cloned, expressed, and analyzed using bioinformatic tools. Membrane binding analysis was used to assess their bioactivity, while their immunoreactivity and tissue distribution characteristics were determined experimentally using western blotting and immunofluorescence staining, respectively. Furthermore, quantitative real-time reverse transcription PCR (qRT-PCR) was used to analyze the mRNA expression profiles of EgANXBs in different developmental stages of E. granulosus. Finally, immunofluorescence staining, cell counting kit 8 assays, flow cytometry, transwell migration assays, and qRT-PCR were used to evaluate the functional effects of rEgANXB18 and rEgANXB20 on mouse peripheral blood mononuclear cells (PBMCs). RESULTS: In this study, we identified four EgANXBs with conserved protein structures and calcium-dependent phospholipid binding activities. rEgANXBs were recognized by serum from sheep infected with E. granulosus and distributed in the germinal layer of fertile cysts. Interestingly, transcription levels of the four EgANXBs were significantly higher in protoscoleces than in 28-day strobilated worms. Moreover, we demonstrated that rEgANXB18 and rEgANXB20 were secretory proteins that could bind to PBMCs and regulate their function. Specifically, rEgANXB18 inhibited cell proliferation and migration while promoting cell apoptosis, NO production, and cytokine profile shifting. In contrast, rEgANXB20 showed limited effects on apoptosis but inhibited NO production. CONCLUSIONS: Our findings suggested that among the four identified EgANXBs, EgANXB2 and EgANXB23 might play a pivotal role for the development of protoscoleces, while EgANXB18 and EgANXB20, as secretory proteins, appeared to participate in the host-parasite interaction by regulating the function of immune cells.


Asunto(s)
Equinococosis , Echinococcus granulosus , Enfermedades de las Ovejas , Animales , Ratones , Ovinos , Anexinas/genética , Leucocitos Mononucleares/metabolismo , Equinococosis/parasitología , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo
15.
Parasit Vectors ; 16(1): 362, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845695

RESUMEN

BACKGROUND: Ischemia-induced inflammatory response is the main pathological mechanism of myocardial infarction (MI)-caused heart tissue injury. It has been known that helminths and worm-derived proteins are capable of modulating host immune response to suppress excessive inflammation as a survival strategy. Excretory/secretory products from Trichinella spiralis adult worms (Ts-AES) have been shown to ameliorate inflammation-related diseases. In this study, Ts-AES were used to treat mice with MI to determine its therapeutic effect on reducing MI-induced heart inflammation and the immunological mechanism involved in the treatment. METHODS: The MI model was established by the ligation of the left anterior descending coronary artery, followed by the treatment of Ts-AES by intraperitoneal injection. The therapeutic effect of Ts-AES on MI was evaluated by measuring the heart/body weight ratio, cardiac systolic and diastolic functions, histopathological change in affected heart tissue and observing the 28-day survival rate. The effect of Ts-AES on mouse macrophage polarization was determined by stimulating mouse bone marrow macrophages in vitro with Ts-AES, and the macrophage phenotype was determined by flow cytometry. The protective effect of Ts-AES-regulated macrophage polarization on hypoxic cardiomyocytes was determined by in vitro co-culturing Ts-AES-induced mouse bone marrow macrophages with hypoxic cardiomyocytes and cardiomyocyte apoptosis determined by flow cytometry. RESULTS: We observed that treatment with Ts-AES significantly improved cardiac function and ventricular remodeling, reduced pathological damage and mortality in mice with MI, associated with decreased pro-inflammatory cytokine levels, increased regulatory cytokine expression and promoted macrophage polarization from M1 to M2 type in MI mice. Ts-AES-induced M2 macrophage polarization also reduced apoptosis of hypoxic cardiomyocytes in vitro. CONCLUSIONS: Our results demonstrate that Ts-AES ameliorates MI in mice by promoting the polarization of macrophages toward the M2 type. Ts-AES is a potential pharmaceutical agent for the treatment of MI and other inflammation-related diseases.


Asunto(s)
Infarto del Miocardio , Trichinella spiralis , Ratones , Animales , Trichinella spiralis/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Modelos Animales de Enfermedad , Inflamación/metabolismo , Macrófagos , Citocinas/metabolismo , Proteínas del Helminto/metabolismo , Ratones Endogámicos C57BL
16.
BMC Genomics ; 24(1): 296, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264326

RESUMEN

BACKGROUND: Plant-parasitic nematodes (PPNs) that cause most damage include root-knot nematodes (RKNs) which are a major impediment to crop production. Root-knot nematodes, like other parasites, secrete proteins which are required for parasite proliferation and survival within the host during the infection process. RESULTS: Here, we used various computational tools to predict and identify classically and non-classically secreted proteins encoded in the Meloidogyne javanica genome. Furthermore, functional annotation analysis was performed using various integrated bioinformatic tools to determine the biological significance of the predicted secretome. In total, 7,458 proteins were identified as secreted ones. A large percentage of this secretome is comprised of small proteins of ≤ 300 aa sequence length. Functional analyses showed that M. javanica secretome comprises cell wall degrading enzymes for facilitating nematode invasion, and migration by disintegrating the complex plant cell wall components. In addition, peptidases and peptidase inhibitors are an important category of M. javanica secretome involved in compatible host-nematode interactions. CONCLUSION: This study identifies the putative secretome encoded in the M. javanica genome. Future experimental validation analyses can greatly benefit from this global analysis of M. javanica secretome. Equally, our analyses will advance knowledge of the interaction between plants and nematodes.


Asunto(s)
Tylenchida , Tylenchoidea , Animales , Tylenchoidea/genética , Tylenchoidea/metabolismo , Secretoma , Enfermedades de las Plantas/genética , Tylenchida/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo
17.
Int J Parasitol ; 53(8): 427-434, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36610555

RESUMEN

The parasitic flatworm ion channel, TRPMPZQ, is a non-selective cation channel that mediates Ca2+ entry and membrane depolarization when activated by the anthelmintic drug, praziquantel (PZQ). TRPMPZQ is conserved in all platyhelminth genomes scrutinized to date, with the sensitivity of TRPMPZQ in any particular flatworm correlating with the overall sensitivity of the worm to PZQ. Conservation of this channel suggests it plays a role in flatworm physiology, but the nature of the endogenous cues that activate this channel are currently unknown. Here, we demonstrate that TRPMPZQ is activated in a ligand-independent manner by membrane stretch, with the electrophysiological signature of channel opening events being identical whether evoked by negative pressure, or by PZQ. TRPMPZQ is therefore a multimodal ion channel gated by both physical and chemical cues. The mechanosensitivity of TRPMPZQ is one route for endogenous activation of this ion channel that holds relevance for schistosome physiology given the persistent pressures and mechanical cues experienced throughout the parasite life cycle.


Asunto(s)
Proteínas del Helminto , Schistosoma mansoni , Canales Catiónicos TRPM , Canales Catiónicos TRPM/metabolismo , Proteínas del Helminto/metabolismo , Humanos , Animales , Presión , Adenosina Difosfato Ribosa/metabolismo
18.
New Phytol ; 237(4): 1374-1390, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36349395

RESUMEN

Autophagy, an intracellular degradation system conserved in eukaryotes, has been increasingly recognized as a key battlefield in plant-pathogen interactions. However, the role of plant autophagy in nematode parasitism is mostly unknown. We report here the identification of a novel and conserved effector, Nematode Manipulator of Autophagy System 1 (NMAS1), from plant-parasitic cyst nematodes (Heterodera and Globodera spp.). We used molecular and genetic analyses to demonstrate that NMAS1 is required for nematode parasitism. The NMAS1 effectors are potent suppressors of reactive oxygen species (ROS) induced by flg22 and cell death mediated by immune receptors in Nicotiana benthamiana, suggesting a key role of NMAS1 effectors in nematode virulence. Arabidopsis atg mutants defective in autophagy showed reduced susceptibility to nematode infection. The NMAS1 effectors contain predicted AuTophaGy-related protein 8 (ATG8)-interacting motif (AIM) sequences. In planta protein-protein interaction assays further demonstrated that NMAS1 effectors specifically interact with host plant ATG8 proteins. Interestingly, mutation in AIM2 of GrNMAS1 from the potato cyst nematode Globodera rostochiensis abolishes its interaction with potato StATG8 proteins and its activity in ROS suppression. Collectively, our results reveal for the first time that cyst nematodes employ a conserved AIM-containing virulence effector capable of targeting a key component of host autophagy to promote disease.


Asunto(s)
Arabidopsis , Nematodos , Tylenchoidea , Animales , Virulencia , Especies Reactivas de Oxígeno/metabolismo , Proteínas del Helminto/metabolismo , Nematodos/metabolismo , Proteínas de Plantas/metabolismo , Autofagia , Tylenchoidea/fisiología , Enfermedades de las Plantas/genética
19.
PLoS Negl Trop Dis ; 16(11): e0010909, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350897

RESUMEN

BACKGROUND: Clonorchis sinensis requires bile acid transporters as this fluke inhabits bile juice-filled biliary ducts, which provide an extreme environment. Clonorchis sinensis sodium-bile acid co-transporter (CsSBAT) is indispensable for the fluke's survival in the final host, as it circulates taurocholate and prevents bile toxicity in the fluke; hence, it is recognized as a useful drug target. METHODOLOGY AND PRINCIPAL FINDINGS: In the present study, using structure-based virtual screening approach, we presented inhibitor candidates targeting a bile acid-binding pocket of CsSBAT. CsSBAT models were built using tertiary structure modeling based on a bile acid transporter template (PDB ID: 3zuy and 4n7x) and were applied into AutoDock Vina for competitive docking simulation. First, potential compounds were identified from PubChem (holding more than 100,000 compounds) by applying three criteria: i) interacting more favorably with CsSBAT than with a human homolog, ii) intimate interaction to the inward- and outward-facing conformational states, iii) binding with CsSBAT preferably to natural bile acids. Second, two compounds were identified following the Lipinski's rule of five. Third, other two compounds of molecular weight higher than 500 Da (Mr > 500 Da) were presumed to efficiently block the transporter via a feasible rational screening strategy. Of these candidates, compound 9806452 exhibited the least hepatotoxicity that may enhance drug-likeness properties. CONCLUSIONS: It is proposed that compound 9806452 act as a potential inhibitor toward CsSBAT and further studies are warranted for drug development process against clonorchiasis.


Asunto(s)
Clonorquiasis , Clonorchis sinensis , Fasciola hepatica , Simportadores , Animales , Humanos , Clonorchis sinensis/metabolismo , Fasciola hepatica/metabolismo , Simulación de Dinámica Molecular , Sodio , Carcinógenos , Proteínas del Helminto/metabolismo , Clonorquiasis/tratamiento farmacológico , Clonorquiasis/diagnóstico , Ácidos y Sales Biliares/farmacología
20.
Vet Res ; 53(1): 85, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36258242

RESUMEN

The aim of this study was to investigate the characteristics of a novel type C lectin from Trichinella spiralis (TsCTL) and its role in larval invasion of intestinal epithelial cells (IECs). TsCTL has a carbohydrate recognition domain (CRD) of C-type lectin. The full-length TsCTL cDNA sequence was cloned and expressed in Escherichia coli BL21. The results of qPCR, Western blotting and immunofluorescence assays (IFAs) showed that TsCTL was a surface and secretory protein that was highly expressed at the T. spiralis intestinal infective larva (IIL) stages and primarily located at the cuticle, stichosome and embryos of the parasite. rTsCTL could specifically bind with IECs, and the binding site was localized in the IEC nucleus and cytoplasm. The IFA results showed that natural TsCTL was secreted and bound to the enteral epithelium at the intestinal stage of T. spiralis infection. The rTsCTL had a haemagglutinating effect on murine erythrocytes, while mannose was able to inhibit the rTsCTL agglutinating effect for mouse erythrocytes. rTsCTL accelerated larval intrusion into the IECs, whereas anti-rTsCTL antibodies and mannose significantly impeded larval intrusion in a dose-dependent manner. The results indicated that TsCTL specifically binds to IECs and promotes larval invasion of intestinal epithelium, and it might be a potential target of vaccines against T. spiralis enteral stages.


Asunto(s)
Enfermedades de los Roedores , Trichinella spiralis , Triquinelosis , Vacunas , Ratones , Animales , Triquinelosis/parasitología , Triquinelosis/veterinaria , Larva/genética , ADN Complementario , Lectinas Tipo C/metabolismo , Manosa/metabolismo , Proteínas del Helminto/metabolismo , Ratones Endogámicos BALB C , Células Epiteliales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA