Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.345
Filtrar
1.
Sci Rep ; 14(1): 21462, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271690

RESUMEN

Potency assessment of monoclonal antibodies or corresponding biosimilars in cell-based assays is an essential prerequisite in biopharmaceutical research and development. However, cellular bioassays are still subject to limitations in sample throughput, speed, and often need costly reagents or labels as they are based on an indirect readout by luminescence or fluorescence. In contrast, whole-cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry (MS) has emerged as a direct, fast and label-free technology for functional drug screening being able to unravel the molecular complexity of cellular response to pharmaceutical reagents. However, this approach has not yet been used for cellular testing of biologicals. In this study, we have conceived, developed and benchmarked a label-free MALDI-MS based cell bioassay workflow for the functional assessment of complement-dependent cytotoxicity (CDC) of Rituximab antibody. By computational evaluation of response profiles followed by subsequent m/z feature annotation via fragmentation analysis and trapped ion mobility MS, we identified adenosine triphosphate and glutathione as readily MS-assessable metabolite markers for CDC and demonstrate that robust concentration-response characteristics can be obtained by MALDI-TOF MS. Statistical assay performance indicators suggest that whole-cell MALDI-TOF MS could complement the toolbox for functional cellular testing of biopharmaceuticals.


Asunto(s)
Rituximab , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Humanos , Rituximab/farmacología , Proteínas del Sistema Complemento/metabolismo , Bioensayo/métodos , Anticuerpos Monoclonales , Glutatión/metabolismo , Adenosina Trifosfato/metabolismo
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125956

RESUMEN

Cancer-specific monoclonal antibodies (CasMabs) that recognize cancer-specific antigens with in vivo antitumor efficacy are innovative therapeutic strategies for minimizing adverse effects. We previously established a cancer-specific anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody (mAb), H2Mab-250/H2CasMab-2. In flow cytometry and immunohistochemistry, H2Mab-250 reacted with HER2-positive breast cancer cells but did not show reactivity to normal epithelial cells. In contrast, a clinically approved anti-HER2 mAb, trastuzumab, strongly recognizes both breast cancer and normal epithelial cells in flow cytometry. The human IgG1 version of H2Mab-250 (H2Mab-250-hG1) possesses compatible in vivo antitumor effects against breast cancer xenografts to trastuzumab despite the lower affinity and effector activation than trastuzumab in vitro. This study compared the antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cellular cytotoxicity (CDC) between H2Mab-250-hG1 and trastuzumab. Both H2Mab-250-hG1 and trastuzumab showed ADCC activity against HER2-overexpressed Chinese hamster ovary -K1 and breast cancer cell lines (BT-474 and SK-BR-3) in the presence of human natural killer cells. Some tendency was observed where trastuzumab showed a more significant ADCC effect compared to H2Mab-250-hG1. Importantly, H2Mab-250-hG1 exhibited superior CDC activity in these cells compared to trastuzumab. Similar results were obtained in the mouse IgG2a types of both H2Mab-250 and trastuzumab. These results suggest the different contributions of ADCC and CDC activities to the antitumor effects of H2Mab-250-hG1 and trastuzumab, and indicate a future direction for the clinical development of H2Mab-250-hG1 against HER2-positive tumors.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Cricetulus , Receptor ErbB-2 , Trastuzumab , Trastuzumab/farmacología , Animales , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Células CHO , Línea Celular Tumoral , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Antineoplásicos Inmunológicos/farmacología , Anticuerpos Monoclonales/farmacología , Proteínas del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/inmunología , Ratones , Cricetinae
3.
Cardiovasc Diabetol ; 23(1): 254, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014464

RESUMEN

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition that is characterized by unresolved fatigue, post-exertion symptom exacerbation (PESE), cognitive dysfunction, orthostatic intolerance, and other symptoms. ME/CFS lacks established clinical biomarkers and requires further elucidation of disease mechanisms. A growing number of studies demonstrate signs of hematological and cardiovascular pathology in ME/CFS cohorts, including hyperactivated platelets, endothelial dysfunction, vascular dysregulation, and anomalous clotting processes. To build on these findings, and to identify potential biomarkers that can be related to pathophysiology, we measured differences in protein expression in platelet-poor plasma (PPP) samples from 15 ME/CFS study participants and 10 controls not previously infected with SARS-CoV-2, using DIA LC-MS/MS. We identified 24 proteins that are significantly increased in the ME/CFS group compared to the controls, and 21 proteins that are significantly downregulated. Proteins related to clotting processes - thrombospondin-1 (important in platelet activation), platelet factor 4, and protein S - were differentially expressed in the ME/CFS group, suggestive of a dysregulated coagulation system and abnormal endothelial function. Complement machinery was also significantly downregulated, including C9 which forms part of the membrane attack complex. Additionally, we identified a significant upregulation of lactotransferrin, protein S100-A9, and an immunoglobulin variant. The findings from this experiment further implicate the coagulation and immune system in ME/CFS, and bring to attention the pathology of or imposed on the endothelium. This study highlights potential systems and proteins that require further research with regards to their contribution to the pathogenesis of ME/CFS, symptom manifestation, and biomarker potential, and also gives insight into the hematological and cardiovascular risk for ME/CFS individuals affected by diabetes mellitus.


Asunto(s)
Biomarcadores , Coagulación Sanguínea , Regulación hacia Abajo , Síndrome de Fatiga Crónica , Espectrometría de Masas en Tándem , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Cromatografía Liquida , Biomarcadores/sangre , Síndrome de Fatiga Crónica/sangre , Síndrome de Fatiga Crónica/fisiopatología , Síndrome de Fatiga Crónica/inmunología , Síndrome de Fatiga Crónica/metabolismo , Estudios de Casos y Controles , Proteómica , COVID-19/sangre , Proteínas del Sistema Complemento/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Cromatografía Líquida con Espectrometría de Masas
4.
Dev Comp Immunol ; 159: 105229, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39004297

RESUMEN

The complement system, composed of complement components and complement control proteins, plays an essential role in innate immunity. Complement system molecules are expressed at the maternal-conceptus interface, and inappropriate activation of the complement system is associated with various adverse pregnancy outcomes in humans and rodents. However, the expression, regulation, and function of the complement system at the maternal-conceptus interface in pigs have not been studied. In this study, we investigated the expression, localization, and regulation of complement system molecules at the maternal-conceptus interface in pigs. Complement components and complement control proteins were expressed in the endometrium, early-stage conceptus, and chorioallantoic tissues during pregnancy. The expression of complement components acting on the early stage of complement activation increased in the endometrium on Day 15 of pregnancy, with greater levels on that day compared with the estrous cycle. Localization of several complement components and complement control proteins was cell-type specific in the endometrium. The expression of C1QC, C2, C3, C4A, CFI, ITGB2, MASP1, and SERPING1 was increased by IFNG in endometrial explant tissues. Furthermore, cleaved C3 fragments were detected in endometrial tissues and uterine flushings on Day 15 of the estrous cycle and Day 15 of pregnancy, with greater levels on Day 15 of pregnancy. These results suggest that complement system molecules in pigs expressed at the maternal-conceptus interface play important roles in the establishment and maintenance of pregnancy by regulating innate immunity and modulating the maternal immune environment during pregnancy.


Asunto(s)
Activación de Complemento , Proteínas del Sistema Complemento , Endometrio , Animales , Femenino , Embarazo , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Endometrio/inmunología , Endometrio/metabolismo , Porcinos/inmunología , Activación de Complemento/inmunología , Inmunidad Innata , Membrana Corioalantoides/metabolismo , Membrana Corioalantoides/inmunología
5.
Commun Biol ; 7(1): 871, 2024 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020082

RESUMEN

Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system remains unclear. Here, we compare complement activation by two groups of representative monoclonal antibodies (mAbs) interacting with the glycan cap (GC) or the membrane-proximal external region (MPER) of GP. Binding of GC-specific mAbs to GP induces complement-dependent cytotoxicity (CDC) in the GP-expressing cell line via C3 deposition on GP in contrast to MPER-specific mAbs. In the mouse model of EBOV infection, depletion of the complement system leads to an impairment of protection exerted by one of the GC-specific, but not MPER-specific mAbs. Our data suggest that activation of the complement system represents an important mechanism of antiviral protection by GC antibodies.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Ebolavirus , Fiebre Hemorrágica Ebola , Polisacáridos , Proteínas del Envoltorio Viral , Animales , Ebolavirus/inmunología , Anticuerpos Monoclonales/inmunología , Ratones , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/prevención & control , Polisacáridos/inmunología , Anticuerpos Antivirales/inmunología , Humanos , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Activación de Complemento , Ratones Endogámicos BALB C , Femenino , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Glicoproteínas/inmunología
6.
Front Immunol ; 15: 1422370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938578

RESUMEN

Introduction: Hematopoietic stem cell transplantation (HSCT) is associated with immune complications and endothelial dysfunction due to intricate donor-recipient interactions, conditioning regimens, and inflammatory responses. Methods: This study investigated the role of the complement system during HSCT and its interaction with the cytokine network. Seventeen acute myeloid leukemia patients undergoing HSCT were monitored, including blood sampling from the start of the conditioning regimen until four weeks post-transplant. Clinical follow-up was 200 days. Results: Total complement functional activity was measured by WIELISA and the degree of complement activation by ELISA measurement of sC5b-9. Cytokine release was measured using a 27-multiplex immuno-assay. At all time-points during HSCT complement functional activity remained comparable to healthy controls. Complement activation was continuously stable except for two patients demonstrating increased activation, consistent with severe endotheliopathy and infections. In vitro experiments with post-HSCT whole blood challenged with Escherichia coli, revealed a hyperinflammatory cytokine response with increased TNF, IL-1ß, IL-6 and IL-8 formation. Complement C3 inhibition markedly reduced the cytokine response induced by Staphylococcus aureus, Aspergillus fumigatus, and cholesterol crystals. Discussion: In conclusion, HSCT patients generally retained a fully functional complement system, whereas activation occurred in patients with severe complications. The complement-cytokine interaction indicates the potential for new complement-targeting therapeutic strategies in HSCT.


Asunto(s)
Activación de Complemento , Citocinas , Trasplante de Células Madre Hematopoyéticas , Trasplante Homólogo , Humanos , Masculino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Femenino , Persona de Mediana Edad , Adulto , Citocinas/metabolismo , Anciano , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Acondicionamiento Pretrasplante/métodos , Adulto Joven
7.
PLoS One ; 19(6): e0305851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935768

RESUMEN

We investigated the interactions of unopsonized and opsonized Mycoplasma mycoides subsp. mycoides (Mmm) with bovine macrophages in vitro. Mmm survived and proliferated extracellularly on bovine macrophage cell layers in the absence of Mmm-specific antisera. Bovine complement used at non-bactericidal concentrations did neither have opsonizing effect nor promoted intracellular survival, whereas Mmm-specific antisera substantially increased phagocytosis and Mmm killing. A phagocytosis-independent uptake of Mmm by macrophages occurred at a high multiplicity of infection, also found to induce the production of TNF, and both responses were unaffected by non-bactericidal doses of bovine complement. Bovine complement used at higher doses killed Mmm in cell-free cultures and completely abrogated TNF responses by macrophages. These results provide a framework to identify Mmm antigens involved in interactions with macrophages and targeted by potentially protective antibodies and point towards a pivotal role of complement in the control of inflammatory responses in contagious bovine pleuropneumonia.


Asunto(s)
Macrófagos , Fagocitosis , Animales , Bovinos , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/inmunología , Mycoplasma/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Pleuroneumonía Contagiosa/microbiología , Pleuroneumonía Contagiosa/inmunología , Mycoplasma mycoides/inmunología
8.
Expert Rev Hematol ; 17(8): 479-492, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38938203

RESUMEN

INTRODUCTION: During the last decades, the pathogenesis of cold agglutinin disease (CAD) has been well elucidated and shown to be complex. Several documented or investigational therapies have been made available. This development has resulted in major therapeutic advances, but also in challenges in choice of therapy. AREAS COVERED: In this review, we address each step in pathogenesis: bone marrow clonal lymphoproliferation, composition and effects of monoclonal cold agglutinin, non-complement mediated erythrocyte agglutination, complement-dependent hemolysis, and other effects of complement activation. We also discuss the heterogeneous clinical features and their relation to specific steps in pathogenesis, in particular with respect to the impact of complement involvement. CAD can be classified into three clinical phenotypes with consequences for established treatments as well as development of new therapies. Some promising future treatment approaches - beyond chemoimmunotherapy and complement inhibition - are reviewed. EXPERT OPINION: The patient's individual clinical profile regarding complement involvement and hemolytic versus non-hemolytic features is important for the choice of treatment. Further development of treatment approaches is encouraged, and some candidate drugs are promising irrespective of clinical phenotype. Patients with CAD requiring therapy should be considered for inclusion in clinical trials.


Asunto(s)
Anemia Hemolítica Autoinmune , Hemólisis , Humanos , Anemia Hemolítica Autoinmune/diagnóstico , Anemia Hemolítica Autoinmune/terapia , Anemia Hemolítica Autoinmune/etiología , Activación de Complemento , Proteínas del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/inmunología , Crioglobulinas
9.
Mucosal Immunol ; 17(4): 739-751, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838816

RESUMEN

The complement system is an evolutionarily conserved arm of innate immunity, which forms one of the first lines of host response to pathogens and assists in the clearance of debris. A deficiency in key activators/amplifiers of the cascade results in recurrent infection, whereas a deficiency in regulating the cascade predisposes to accelerated organ failure, as observed in colitis and transplant rejection. Given that there are over 60 proteins in this system, it has become an attractive target for immunotherapeutics, many of which are United States Food and Drug Administration-approved or in multiple phase 2/3 clinical trials. Moreover, there have been key advances in the last few years in the understanding of how the complement system operates locally in tissues, independent of its activities in circulation. In this review, we will put into perspective the abovementioned discoveries to optimally modulate the spatiotemporal nature of complement activation and regulation at mucosal surfaces.


Asunto(s)
Activación de Complemento , Proteínas del Sistema Complemento , Inmunidad Mucosa , Humanos , Animales , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Inmunomodulación , Inmunidad Innata
10.
Clin Immunol ; 263: 110232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701960

RESUMEN

IgA nephropathy (IgAN), which has been confirmed as a complement mediated autoimmune disease, is also one form of glomerulonephritis associated with COVID-19. Here, we aim to investigate the clinical and immunological characteristics of patients with IgAN after COVID-19. The level of plasma level of C5a (p < 0.001), soluble C5b-9 (p = 0.018), FHR5 (p < 0.001) were all significantly higher in Group CoV (33 patients with renal biopsy-proven IgAN experienced COVID-19) compared with Group non-CoV (44 patients with IgAN without COVID-19), respectively. Compared with Group non-CoV, the intensity of glomerular C4d (p = 0.017) and MAC deposition (p < 0.001) and Gd-IgA1 deposition (p = 0.005) were much stronger in Group CoV. Our finding revealed that for IgAN after COVID-19, mucosal immune responses to SARS-CoV-2 infection may result in the overactivation of systemic and renal local complement system, and increased glomerular deposition of Gd-IgA1, which may lead to renal dysfunction and promote renal progression in IgAN patients.


Asunto(s)
COVID-19 , Glomerulonefritis por IGA , SARS-CoV-2 , Humanos , Glomerulonefritis por IGA/inmunología , Glomerulonefritis por IGA/sangre , COVID-19/inmunología , COVID-19/complicaciones , Femenino , Masculino , Adulto , SARS-CoV-2/inmunología , Persona de Mediana Edad , Activación de Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Glomérulos Renales/patología , Glomérulos Renales/inmunología , Complemento C5a/inmunología , Complemento C5a/metabolismo
11.
Brain Behav Immun ; 119: 188-196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38555993

RESUMEN

INTRODUCTION: Negative symptoms impact the quality of life of individuals with psychosis and current treatment options for negative symptoms have limited effectiveness. Previous studies have demonstrated that complement and coagulation pathway protein levels are related to later psychotic experiences, psychotic disorder, and functioning. However, the prognostic relationship between complement and coagulation proteins and negative symptoms is poorly characterised. METHODS: In the North American Prodrome Longitudinal Studies 2 and 3, negative symptoms in 431 individuals at clinical high-risk for psychosis (mean age: 18.2, SD 3.6; 42.5 % female) were measured at multiple visits over 2 years using the Scale of Psychosis-Risk Symptoms. Plasma proteins were quantified at baseline using mass spectrometry. Four factors were derived to represent levels of proteins involved in the activation or regulation of the complement or coagulation systems. The relationships between standardised protein group factors and serial measurements of negative symptoms over time were modelled using generalised least squares regression. Analyses were adjusted for baseline candidate prognostic factors: negative symptoms, positive symptoms, functioning, depressive symptoms, suicidal ideation, cannabis use, tobacco use, antipsychotic use, antidepressant use, age, and sex. RESULTS: Clinical and demographic prognostic factors of follow-up negative symptoms included negative, positive, and depressive symptoms, functioning, and age. Adjusting for all candidate prognostic factors, the complement regulators group and the coagulation regulators group were identified as prognostic factors of follow-up negative symptoms (ß: 0.501, 95 % CI: 0.160, 0.842; ß: 0.430, 95 % CI: 0.080, 0.780 respectively. The relationship between complement regulator levels and negative symptoms was also observed in NAPLS2 alone (ß: 0.501, 95 % CI: -0.037, 1.039) and NAPLS3 alone, additionally adjusting for BMI (ß: 0.442, 95 % CI: 0.127, 0.757). CONCLUSION: The results indicate that plasma complement and coagulation regulator levels are prognostic factors of negative symptoms, independent of clinical and demographic prognostic factors. These results suggest complement and coagulation regulator levels could have potential utility in informing treatment decisions for negative symptoms in individuals at risk.


Asunto(s)
Proteínas del Sistema Complemento , Trastornos Psicóticos , Humanos , Femenino , Masculino , Pronóstico , Adolescente , Adulto Joven , Proteínas del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/análisis , Trastornos Psicóticos/sangre , Adulto , Factores de Coagulación Sanguínea/metabolismo , Factores de Coagulación Sanguínea/análisis , Estudios Longitudinales
12.
Sci Rep ; 14(1): 3146, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326464

RESUMEN

Proinflammatory cytokines, such as (IL: interleukin) IL-6 and IL-17A, and complement fixation are critical in the immunopathogenesis of neuromyelitis optica spectrum disorders (NMOSD). Blocking the IL-6 receptor or the C5 complement pathway reduces relapse risk. However, the role of interleukin (IL)-6 and complement in aquaporin-4 (AQP4) autoimmunity remains unclear. To investigate the role of the anti-AQP4 immunoglobulin (AQP4-IgG)/AQP4 immunocomplex on the induction and profile of ex vivo cytokine and surface marker expression in peripheral blood mononuclear cells (PBMC) culture. Isolated PBMCs obtained from 18 patients with AQP4-IgG-seropositive-NMOSD (8 treatment-naive, 10 rituximab-treated) or ten healthy controls were cultured with AQP4-immunocomplex with or without complement. Changes in PBMC surface markers and cytokine expression were profiled using flow cytometry and ELISA. PBMCs derived from treatment-naive NMOSD patients stimulated with a complex mixture of serum complement proteins produced significant elevations of IL-17A and IL-6. Rituximab-treated patients also exhibited higher IL-6 but not IL-17A release. IL-6 and IL-17A elevations are not observed without complement. Co-stimulation of PBMCs with AQP4-IgG/AQP4 immunocomplex and complement prompts a Th17-biased response consistent with the inflammatory paradigm observed in NMOSD. A possible inflammation model is proposed via antigen-specific autoreactive peripheral blood cells, including NK/NKT cells.


Asunto(s)
Neuromielitis Óptica , Humanos , Citocinas/metabolismo , Complejo Antígeno-Anticuerpo/metabolismo , Leucocitos Mononucleares/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Rituximab/farmacología , Rituximab/uso terapéutico , Rituximab/metabolismo , Autoanticuerpos , Acuaporina 4 , Proteínas del Sistema Complemento/metabolismo , Inmunoglobulina G/metabolismo
13.
J Immunol ; 211(10): 1443-1449, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37931209

RESUMEN

C4b-binding protein (C4BP) is a fluid-phase complement inhibitor that prevents uncontrolled activation of the classical and lectin complement pathways. As a complement inhibitor, C4BP also promotes apoptotic cell death and is hijacked by microbes and tumors for complement evasion. Although initially characterized for its role in complement inhibition, there is an emerging recognition that C4BP functions in a complement-independent manner to promote cell survival, protect against autoimmune damage, and modulate the virulence of microbial pathogens. In this Brief Review, we summarize the structure and functions of human C4BP, with a special focus on activities that extend beyond the canonical role of C4BP in complement inhibition.


Asunto(s)
Proteína de Unión al Complemento C4b , Proteínas del Sistema Complemento , Humanos , Proteína de Unión al Complemento C4b/metabolismo , Proteínas del Sistema Complemento/metabolismo , Inactivadores del Complemento , Lectina de Unión a Manosa de la Vía del Complemento , Virulencia , Unión Proteica , Complemento C4b/metabolismo
14.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003705

RESUMEN

The crosstalk among the complement system, immune cells, and mediators of inflammation provides an efficient mechanism to protect the organism against infections and support the repair of damaged tissues. Alterations in this complex machinery play a role in the pathogenesis of different diseases. Core complement proteins C3 and C5, their activation fragments, their receptors, and their regulators have been shown to be active intracellularly as the complosome. The kidney is particularly vulnerable to complement-induced damage, and emerging findings have revealed the role of complement system dysregulation in a wide range of kidney disorders, including glomerulopathies and ischemia-reperfusion injury during kidney transplantation. Different studies have shown that activation of the complement system is an important component of tumorigenesis and its elements have been proved to be present in the TME of various human malignancies. The role of the complement system in renal cell carcinoma (RCC) has been recently explored. Clear cell and papillary RCC upregulate most of the complement genes relative to normal kidney tissue. The aim of this narrative review is to provide novel insights into the role of complement in kidney disorders.


Asunto(s)
Carcinoma de Células Renales , Enfermedades Renales , Neoplasias Renales , Trasplante de Riñón , Daño por Reperfusión , Humanos , Trasplante de Riñón/efectos adversos , Carcinoma de Células Renales/patología , Riñón/metabolismo , Proteínas del Sistema Complemento/metabolismo , Enfermedades Renales/patología , Complemento C3/metabolismo , Daño por Reperfusión/patología , Neoplasias Renales/patología , Activación de Complemento
15.
J Immunol ; 211(11): 1736-1746, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37861348

RESUMEN

Cancer chemotherapy-induced neuropathic pain is a devastating pain syndrome without effective therapies. We previously reported that rats deficient in complement C3, the central component of complement activation cascade, showed a reduced degree of paclitaxel-induced mechanical allodynia (PIMA), suggesting that complement is integrally involved in the pathogenesis of this model. However, the underlying mechanism was unclear. Complement activation leads to the production of C3a, which mediates inflammation through its receptor C3aR1. In this article, we report that the administration of paclitaxel induced a significantly higher expression level of C3aR1 on dorsal root ganglion (DRG) macrophages and expansion of these macrophages in DRGs in wild-type (WT) compared with in C3aR1 knockout (KO) mice. We also found that paclitaxel induced less severe PIMA, along with a reduced DRG expression of transient receptor potential channels of the vanilloid subtype 4 (TRPV4), an essential mediator for PIMA, in C3aR1 KO than in WT mice. Treating WT mice or rats with a C3aR1 antagonist markedly attenuated PIMA in association with downregulated DRG TRPV4 expression, reduced DRG macrophages expansion, suppressed DRG neuron hyperexcitability, and alleviated peripheral intraepidermal nerve fiber loss. Administration of C3aR1 antagonist to TRPV4 KO mice further protected them from PIMA. These results suggest that complement regulates PIMA development through C3aR1 to upregulate TRPV4 on DRG neurons and promote DRG macrophage expansion. Targeting C3aR1 could be a novel therapeutic approach to alleviate this debilitating pain syndrome.


Asunto(s)
Neuralgia , Paclitaxel , Ratas , Ratones , Animales , Paclitaxel/efectos adversos , Canales Catiónicos TRPV/genética , Yoduro de Potasio/efectos adversos , Yoduro de Potasio/metabolismo , Ratas Sprague-Dawley , Neuralgia/inducido químicamente , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Proteínas del Sistema Complemento/metabolismo , Receptores de Complemento/genética , Receptores de Complemento/metabolismo
16.
Viruses ; 15(6)2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37376642

RESUMEN

Adenovirus has strong therapeutic potential as an oncolytic virus and gene therapy vector. However, injecting human species C serotype 5 adenovirus, HAdv-C5, into the bloodstream leads to numerous interactions with plasma proteins that affect viral tropism and biodistribution, and can lead to potent immune responses and viral neutralization. The HAdv/factor X (FX) interaction facilitates highly efficient liver transduction and protects virus particles from complement-mediated neutralization after intravenous delivery. Ablating the FX interaction site on the HAdv-C5 capsid leaves the virus susceptible to neutralization by natural IgM followed by activation of the complement cascade and covalent binding of complement components C4b and C3b to the viral capsid. Here we present structural models for IgM and complement components C1, C4b, and C3b in complex with HAdv-C5. Molecular dynamics simulations indicate that when C3b binds near the vertex, multiple stabilizing interactions can be formed between C3b, penton base, and fiber. These interactions may stabilize the vertex region of the capsid and prevent release of the virally encoded membrane lytic factor, protein VI, which is packaged inside of the viral capsid, thus effectively neutralizing the virus. In a situation where FX and IgM are competing for binding to the capsid, IgM may not be able to form a bent conformation in which most of its Fab arms interact with the capsid. Our structural modeling of the competitive interaction of FX and IgM with HAdv-C5 allows us to propose a mechanistic model for FX inhibition of IgM-mediated virus neutralization. According to this model, although IgM may bind to the capsid, in the presence of FX it will likely retain a planar conformation and thus be unable to promote activation of the complement cascade at the virus surface.


Asunto(s)
Adenoviridae , Adenovirus Humanos , Humanos , Factor X/metabolismo , Distribución Tisular , Proteínas del Sistema Complemento/metabolismo , Adenovirus Humanos/genética , Proteínas de la Cápside/genética , Inmunoglobulina M , Modelos Estructurales
17.
EBioMedicine ; 93: 104663, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37379657

RESUMEN

BACKGROUND: HexaBody®-CD38 (GEN3014) is a hexamerization-enhanced human IgG1 that binds CD38 with high affinity. The E430G mutation in its Fc domain facilitates the natural process of antibody hexamer formation upon binding to the cell surface, resulting in increased binding of C1q and potentiated complement-dependent cytotoxicity (CDC). METHODS: Co-crystallization studies were performed to identify the binding interface of HexaBody-CD38 and CD38. HexaBody-CD38-induced CDC, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), trogocytosis, and apoptosis were assessed using flow cytometry assays using tumour cell lines, and MM patient samples (CDC). CD38 enzymatic activity was measured using fluorescence spectroscopy. Anti-tumour activity of HexaBody-CD38 was assessed in patient-derived xenograft mouse models in vivo. FINDINGS: HexaBody-CD38 binds a unique epitope on CD38 and induced potent CDC in multiple myeloma (MM), acute myeloid leukaemia (AML), and B-cell non-Hodgkin lymphoma (B-NHL) cells. Anti-tumour activity was confirmed in patient-derived xenograft models in vivo. Sensitivity to HexaBody-CD38 correlated with CD38 expression level and was inversely correlated with expression of complement regulatory proteins. Compared to daratumumab, HexaBody-CD38 showed enhanced CDC in cell lines with lower levels of CD38 expression, without increasing lysis of healthy leukocytes. More effective CDC was also confirmed in primary MM cells. Furthermore, HexaBody-CD38 efficiently induced ADCC, ADCP, trogocytosis, and apoptosis after Fc-crosslinking. Moreover, HexaBody-CD38 strongly inhibited CD38 cyclase activity, which is hypothesized to relieve immune suppression in the tumour microenvironment. INTERPRETATION: Based on these preclinical studies, a clinical trial was initiated to assess the clinical safety of HexaBody-CD38 in patients with MM. FUNDING: Genmab.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Animales , Ratones , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Citotoxicidad Celular Dependiente de Anticuerpos , Línea Celular Tumoral , Proteínas del Sistema Complemento/metabolismo , Microambiente Tumoral
18.
Hypertens Res ; 46(7): 1759-1770, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37188751

RESUMEN

Malignant nephrosclerosis is a thrombotic microangiopathy associated with abnormal local activation of the complement alternative pathway (AP). However, the mechanism underlying local AP activation is not fully understood. We hypothesized that complement factor D (CFD) secreted by endothelial cells triggers vascular dysfunction in malignant nephrosclerosis via local complement activation. We investigated the deposition of CFD in human kidney biopsy tissues and the function of endothelial-derived CFD in endothelial cell cultures. Immunofluorescence microscopy and laser microdissection-targeted mass spectrometry revealed significant deposition of CFD in the kidneys of patients with malignant nephrosclerosis. Conditionally immortalized human glomerular endothelial cells (CiGEnCs) continuously expressed and secreted CFD in vitro. CFD knockdown in CiGEnCs by small interfering RNA reduced local complement activation and attenuated the upregulation of intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), von Willebrand factor (VWF), and endothelin-1 (ET-1) induced by Ang II. The expression of CFD in CiGEnCs was significantly higher than that in other types of microvascular endothelial cells. Our findings suggest that (i) glomerular endothelial cells are an important source of local renal CFD, (ii) endothelial-derived CFD can activate the local complement system, and (iii) endothelial-derived CFD mediates endothelial dysfunction, which may play a role in the pathogenesis of malignant nephrosclerosis.


Asunto(s)
Nefroesclerosis , Enfermedades Vasculares , Humanos , Células Endoteliales/metabolismo , Factor D del Complemento/metabolismo , Nefroesclerosis/patología , Activación de Complemento , Proteínas del Sistema Complemento/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
19.
PLoS Pathog ; 19(5): e1011400, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216411

RESUMEN

Neisseria gonorrhoeae is an exclusively human pathogen able to evade the host immune system through multiple mechanisms. Gonococci accumulate a large portion of phosphate moieties as polyphosphate (polyP) on the exterior of the cell. Although its polyanionic nature has suggested that it may form a protective shield on the cell surface, its role remains controversial. Taking advantage of a recombinant His-tagged polyP-binding protein, the presence of a polyP pseudo-capsule in gonococcus was demonstrated. Interestingly, the polyP pseudo-capsule was found to be present in specific strains only. To investigate its putative role in host immune evasion mechanisms, such as resistance to serum bactericidal activity, antimicrobial peptides and phagocytosis, the enzymes involved in polyP metabolism were genetically deleted, generating mutants with altered polyP external content. The mutants with lower polyP content on their surface compared to the wild-type strains, became sensitive to complement-mediated killing in presence of normal human serum. Conversely, naturally serum sensitive strains that did not display a significant polyP pseudo-capsule became resistant to complement in the presence of exogenous polyP. The presence of polyP pseudo-capsule was also critical in the protection from antibacterial activity of cationic antimicrobial peptide, such as cathelicidin LL-37. Results showed that the minimum bactericidal concentration was lower in strains lacking polyP than in those harboring the pseudo-capsule. Data referring to phagocytic killing resistance, assessed by using neutrophil-like cells, showed a significant decrease in viability of mutants lacking polyP on their cell surface in comparison to the wild-type strain. The addition of exogenous polyP overturned the killing phenotype of sensitive strains suggesting that gonococcus could exploit environmental polyP to survive to complement-mediated, cathelicidin and intracellular killing. Taken together, data presented here indicate an essential role of the polyP pseudo-capsule in the gonococcal pathogenesis, opening new perspective on gonococcal biology and more effective treatments.


Asunto(s)
Gonorrea , Polifosfatos , Humanos , Gonorrea/microbiología , Neisseria gonorrhoeae/genética , Neutrófilos , Fagocitosis , Proteínas del Sistema Complemento/metabolismo
20.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239905

RESUMEN

CD59 is an abundant immuno-regulatory human protein that protects cells from damage by inhibiting the complement system. CD59 inhibits the assembly of the Membrane Attack Complex (MAC), the bactericidal pore-forming toxin of the innate immune system. In addition, several pathogenic viruses, including HIV-1, escape complement-mediated virolysis by incorporating this complement inhibitor in their own viral envelope. This makes human pathogenic viruses, such as HIV-1, not neutralised by the complement in human fluids. CD59 is also overexpressed in several cancer cells to resist the complement attack. Consistent with its importance as a therapeutical target, CD59-targeting antibodies have been proven to be successful in hindering HIV-1 growth and counteracting the effect of complement inhibition by specific cancer cells. In this work, we make use of bioinformatics and computational tools to identify CD59 interactions with blocking antibodies and to describe molecular details of the paratope-epitope interface. Based on this information, we design and produce paratope-mimicking bicyclic peptides able to target CD59. Our results set the basis for the development of antibody-mimicking small molecules targeting CD59 with potential therapeutic interest as complement activators.


Asunto(s)
Proteínas del Sistema Complemento , VIH-1 , Humanos , Sitios de Unión de Anticuerpos , Proteínas del Sistema Complemento/metabolismo , Antígenos CD59/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Inactivadores del Complemento , VIH-1/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA