Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 863
Filtrar
1.
Methods Enzymol ; 705: 347-376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39389669

RESUMEN

Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1, APEX1, REF1, HAP1) is an abasic site-specific endonuclease holding critical roles in numerous biological functions including base excision repair, the DNA damage response, redox regulation of transcription factors, RNA processing, and gene regulation. Pathologically, APE1 expression and function is linked with numerous human diseases including cancer, highlighting the importance of sensitive and quantitative assays to measure APE1 activity. Here, we summarize biochemical and biological roles for APE1 and expand on the discovery of APE1 inhibitors. Finally, we highlight the development of assays to monitor APE1 activity, detailing a recently improved and stabilized DNA Repair Molecular Beacon assay to analyze APE1 activity. The assay is amenable to analysis of purified protein, to measure changes in APE1 activity in cell lysates, to monitor human patient samples for defects in APE1 function, or the cellular and biochemical response to APE1 inhibitors.


Asunto(s)
Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Pruebas de Enzimas , Inhibidores Enzimáticos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/antagonistas & inhibidores , Humanos , Inhibidores Enzimáticos/farmacología , Pruebas de Enzimas/métodos , Daño del ADN
2.
Methods Enzymol ; 705: 311-345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39389668

RESUMEN

In recent years, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become ever more apparent. This growing awareness and lack of inhibitory drugs has created a distinct need for biochemical tools that can be used to identify and characterize potential inhibitors of this family of enzymes. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination (RADD) assay. The RADD assay provides a rapid, real-time fluorescence readout of APOBEC3 DNA deamination and serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit. This method improves upon contemporary DNA deamination assays by offering a more rapid and quantifiable readout as well as providing a platform that is readily adaptable to a high-throughput format for inhibitor discovery. In this chapter we provide a detailed guide for the usage of the RADD assay for the characterization of APOBEC3 enzymes and potential inhibitors.


Asunto(s)
ADN , Transferencia Resonante de Energía de Fluorescencia , Humanos , Transferencia Resonante de Energía de Fluorescencia/métodos , ADN/metabolismo , Desaminación , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Pruebas de Enzimas/métodos , Inhibidores Enzimáticos/farmacología , Desaminasas APOBEC/metabolismo
3.
Methods Enzymol ; 703: 147-166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260994

RESUMEN

Mammalian cysteamine dioxygenase (ADO), a mononuclear non-heme Fe(II) enzyme with three histidine ligands, plays a key role in cysteamine catabolism and regulation of the N-degron signaling pathway. Despite its importance, the catalytic mechanism of ADO remains elusive. Here, we describe an HPLC-MS assay for characterizing thiol dioxygenase catalytic activities and a metal-substitution approach for mechanistic investigation using human ADO as a model. Two proposed mechanisms for ADO differ in oxygen activation: one involving a high-valent ferryl-oxo intermediate. We hypothesized that substituting iron with a metal that has a disfavored tendency to form high-valent states would discriminate between mechanisms. This chapter details the expression, purification, preparation, and characterization of cobalt-substituted ADO. The new HPLC-MS assay precisely measures enzymatic activity, revealing retained reactivity in the cobalt-substituted enzyme. The results obtained favor the concurrent dioxygen transfer mechanism in ADO. This combined approach provides a powerful tool for studying other non-heme iron thiol oxidizing enzymes.


Asunto(s)
Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Humanos , Espectrometría de Masas/métodos , Cobalto/química , Cobalto/metabolismo , Dioxigenasas/metabolismo , Dioxigenasas/química , Pruebas de Enzimas/métodos , Oxígeno/metabolismo , Oxidación-Reducción , Cromatografía Líquida con Espectrometría de Masas
4.
Methods Enzymol ; 703: 87-120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261005

RESUMEN

In DNA, methylation at the fifth position of cytosine (5mC) by DNA methyltransferases is essential for eukaryotic gene regulation. Methylation patterns are dynamically controlled by epigenetic machinery. Erasure of 5mC by Fe2+ and 2-ketoglutarate (2KG) dependent dioxygenases in the ten-eleven translocation family (TET1-3), plays a key role in nuclear processes. Through the event of active demethylation, TET proteins iteratively oxidize 5mC to 5-hydroxymethyl cytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC), each of which has been implicated in numerous diseases when aberrantly generated. A wide range of biochemical assays have been developed to characterize TET activity, many of which require multi-step processing to detect and quantify the 5mC oxidized products. Herein, we describe the development and optimization of a sensitive MALDI mass spectrometry-based technique that directly measures TET activity and eliminates tedious processing steps. Employing optimized assay conditions, we report the steady-state activity of wild type TET2 enzymes to furnish 5hmC, 5fC and 5caC. We next determine IC50 values of several small-molecule inhibitors of TETs. The utility of this assay is further demonstrated by analyzing the activity of V1395A which is an activating mutant of TET2 that primarily generates 5caC. Lastly, we describe the development of a secondary assay that utilizes bisulfite chemistry to further examine the activity of wildtype TET2 and V1395A in a base-resolution manner. The combined results demonstrate that the activity of TET proteins can be gauged, and their products accurately quantified using our methods.


Asunto(s)
5-Metilcitosina , Proteínas de Unión al ADN , Dioxigenasas , Proteínas Proto-Oncogénicas , Dioxigenasas/metabolismo , Dioxigenasas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análisis , 5-Metilcitosina/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Pruebas de Enzimas/métodos , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/química , Metilación de ADN , Citosina/análogos & derivados , Citosina/análisis , Citosina/metabolismo , Citosina/química , Oxidación-Reducción
5.
Methods Enzymol ; 703: 51-63, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261003

RESUMEN

Determination of substrate binding affinity (Kd) is critical to understanding enzyme function. An extensive number of methods have been developed and employed to study ligand/substrate binding, but the best approach depends greatly on the substrate and the enzyme in question. Below we describe how to measure the Kd of BesD, a non-heme iron halogenase, for its native substrate lysine using equilibrium dialysis coupled with High Performance Liquid Chromatography (HPLC) for subsequent detection. This method can be performed in anaerobic glove bag settings. It requires readily available HPLC instrumentation for ligand quantitation and is adaptable to meet the needs of a variety of substrate affinity measurements.


Asunto(s)
Diálisis , Cromatografía Líquida de Alta Presión/métodos , Especificidad por Sustrato , Diálisis/métodos , Unión Proteica , Pruebas de Enzimas/métodos , Pruebas de Enzimas/instrumentación , Cinética , Lisina/metabolismo , Lisina/química , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Hierro/metabolismo , Hierro/química
6.
Methods Enzymol ; 704: 91-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300658

RESUMEN

Cyclopropane and azacyclopropane, also known as aziridine, moieties are found in natural products. These moieties serve as pivotal components that lead to a broad spectrum of biological activities. While diverse strategies involving various classes of enzymes are utilized to catalyze formation of these strained three-membered rings, how non-heme iron and 2-oxoglutarate (Fe/2OG) dependent enzymes enable regio- and stereo-selective C-C and C-N ring closure has only been reported very recently. Herein, we present detailed experimental protocols for mechanistically studying Fe/2OG enzymes that catalyze cyclopropanation and aziridination reactions. These protocols include protein purification, in vitro assays, biophysical spectroscopies, and isotope-tracer experiments. We also report how to use in silico approaches to look for Fe/2OG aziridinases. Furthermore, our current mechanistic understanding of three-membered ring formation is discussed. These results not only shed light on the reaction mechanisms of Fe/2OG enzymes-catalyzed cyclopropanation and aziridination, but also open avenues for expanding the reaction repertoire of the Fe/2OG enzyme superfamily.


Asunto(s)
Aziridinas , Ciclopropanos , Ácidos Cetoglutáricos , Ciclopropanos/química , Ciclopropanos/metabolismo , Aziridinas/química , Aziridinas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/química , Hierro/química , Hierro/metabolismo , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/metabolismo , Biocatálisis , Pruebas de Enzimas/métodos , Catálisis
7.
Methods Enzymol ; 704: 173-198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300647

RESUMEN

α-Ketoglutarate-dependent non-heme iron (α-KG NHI) oxygenases compose one of the largest superfamilies of tailoring enzymes that play key roles in structural and functional diversifications. During the biosynthesis of meroterpenoids, α-KG NHI oxygenases catalyze diverse types of chemical reactions, including hydroxylation, desaturation, epoxidation, endoperoxidation, ring-cleavage, and skeletal rearrangements. Due to their catalytic versatility, keen attention has been focused on functional analyses of α-KG NHI oxygenases. This chapter provides detailed methodologies for the functional analysis of the fungal α-KG NHI oxygenase SptF, which plays an important role in the structural diversification of andiconin-derived meroterpenoids. The procedures included describe how to prepare the meroterpenoid substrate using a heterologous fungal host, measure the in vitro enzymatic activity of SptF, and how to perform structural and mutagenesis studies on SptF. These protocols are also applicable to functional analyses of other α-KG NHI oxygenases.


Asunto(s)
Ácidos Cetoglutáricos , Terpenos , Terpenos/metabolismo , Terpenos/química , Ácidos Cetoglutáricos/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Oxigenasas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Hierro no Heme/metabolismo , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/genética , Hongos/metabolismo , Hongos/genética , Hongos/enzimología , Pruebas de Enzimas/métodos , Especificidad por Sustrato
8.
Methods Enzymol ; 704: 199-232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300648

RESUMEN

Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes exhibit an exceedingly broad reaction repertoire. The most prevalent reactivity is hydroxylation, but many other reactivities have also been discovered in recent years, including halogenation, desaturation, epoxidation, endoperoxidation, epimerization, and cyclization. To fully explore the reaction mechanisms that support such a diverse reactivities in Fe/2OG enzyme, it is necessary to utilize a multi-faceted research methodology, consisting of molecular probe design and synthesis, in vitro enzyme assay development, enzyme kinetics, spectroscopy, protein crystallography, and theoretical calculations. By using such a multi-faceted research approach, we have explored reaction mechanisms of desaturation and epoxidation catalyzed by a bi-functional Fe/2OG enzyme, AsqJ. Herein, we describe the experimental protocols and computational workflows used in our studies.


Asunto(s)
Hierro , Ácidos Cetoglutáricos , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Hierro/química , Hierro/metabolismo , Cinética , Cristalografía por Rayos X/métodos , Pruebas de Enzimas/métodos , Hidroxilación , Modelos Moleculares
9.
Methods Enzymol ; 704: 313-344, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300654

RESUMEN

Aspartate/asparagine-ß-hydroxylase (AspH) is a transmembrane 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the post-translational hydroxylation of aspartate- and asparagine-residues in epidermal growth factor-like domains (EGFDs) of its substrate proteins. Upregulation of ASPH and translocation of AspH from the endoplasmic reticulum membrane to the surface membrane of cancer cells is associated with enhanced cell motility and worsened clinical prognosis. AspH is thus a potential therapeutic and diagnostic target for cancer. This chapter describes methods for the production and purification of soluble constructs of recombinant human AspH suitable for biochemical and crystallographic studies. The chapter also describes efficient methods for performing turnover and inhibition assays which monitor catalysis of isolated recombinant human AspH in vitro using solid phase extraction coupled to mass spectrometry (SPE-MS). The SPE-MS assays employ synthetic disulfide- or thioether-bridged macrocyclic oligopeptides as substrates; a macrocycle is an apparently essential requirement for productive AspH catalysis and mimics an EGFD disulfide isomer that is not typically observed in crystal and NMR structures. SPE-MS assays can be used to monitor catalysis of 2OG oxygenases other than AspH; the methods described herein are representative for 2OG oxygenase SPE-MS assays useful for performing kinetic and/or inhibition studies.


Asunto(s)
Oxigenasas de Función Mixta , Proteínas Recombinantes , Humanos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/aislamiento & purificación , Pruebas de Enzimas/métodos , Extracción en Fase Sólida/métodos , Espectrometría de Masas/métodos , Catálisis , Cinética , Asparagina/metabolismo , Asparagina/química , Hidroxilación , Especificidad por Sustrato , Animales , Proteínas de Unión al Calcio , Proteínas de la Membrana , Proteínas Musculares
10.
Methods Enzymol ; 704: 113-142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300645

RESUMEN

Oxazinomycin is a C-nucleoside natural product characterized by a 1,3-oxazine ring linked to ribose via a C-C glycosidic bond. Construction of the 1,3-oxazine ring depends on the activity of OzmD, which is a mononuclear non-heme iron-dependent enzyme from a family of enzymes that contain a domain of unknown function (DUF) 4243. OzmD catalyzes an unusual oxidative ring rearrangement of a pyridine derivative that releases cyanide as a by-product in the final stage of oxazinomycin biosynthesis. The intrinsic sensitivity of the OzmD substrate to oxygen along with the oxygen dependency of catalysis presents significant challenges in conducting in vitro enzymatic assays. This chapter describes the detailed procedures that have been used to characterize OzmD, including protein preparation, activity assays, and reaction by-product identification.


Asunto(s)
Proteínas Bacterianas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Streptomyces/genética , Streptomyces/enzimología , Streptomyces/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética , Oxigenasas/química , Oxigenasas/aislamiento & purificación , Pruebas de Enzimas/métodos , Oxazinas/química , Oxazinas/metabolismo , Hierro/metabolismo , Hierro/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Hierro no Heme/metabolismo , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/química
11.
Methods Enzymol ; 704: 39-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39300656

RESUMEN

Non-heme iron oxygenases constitute a versatile enzyme family that is crucial for incorporating molecular oxygen into diverse biomolecules. Despite their importance, only a limited number of these enzymes have been structurally and functionally characterized. Surprisingly, there remains a significant gap in understanding how these enzymes utilize a typical architecture and reaction mechanism to catalyze a wide range of reactions. Improving our understanding of these catalysts holds promise for advancing both fundamental enzymology and practical applications. This chapter aims to outline methods for heterologous expression, enzyme preparation, in vitro enzyme assays, and crystallization of biphenyl dioxygenase, phthalate dioxygenase and terephthalate dioxygenase. These enzymes catalyze the dihydroxylation of biphenyl, phthalate and terephthalate molecules, serving as a model for functional and structural analysis of other non-heme iron oxygenases.


Asunto(s)
Compuestos de Bifenilo , Cristalización , Ácidos Ftálicos , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Compuestos de Bifenilo/química , Cinética , Cristalización/métodos , Dioxigenasas/química , Dioxigenasas/metabolismo , Dioxigenasas/genética , Hierro/química , Hierro/metabolismo , Cristalografía por Rayos X/métodos , Pruebas de Enzimas/métodos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Oxigenasas
12.
Talanta ; 279: 126626, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116732

RESUMEN

Thymidine Kinase 1 (TK1) is a pivotal enzyme in fundamental biochemistry and molecular diagnosis, but recognition and molecule detection is a challenging task. Here, we constructed a DNA-integrated hybrid nanochannel sensor for TK1 activity and inhibition assay. Single-stranded DNA containing thymidine was used as a substrate to functionalize the nanochannels, restricting the ion current through channels. With kinase, the thymidine at the termini of the substrate DNA is phosphorylated, elevating surface charge density and mitigating the pore-obstruction effect by increasing transmembrane ion current. The kinase-induced distinctness can be accurately monitored by this hybrid nanodevice, which benefits from its high sensitivity to the change of surface charge. The excellent analytical performance in both kinase enzyme activity and inhibition analysis resulted in efficient and selective evaluation in human serum. Furthermore, compared to current approaches, it greatly simplifies and offers a direct method of analysis, making it a promising sensor technology for cancer management as well as the activities of multiple types of nucleic acid kinases.


Asunto(s)
Técnicas Biosensibles , Timidina Quinasa , Timidina Quinasa/metabolismo , Timidina Quinasa/sangre , Técnicas Biosensibles/métodos , Humanos , Nanoestructuras/química , Pruebas de Enzimas/métodos , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Timidina/química , Límite de Detección
13.
AAPS J ; 26(5): 97, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179710

RESUMEN

Aberrant or dysfunctional cellular enzymes are responsible for a wide range of diseases including cancer, neurodegenerative conditions, and metabolic disorders. Deficiencies in enzyme level or biofunction may lead to intracellular accumulation of substrate to toxic levels and interfere with overall cellular function, ultimately leading to cell damage, disease, and death. Marketed therapeutic interventions for inherited monogenic enzyme deficiency disorders include enzyme replacement therapy and small molecule chaperones. Novel approaches of in vivo gene therapy and ex vivo cell therapy are under clinical evaluation and provide promising opportunities to expand the number of available disease-modifying treatments. To support the development of these different therapeutics, assays to quantify the functional activity of protein enzymes have gained importance in the diagnosis of disease, assessment of pharmacokinetics and pharmacodynamic response, and evaluation of drug efficacy. In this review, we discuss the technical aspects of enzyme activity assays in the bioanalytical context, including assay design and format as well as the unique challenges and considerations associated with assay development, validation, and life cycle management.


Asunto(s)
Biomarcadores , Desarrollo de Medicamentos , Errores Innatos del Metabolismo , Humanos , Biomarcadores/metabolismo , Errores Innatos del Metabolismo/tratamiento farmacológico , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/genética , Desarrollo de Medicamentos/métodos , Pruebas de Enzimas/métodos , Animales , Terapia de Reemplazo Enzimático/métodos
14.
Methods Enzymol ; 702: 51-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39155120

RESUMEN

S-adenosylmethionine (SAM) is most widely known as the biological methylating agent of methyltransferases and for generation of radicals by the iron-sulfur dependent Radical SAM enzymes. SAM also serves as a substrate in biosynthetic reactions that harvest the aminobutyrate moiety of the methionine, producing methylthioadenosine as a co-product. These reactions are found in the production of polyamines such as spermine, siderophores derived from nicotianamine, and opine metallophores staphylopine and pseudopaline, among others. This procedure defines a highly sensitive, continuous fluorescence assay for the determination of steady state kinetic parameters for enzymes that generate the co-product methylthioadenosine.


Asunto(s)
Pruebas de Enzimas , S-Adenosilmetionina , Pruebas de Enzimas/métodos , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Cinética , Espectrometría de Fluorescencia/métodos , Transferasas Alquil y Aril
15.
Talanta ; 279: 126631, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094533

RESUMEN

Terminal deoxynucleotidyl transferase (TdT), a unique template-independent DNA polymerase, plays a crucial role in the human adaptive immune system and is considered a promising biomarker for the diagnosis of various forms of acute or chronic leukemia. The accurate and sensitive detection of trace TdT is of pivotal importance to fulfill the significant medical interest in understanding its pathological functions and diagnosing TdT-related diseases. We hereby present an in-line RNA-based microreactor direct mass spectrometry (MS) method and its application for ultrasensitive, accurate, and rapid analysis of trace TdT activity in leukemic cell samples. A specially designed RNA-based microreactor is fabricated by immobilizing short RNA sequence via covalent Au-S bond on the inner surface of a capillary pre-modified with three-dimensional porous layer (PL) and Au nanoparticles (AuNPs). Utilizing this PL@Au@RNA microreactor, the signal of target TdT is conversed into reporter molecules (adenine), which exhibit a strong MS response. This conversion process enables efficient signal amplification and enhances detection sensitivity. The outlet end of the PL@Au@RNA microreactor is deliberately crafted into a porous tip, serving as an electrospray ionization (ESI) interface to directly couple to ESI-MS in-line. This design facilitates the direct transmission of the generated signaling molecules into the MS system, eliminating the need for laborious sample treatment procedures. By implementing this RNA-based microreactor in direct MS analysis, we have achieved remarkable sensitivity in detecting TdT activity with the limit-of-detection of 4 × 10-9 U, surpassing other reported methods in literature by three to four orders of magnitude. Furthermore, each assay requires a minimal sample volume of merely 10 nL. This method has successfully demonstrated its application in accurately and efficiently detecting TdT activity in leukemia cells, and its detection results are consistent with those obtained by ELISA kits.


Asunto(s)
ADN Nucleotidilexotransferasa , Oro , Espectrometría de Masas , ARN , Humanos , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/química , Oro/química , ARN/análisis , Espectrometría de Masas/métodos , Nanopartículas del Metal/química , Límite de Detección , Leucemia , Pruebas de Enzimas/métodos , Porosidad , Técnicas Biosensibles/métodos
16.
Methods Mol Biol ; 2851: 87-95, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39210173

RESUMEN

Tannin, which is an astringent taste in the mouth, is a polyphenol compound contained in some plants. Tannin causes denaturation of proteins of the tongue or oral mucosa. Tannase, a hydrolase that cleaves carboxylic ester bonds specifically, is used in many industrial fields. Some tannase (tannin acyl hydrolase, EC3.1.1.20) is used widely to prevent or reduce creaming of some foods and beverages. Because some tannins are formed of insoluble salts combined with protein, they reduce creaming such as the white hazing of iced tea. Moreover, they can clarify beverages such as fruit juices during wine and beer production. Tannase is produced by microorganisms under conditions with tannic acid present, mainly from plants. Tannase characteristics differ according to its microorganism of origin. Therefore, it is important to study the microbes used as lactic acid bacteria (LAB), evaluate new methods of tannase assay, and apply them in food or other industries. In this chapter, assay of tannase in LAB is demonstrated using methyl gallate as substrate, with color development by rhodanine and potassium hydroxide solution, using a spectrophotometer. Actual data of high tannase-producing LAB, Lactobacillus plantarum, and enzyme characteristics in optimum conditions are presented in this chapter.


Asunto(s)
Hidrolasas de Éster Carboxílico , Lactobacillus plantarum , Hidrolasas de Éster Carboxílico/metabolismo , Lactobacillus plantarum/enzimología , Lactobacillus plantarum/metabolismo , Pruebas de Enzimas/métodos , Taninos/metabolismo , Taninos/química
17.
Scand J Clin Lab Invest ; 84(4): 268-272, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38984772

RESUMEN

BACKGROUND: Reduced activity of the sucrase-isomaltase (SI) enzyme can cause gastrointestinal symptoms. Biochemical measurement of SI activity in small intestinal biopsies is presently considered the gold standard for the diagnosis of SI deficiency, but this invasive test is not suitable as a routine diagnostic tool. AIM: To evaluate a 13C-sucrose-breath test (13CSBT) as a diagnostic tool for SI deficiency in an adult population. METHODS: 13CSBT results were compared to sucrase activity measured in duodenal biopsies. RESULTS: Forty patients with gastrointestinal symptoms were included in the study, 4 of whom had celiac disease and the rest (n = 36) had normal histological findings. Nine patients (22.5%) had low sucrase activity measured using duodenal biopsies. No correlation was observed between enzymatic sucrase activity and the 13CSBT results. The 13CSBT-curves for the celiac patients versus patients with normal duodenal histology demonstrated that the patients with celiac disease were within the lower range of the distribution. CONCLUSION: We observed a mismatch between the 13CSBT results and the biochemically measured sucrase activity, suggesting that SI activity is not uniformly distributed throughout the small intestines. This methodological discrepancy should be acknowledged when diagnosing SI deficiency.


Asunto(s)
Pruebas Respiratorias , Errores Innatos del Metabolismo de los Carbohidratos , Enfermedad Celíaca , Duodeno , Complejo Sacarasa-Isomaltasa , Sacarosa , Humanos , Pruebas Respiratorias/métodos , Adulto , Complejo Sacarasa-Isomaltasa/deficiencia , Complejo Sacarasa-Isomaltasa/metabolismo , Masculino , Femenino , Duodeno/enzimología , Duodeno/patología , Persona de Mediana Edad , Errores Innatos del Metabolismo de los Carbohidratos/diagnóstico , Errores Innatos del Metabolismo de los Carbohidratos/enzimología , Sacarosa/metabolismo , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/enzimología , Isótopos de Carbono , Anciano , Biopsia , Adulto Joven , Pruebas de Enzimas/métodos , Adolescente
18.
Clin Toxicol (Phila) ; 62(8): 536-538, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39007755

RESUMEN

BACKGROUND: Ethylene glycol poisoning causes metabolic acidosis, organ injury, and death. Ethylene glycol testing is unavailable in many areas. Our laboratory uses an automated glycerol dehydrogenase enzymatic assay to screen for ethylene glycol. We sought to determine how often ethylene glycol results were available within 12 h of the first dose of fomepizole. METHODS: Records from a single poison center were reviewed from December 2016 to December 2019. Cases were identified by searching for cases that received fomepizole. Outcomes included whether results were available within 12 h, and the turnaround time from time of laboratory order to result. RESULTS: Of the 125 cases of suspected toxic alcohol poisoning identified, 73 had screening for ethylene glycol by enzymatic assay. Results were available within 12 h of the initial fomepizole dose in 58 (79%) cases with a median turnaround time of 391 min. DISCUSSION: We have demonstrated clinically acceptable turnaround times using an automated screening ethylene glycol assay. The major limitations include lack of approval for this test at this time, the use of voluntarily reported poison center data, and lack of assessment of patient outcomes. CONCLUSION: Enzymatic screening for ethylene glycol yielded results within 12 h in 79% of cases.


Asunto(s)
Glicol de Etileno , Fomepizol , Glicol de Etileno/envenenamiento , Humanos , Factores de Tiempo , Estudios Retrospectivos , Pruebas de Enzimas/métodos , Centros de Control de Intoxicaciones/estadística & datos numéricos , Antídotos , Masculino , Femenino
19.
Anal Biochem ; 694: 115631, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39084336

RESUMEN

Cyclic 3-phosphosphoglyceric anhydride (cPGA), a side product of glycolysis, acylates cellular amines and thiols to form amides and thioesters, respectively. Since these acylation reactions are harmful, organisms rely on a protein, known as DJ-1 in humans, to inactivate cPGA. Inactivation of cPGA likely plays a significant role in cytoprotection by DJ-1, but further progress in this direction is hampered by the lack of quantitative assays to measure the cPGA hydrolase activity of DJ-1 in biological samples. Here we report an optimized procedure for preparation of cPGA which is then used as a substrate to quantify enzymatic activity of DJ-1. The end-point assay for cPGA hydrolase uses dilute cell lysates to hydrolyze cPGA for 0.5-3.5 min followed by conversion of the remaining cPGA into thioester for spectrophotometric quantitation. We illustrate the utility of this assay by showing that higher levels of cPGA hydrolase activity result in better protection from acylation by cPGA. Moreover, the decrease of cPGA hydrolase activity due to oxidation of the catalytic cysteine of DJ-1 under oxidative stress and its subsequent recovery can be monitored using the assay. This relatively simple assay allows functional characterization of DJ-1 in biological samples through quantitative assessment of its cPGA hydrolase activity.


Asunto(s)
Estrés Oxidativo , Proteína Desglicasa DJ-1 , Proteína Desglicasa DJ-1/metabolismo , Humanos , Hidrolasas/metabolismo , Pruebas de Enzimas/métodos
20.
STAR Protoc ; 5(3): 103208, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39068659

RESUMEN

Protein kinase C-δ (PKC-δ) is a key enzyme controlling growth, differentiation, and apoptosis in various cells, including immune cells. Here, we present a protocol to determine PKC-δ activation in response to increased membrane-bound diacylglycerol or phorbol-12-myristate-13-acetate treatment in murine bone-marrow-derived dendritic cells. We describe steps for dendritic cell differentiation, the isolation of plasma membrane lipids, and the quantification of diacylglycerol. We then detail procedures for measuring PKC-δ kinase activity by in vitro assay, indirect immunofluorescence, and western blotting experiments. For complete details on the use and execution of this protocol, please refer to Parsons et al.1.


Asunto(s)
Células de la Médula Ósea , Células Dendríticas , Pruebas de Enzimas , Proteína Quinasa C-delta , Animales , Ratones , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Células Dendríticas/citología , Células Dendríticas/metabolismo , Diglicéridos/metabolismo , Proteína Quinasa C-delta/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Pruebas de Enzimas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA