Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.014
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Immunol ; 25(1): 43, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987686

RESUMEN

OBJECTIVE: HIV has been reported to interfere with protective vaccination against multiple pathogens, usually through the decreased effectiveness of the antibody responses. We aimed to assess neutralizing antibody responses induced by COVID-19 vaccination in PLWH in Brazzaville, Republique of the Congo. METHOD: The study was conducted at the Ambulatory Treatment Center of the National HIV Program, in charge of over 6000 PLWH, and the health center of FCRM in Brazzaville, Republic of the Congo. Participants were divided into two groups: PLWH with well-controlled HIV infection (CD4 counts no older than one week ≥ 800 / mm3, undetectable viral load of a period no older than one week and regularly taking Highly Active Antiretroviral Therapy for at least 6 months) and PLWOH. These groups were subdivided by vaccination status: fully vaccinated with adenovirus-based vaccines (Janssen/Ad26.COV2.S and Sputnik/Gam-COVID-Vac) or inactivated virus vaccine (Sinopharm/BBIP-CorV) and a control group of unvaccinated healthy individuals. All participants were RT-PCR negative at inclusion and/or with no documented history of SARS-CoV-2 infection. ELISA method was used for detecting IgG and neutralizing Antibodies against SARS-CoV-2 antigens using a commercial neutralizing assay. RESULTS: We collected oropharyngeal and blood samples from 1016 participants including 684 PLWH and 332 PLWOH. Both PLWH and PLWOH elicited high levels of antibody responses after complete vaccination with inactivated virus vaccine (Sinopharm/BBIP-CorV) and adenovirus-based vaccines (Janssen/Ad26.COV2.S and Sputnik/Gam-COVID-Vac). Overall, no difference was observed in neutralization capacity between PLWOH and PLWH with well-controlled HIV infection. CONCLUSION: The results from this study underline the importance of implementing integrated health systems that provide PLWH the opportunity to benefit HIV prevention and care, at the same time while monitoring their vaccine-induced antibody kinetics for appropriate booster schedules.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Infecciones por VIH , SARS-CoV-2 , Vacunación , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Infecciones por VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Masculino , Femenino , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Adulto , SARS-CoV-2/inmunología , Persona de Mediana Edad , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Pruebas de Neutralización
2.
Cell Mol Life Sci ; 81(1): 267, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884678

RESUMEN

Neutralizing antibodies are considered a correlate of protection against severe human respiratory syncytial virus (HRSV) disease. Currently, HRSV neutralization assays are performed on immortalized cell lines like Vero or A549 cells. It is known that assays on these cell lines exclusively detect neutralizing antibodies (nAbs) directed to the fusion (F) protein. For the detection of nAbs directed to the glycoprotein (G), ciliated epithelial cells expressing the cellular receptor CX3CR1 are required, but generation of primary cell cultures is expensive and labor-intensive. Here, we developed a high-throughput neutralization assay based on the interaction between clinically relevant HRSV grown on primary cells with ciliated epithelial cells, and validated this assay using a panel of infant sera. To develop the high-throughput neutralization assay, we established a culture of differentiated apical-out airway organoids (Ap-O AO). CX3CR1 expression was confirmed, and both F- and G-specific monoclonal antibodies neutralized HRSV in the Ap-O AO. In a side-by-side neutralization assay on Vero cells and Ap-O AO, neutralizing antibody levels in sera from 125 infants correlated well, although titers on Ap-O AO were consistently lower. We speculate that these lower titers might be an actual reflection of the neutralizing antibody capacity in vivo. The organoid-based neutralization assay described here holds promise for further characterization of correlates of protection against HRSV disease.


Asunto(s)
Anticuerpos Neutralizantes , Receptor 1 de Quimiocinas CX3C , Pruebas de Neutralización , Organoides , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Virus Sincitial Respiratorio Humano/inmunología , Anticuerpos Neutralizantes/inmunología , Organoides/metabolismo , Organoides/inmunología , Organoides/virología , Organoides/citología , Animales , Pruebas de Neutralización/métodos , Chlorocebus aethiops , Células Vero , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/inmunología , Anticuerpos Antivirales/inmunología , Proteínas Virales de Fusión/inmunología , Proteínas Virales de Fusión/metabolismo , Lactante , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/virología , Anticuerpos Monoclonales/inmunología
3.
J Immunol Methods ; 530: 113698, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823574

RESUMEN

There is a critical need to understand the effectiveness of serum elicited by different SARS-CoV-2 vaccines against SARS-CoV-2 variants. We describe the generation of reference reagents comprised of post-vaccination sera from recipients of different primary vaccines with or without different vaccine booster regimens in order to allow standardized characterization of SARS-CoV-2 neutralization in vitro. We prepared and pooled serum obtained from donors who received a either primary vaccine series alone, or a vaccination strategy that included primary and boosted immunization using available SARS-CoV-2 mRNA vaccines (BNT162b2, Pfizer and mRNA-1273, Moderna), replication-incompetent adenovirus type 26 vaccine (Ad26.COV2·S, Johnson and Johnson), or recombinant baculovirus-expressed spike protein in a nanoparticle vaccine plus Matrix-M adjuvant (NVX-CoV2373, Novavax). No subjects had a history of clinical SARS-CoV-2 infection, and sera were screened with confirmation that there were no nucleocapsid antibodies detected to suggest natural infection. Twice frozen sera were aliquoted, and serum antibodies were characterized for SARS-CoV-2 spike protein binding (estimated WHO antibody binding units/ml), spike protein competition for ACE-2 binding, and SARS-CoV-2 spike protein pseudotyped lentivirus transduction. These reagents are available for distribution to the research community (BEI Resources), and should allow the direct comparison of antibody neutralization results between different laboratories. Further, these sera are an important tool to evaluate the functional neutralization activity of vaccine-induced antibodies against emerging SARS-CoV-2 variants of concern. IMPORTANCE: The explosion of COVID-19 demonstrated how novel coronaviruses can rapidly spread and evolve following introduction into human hosts. The extent of vaccine- and infection-induced protection against infection and disease severity is reduced over time due to the fall in concentration, and due to emerging variants that have altered antibody binding regions on the viral envelope spike protein. Here, we pooled sera obtained from individuals who were immunized with different SARS-CoV-2 vaccines and who did not have clinical or serologic evidence of prior infection. The sera pools were characterized for direct spike protein binding, blockade of virus-receptor binding, and neutralization of spike protein pseudotyped lentiviruses. These sera pools were aliquoted and are available to allow inter-laboratory comparison of results and to provide a tool to determine the effectiveness of prior vaccines in recognizing and neutralizing emerging variants of concern.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , COVID-19 , Pruebas de Neutralización , SARS-CoV-2 , Humanos , SARS-CoV-2/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna BNT162/inmunología , Vacuna BNT162/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Estándares de Referencia , Inmunización Secundaria , Vacunación , Ad26COVS1/inmunología
4.
Virus Res ; 345: 199383, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697296

RESUMEN

The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has posed a significant global health concern due to its severe respiratory illness and high fatality rate. Currently, despite the potential for resurgence, there are no specific treatments for MERS-CoV, and only supportive care is available. Our study aimed to address this therapeutic gap by developing a potent neutralizing bispecific antibody (bsAb) against MERS-CoV. Initially, we isolated four human monoclonal antibodies (mAbs) that specifically target the MERS-CoV receptor-binding domain (RBD) using phage display technology and an established human antibody library. Among these four selected mAbs, our intensive in vitro functional analyses showed that the MERS-CoV RBD-specific mAb K111.3 exhibited the most potent neutralizing activity against MERS-CoV pseudoviral infection and the molecular interaction between MERS-CoV RBD and human dipeptidyl peptidase 4. Consequently, we engineered a novel bsAb, K207.C, by utilizing K111.3 as the IgG base and fusing it with the single-chain variable fragment of its non-competing pair, K111.1. This engineered bsAb showed significantly enhanced neutralization potential against MERS-CoV compared to its parental mAb. These findings suggest that K207.C may serve as a potential candidate for effective MERS-CoV neutralization, further highlighting the promise of the bsAb dual-targeting approach in MERS-CoV neutralization.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Coronavirus del Síndrome Respiratorio de Oriente Medio , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Humanos , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Anticuerpos Monoclonales/inmunología , Unión Proteica , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/inmunología , Ratones , Pruebas de Neutralización
5.
Hum Vaccin Immunother ; 20(1): 2330168, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38567541

RESUMEN

Human papillomavirus (HPV) vaccines, primarily relying on neutralizing antibodies, have proven highly effective. Recently, HPV-specific antibodies have been detected in the female genital tract secretions captured by first-void urine (FVU), offering a minimally invasive diagnostic approach. In this study, we investigated whether HPV16-specific antibodies present in FVU samples retain their neutralizing capacity by using pseudovirion-based neutralization assays. Paired FVU and serum samples (vaccinated n = 25, unvaccinated n = 25, aged 18-25) were analyzed using two orthogonal pseudovirion-based neutralization assays, one using fluorescence microscopy and the other using luminescence-based spectrophotometry. Results were compared with HPV16-specific IgG concentrations and correlations between neutralizing antibodies in FVU and serum were explored. The study demonstrated the presence of neutralizing antibodies in FVU using both pseudovirion-based neutralization assays, with the luminescence-based assay showing higher sensitivity for FVU samples, while the fluorescence microscopy-based assay exhibited better specificity for serum and overall higher reproducibility. High Spearman correlation values were calculated between HPV16-IgG and HPV16-neutralizing antibodies for both protocols (rs: 0.54-0.94, p < .001). Significant Spearman correlations between FVU and serum concentrations were also established for all assays (rs: 0.44-0.91, p < .01). This study demonstrates the continued neutralizing ability of antibodies captured with FVU, supporting the hypothesis that HPV vaccination may reduce autoinoculation and transmission risk to the sexual partner. Although further protocol optimizations are warranted, these findings provide a foundation for future research and larger cohort studies that could have implications for the optimal design, evaluation, and implementation of HPV vaccination programs.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Infecciones por Papillomavirus/prevención & control , Reproducibilidad de los Resultados , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Pruebas de Neutralización/métodos , Genitales Femeninos , Papillomavirus Humano 16 , Inmunoglobulina G
6.
Virus Res ; 341: 199308, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38171391

RESUMEN

A vaccine against Hepatitis C virus (HCV) is urgently needed to limit the spread of HCV. The large antigenic diversity of the HCV glycoprotein E1E2 makes it difficult to design a vaccine but also to fully understand the antibody response after infection or vaccination. Here we designed a panel of HCV pseudoparticles (HCVpps) that cover a wide range of genetically and antigenically diverse E1E2s. We validate our panel using neutralization and a binding antibody multiplex assay (BAMA). The panel of HCVpps includes E1E2 glycoproteins from acute and chronically infected cases in the Netherlands, as well as E1E2 glycoproteins from previously reported HCVs. Using eight monoclonal antibodies targeting multiple antigenic regions on E1E2, we could categorize four groups of neutralization sensitive viruses with viruses showing neutralization titers over a 100-fold range. One HCVpp (AMS0230) was extremely neutralization resistant and only neutralized by AR4-targeting antibodies. In addition, using binding antibody multiplex competition assay, we delineated mAb epitopes and their interactions. The binding and neutralization sensitivity of the HCVpps were confirmed using patient sera. At the end, eleven HCVpps with unique antibody binding and neutralization profiles were selected as the final panel for standardized HCV antibody assessments. In conclusion, this HCVpp panel can be used to evaluate antibody binding and neutralization breadth and potency as well as delineate the epitopes targeted in sera from patients or candidate vaccine trials. The HCVpp panel in combination with the established antibody competition assay present highly valuable tools for HCV vaccine development and evaluation.


Asunto(s)
Hepatitis C , Vacunas , Humanos , Hepacivirus , Anticuerpos Neutralizantes , Formación de Anticuerpos , Pruebas de Neutralización , Proteínas del Envoltorio Viral , Glicoproteínas , Epítopos , Anticuerpos contra la Hepatitis C , Anticuerpos Monoclonales
7.
J Immunol Methods ; 523: 113585, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37949349

RESUMEN

In this study, a proficiency panel was created for evaluation of assay performance and inter- and intra-laboratory assay comparisons, especially the ability to accurately measure negative, low, intermediate, and high levels of HPV type-specific antibodies. Comprised of 80 deidentified samples, this panel is designed for individual labs to evaluate assay performance characteristics on a biennial basis, to promote standardization of methodology and harmonization of data from human papillomavirus (HPV) serology tests in vaccine trials. The proficiency panel was qualified using 2 types of assays (singleplex Enzyme-Linked Immunosorbent Assays [ELISAs] or Multiplex antibody-binding assays and Pseudovirion-based neutralization assays [PBNAs]) in 10 laboratories from 7 countries, monitoring HPV antibody responses for up to 9 HPV types and using 3 different analysis methods. Sensitivity, specificity, and correlations (concordance, accuracy, and precision) were evaluated for each HPV type. In laboratories that tested all 80 samples, results from most (74/80) samples were reported with 100% accuracy across all 9 HPV types. The average sensitivity and specificity for singleplex and multiplex antibody binding assays ranged from 86.7% to 98.3% (sensitivity) and 84.2% to 94.3% (specificity), while the average sensitivity and specificity for the Pseudovirion (PsV)-based neutralization assays (PBNA) ranged from 87.6% to 99.4% (sensitivity) and 52.4% to 94.4% (specificity). This proficiency panel will help with assessing performance characteristics of HPV serology assays used in clinical trial studies and assure the data generated from these assays is harmonized.


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Vacunas , Humanos , Pruebas de Neutralización/métodos , Formación de Anticuerpos , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/prevención & control , Anticuerpos Antivirales
8.
Nat Commun ; 14(1): 7593, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989731

RESUMEN

The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display. Successive rounds of directed evolution by iterative selection of antibodies for binding to resistant HIV-1 strains establish a variant, VRC34.01_mm28, as a best-in-class antibody with 10-fold enhanced potency compared to the template antibody and ~80% breadth on a cross-clade 208-strain neutralization panel. Structural analyses demonstrate that the improved paratope expands the FP binding groove to accommodate diverse FP sequences of different lengths while also recognizing the HIV-1 Env backbone. These data reveal critical antibody features for enhanced neutralization breadth and potency against the FP site of vulnerability and accelerate clinical development of broad HIV-1 FP-targeting vaccines and therapeutics.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , Péptidos , Secuencia de Aminoácidos , Vacunas de Subunidad , Pruebas de Neutralización , Productos del Gen env del Virus de la Inmunodeficiencia Humana
9.
BMC Infect Dis ; 23(1): 367, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259032

RESUMEN

BACKGROUND: As countries move towards or achieve measles elimination status, serosurveillance is an important public health tool. However, a major challenge of serosurveillance is finding a feasible, accurate, cost-effective, and high throughput assay to measure measles antibody concentrations and estimate susceptibility in a population. We conducted a systematic review to assess, characterize, and - to the extent possible - quantify the performance of measles IgG enzyme-linked assays (EIAs) compared to the gold standard, plaque reduction neutralization tests (PRNT). METHODS: We followed the PRISMA statement for a systematic literature search and methods for conducting and reporting systematic reviews and meta-analyses recommended by the Cochrane Screening and Diagnostic Tests Methods Group. We identified studies through PubMed and Embase electronic databases and included serologic studies detecting measles virus IgG antibodies among participants of any age from the same source population that reported an index (any EIA or multiple bead-based assays, MBA) and reference test (PRNT) using sera, whole blood, or plasma. Measures of diagnostic accuracy with 95% confidence intervals (CI) were abstracted for each study result, where reported. RESULTS: We identified 550 unique publications and identified 36 eligible studies for analysis. We classified studies as high, medium, or low quality; results from high quality studies are reported. Because most high quality studies used the Siemens Enzygnost EIA kit, we generate individual and pooled diagnostic accuracy estimates for this assay separately. Median sensitivity of the Enzygnost EIA was 92.1% [IQR = 82.3, 95.7]; median specificity was 96.9 [93.0, 100.0]. Pooled sensitivity and specificity from studies using the Enzygnost kit were 91.6 (95%CI: 80.7,96.6) and 96.0 (95%CI: 90.9,98.3), respectively. The sensitivity of all other EIA kits across high quality studies ranged from 0% to 98.9% with median (IQR) = 90.6 [86.6, 95.2]; specificity ranged from 58.8% to 100.0% with median (IQR) = 100.0 [88.7, 100.0]. CONCLUSIONS: Evidence on the diagnostic accuracy of currently available measles IgG EIAs is variable, insufficient, and may not be fit for purpose for serosurveillance goals. Additional studies evaluating the diagnostic accuracy of measles EIAs, including MBAs, should be conducted among diverse populations and settings (e.g., vaccination status, elimination/endemic status, age groups).


Asunto(s)
Sarampión , Humanos , Pruebas de Neutralización/métodos , Técnicas para Inmunoenzimas , Virus del Sarampión , Sensibilidad y Especificidad , Anticuerpos Antivirales , Inmunoglobulina G
10.
Adv Sci (Weinh) ; 10(20): e2207474, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37162232

RESUMEN

Vaccination is a cost-effective medical intervention. Inactivated whole virusor large protein fragments-based severe acute respiratory syndrome coronavirus (SARS-CoV-2) vaccines have high unnecessary antigenic load to induce allergenicity and/orreactogenicity, which can be avoided by peptide vaccines of short peptide fragments that may induce highly targeted immune response. However, epitope identification and peptide delivery remain the major obstacles in developing peptide vaccines. Here, a multi-source data integrated linear B-cell epitope screening strategy is presented and a linear B-cell epitope enriched hotspot region is identified in Spike protein, from which a monomeric peptide vaccine (Epitope25) is developed and applied to subcutaneously immunize wildtype BALB/c mice. Indirect ELISA assay reveals specific and dose-dependent binding between Epitope25 and serum IgG antibodies from immunized mice. The neutralizing activity of sera from vaccinated mice is validated by pseudo and live SARS-CoV-2 wild-type strain neutralization assays. Then a dissolvable microneedle array (DMNA) is developed to pain-freely deliver Epitope25. Compared with intramuscular injection, DMNA and subcutaneous injection elicit neutralizing activities against SARS-CoV-2 wild-type strain as demonstrated by live SARS-CoV-2 virus neutralization assay. No obvious damages are found in major organs of immunized mice. This study may lay the foundation for developing linear B-cell epitope-based vaccines against SARS-CoV-2.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Animales , Ratones , SARS-CoV-2 , Glicoproteínas de Membrana , Proteínas del Envoltorio Viral , Epítopos de Linfocito B , Vacunas contra la COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Pruebas de Neutralización , COVID-19/prevención & control , Vacunas de Subunidad
11.
J Virol Methods ; 316: 114716, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965633

RESUMEN

Cervical cancer, the second leading cause of cancer-related deaths among women, is caused by human papillomavirus (HPV), a sexually transmitted virus. Vaccination is an effective preventive measure against viral infections and subsequent development of cervical cancer. Enzyme-linked immunosorbent assay (ELISA) is commonly used to measure specific binding antibody titers and assess the immunogenicity of test vaccines in preclinical models or clinical volunteers. Two methods of deriving titers, the endpoint titer (ET) and the effective dilution producing a median maximal effective fold of dilution (ED50) with a cut-off value, are widely used. For HPV, a pseudovirion-based neutralization assay (PBNA) is used to measure functional antibody titers. The ELISA binding titers and functional PBNA titers were found to be well-correlated for all nine HPV types tested in the vaccine, consistent with previous studies on HPV 16/18. Comparing the PBNA results with the two titration methods, the ED50 method showed higher precision and a closer correlation with PBNA results, both for individual types and pooled data analysis for all nine types. When comparing the titration results of the ET method based on a cut-off value with the ED50 method using all the data points across the dilution series, the ED50 method demonstrated better precision and a stronger correlation with PBNA results.


Asunto(s)
Correlación de Datos , Ensayo de Inmunoadsorción Enzimática , Inmunogenicidad Vacunal , Pruebas de Neutralización , Vacunas contra Papillomavirus , Vacunas contra Papillomavirus/clasificación , Vacunas contra Papillomavirus/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Pruebas de Neutralización/métodos , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Anticuerpos Neutralizantes/inmunología , Reproducibilidad de los Resultados , Inmunogenicidad Vacunal/inmunología
13.
J Infect Dis ; 227(2): 211-220, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35975942

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may be associated with worse clinical outcomes in people with human immunodeficiency virus (HIV) (PWH). We report anti-SARS-CoV-2 antibody responses in patients hospitalized with coronavirus disease 2019 in Durban, South Africa, during the second SARS-CoV-2 infection wave dominated by the Beta (B.1.351) variant. METHODS: Thirty-four participants with confirmed SARS-CoV-2 infection were followed up with weekly blood sampling to examine antibody levels and neutralization potency against SARS-CoV-2 variants. Participants included 18 PWH, of whom 11 were HIV viremic. RESULTS: SARS-CoV-2-specific antibody concentrations were generally lower in viremic PWH than in virologically suppressed PWH and HIV-negative participants, and neutralization of the Beta variant was 4.9-fold lower in viremic PWH. Most HIV-negative participants and antiretroviral therapy-suppressed PWH also neutralized the Delta (B.1.617.2) variant, whereas the majority of viremic PWH did not. CD4 cell counts <500/µL were associated with lower frequencies of immunoglobulin G and A seroconversion. In addition, there was a high correlation between a surrogate virus neutralization test and live virus neutralization against ancestral SARS-CoV-2 virus in both PWH and HIV-negative individuals, but correlation decreased for the Beta variant neutralization in PWH. CONCLUSIONS: HIV viremia was associated with reduced Beta variant neutralization. This highlights the importance of HIV suppression in maintaining an effective SARS-CoV-2 neutralization response.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , SARS-CoV-2 , VIH , Viremia , Sudáfrica/epidemiología , Anticuerpos Antivirales , Infecciones por VIH/tratamiento farmacológico , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , Pruebas de Neutralización
14.
Sci Rep ; 12(1): 19791, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396691

RESUMEN

The effectiveness of therapeutic monoclonal antibodies (mAbs) against variants of the SARS-CoV-2 virus is highly variable. As target recognition of mAbs relies on tight binding affinity, we assessed the affinities of five therapeutic mAbs to the receptor binding domain (RBD) of wild type (A), Delta (B.1.617.2), and Omicron BA.1 SARS-CoV-2 (B.1.1.529.1) spike using microfluidic diffusional sizing (MDS). Four therapeutic mAbs showed strongly reduced affinity to Omicron BA.1 RBD, whereas one (sotrovimab) was less impacted. These affinity reductions correlate with reduced antiviral activities suggesting that affinity could serve as a rapid indicator for activity before time-consuming virus neutralization assays are performed. We also compared the same mAbs to serological fingerprints (affinity and concentration) obtained by MDS of antibodies in sera of 65 convalescent individuals. The affinities of the therapeutic mAbs to wild type and Delta RBD were similar to the serum antibody response, indicating high antiviral activities. For Omicron BA.1 RBD, only sotrovimab retained affinities within the range of the serum antibody response, in agreement with high antiviral activity. These results suggest that serological fingerprints provide a route to evaluating affinity and antiviral activity of mAb drugs and could guide the development of new therapeutics.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/química , Anticuerpos Antivirales , Proteínas del Envoltorio Viral , Antivirales/farmacología , Glicoproteínas de Membrana/química , SARS-CoV-2 , Anticuerpos Monoclonales
15.
J Gen Virol ; 103(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36399377

RESUMEN

A better understanding of the antibody response during natural infection and the effect on disease progression and reinfection is necessary for the development of a protective hepatitis C virus (HCV) vaccine. The HCV pseudoparticle (HCVpp) system enables the study of viral entry and inhibition by antibody neutralization. A robust and comparable neutralization assay is crucial for the development and evaluation of experimental vaccines.With the aim of optimizing the HCVpp-murine leukaemia virus (MLV) system, we tested the neutralization of HCVpp-harbouring E1E2 from 21 HCV isolates representing 6 different genotypes by several monoclonal antibodies (mAbs). HCVpps are generated by expressing functional envelope glycoproteins (E1E2) onto pseudoparticles derived from env-deleted MLV. Adjustments of E1E2, gag-pol and luciferase plasmid ratios resulted in increased yields for most HCVpps and recovery of one non-infectious HCVpp. We simplified and improved the protocol to achieve higher signal/noise ratios and minimized the amount of HCVpps and mAbs needed for the detection of neutralization. Using our optimized protocol, we demonstrated comparable results to previously reported data with both diluted and freeze-thawed HCVpps.In conclusion, we successfully established a simplified and reproducible HCVpp neutralization protocol for studying a wide range of HCV variants. This simplified protocol provides highly consistent results and could be easily adopted by others to evaluate precious biological material. This will contribute to a better understanding of the antibody response during natural infection and help evaluate experimental HCV vaccines.


Asunto(s)
Hepatitis C , Vacunas , Animales , Ratones , Hepacivirus , Anticuerpos Neutralizantes , Anticuerpos contra la Hepatitis C , Pruebas de Neutralización , Proteínas del Envoltorio Viral/genética , Hepatitis C/genética , Anticuerpos Monoclonales
16.
Cell Host Microbe ; 30(11): 1518-1526.e4, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36240764

RESUMEN

The newly emerged BA.2.75 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant contains 9 additional mutations in its spike (S) protein compared to the ancestral BA.2 variant. Here, we examine the neutralizing antibody escape of BA.2.75 in mRNA-vaccinated and BA.1-infected individuals, as well as the molecular basis underlying functional changes in S. Notably, BA.2.75 exhibits enhanced neutralization resistance over BA.2 but less than the BA.4/5 variant. The G446S and N460K mutations of BA.2.75 are primarily responsible for its enhanced resistance to neutralizing antibodies. The R493Q mutation, a reversion to the prototype sequence, reduces BA.2.75 neutralization resistance. The impact of these mutations is consistent with their locations in common neutralizing antibody epitopes. Further, BA.2.75 shows enhanced cell-cell fusion over BA.2, driven largely by the N460K mutation, which enhances S processing. Structural modeling reveals enhanced receptor contacts introduced by N460K, suggesting a mechanism of potentiated receptor utilization and syncytia formation.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Pruebas de Neutralización , Anticuerpos Antivirales , Proteínas del Envoltorio Viral
17.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214224

RESUMEN

Protective immunity against SARS-CoV-2 infection after COVID-19 vaccination may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. For example, among individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.


Asunto(s)
Vacunas contra el SIDA , COVID-19 , Vacunas contra la Influenza , Vacunas contra Papillomavirus , Vacunas contra Virus Sincitial Respiratorio , Vacunas contra el SIDAS , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BCG , COVID-19/prevención & control , Vacunas contra la COVID-19 , Convalecencia , Vacuna contra Difteria, Tétanos y Tos Ferina , Humanos , Vacuna contra el Sarampión-Parotiditis-Rubéola , Pruebas de Neutralización , SARS-CoV-2
18.
Front Immunol ; 13: 1010790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263027

RESUMEN

Licensed L1-VLP-based immunizations against high-risk mucosal human papillomavirus (HPV) types have been a great success in reducing anogenital cancers, although they are limited in their cross-protection against HPV types not covered by the vaccine. Further, their utility in protection against cutaneous HPV types, of which some contribute to non-melanoma skin cancer (NMSC) development, is rather low. Next generation vaccines achieve broadly cross-protective immunity against highly conserved sequences of L2. In this exploratory study, we tested two novel HPV vaccine candidates, HPV16 RG1-VLP and CUT-PANHPVAX, in the preclinical natural infection model Mastomys coucha. After immunization with either vaccines, a mock control or MnPV L1-VLPs, the animals were experimentally infected and monitored. Besides vaccine-specific seroconversion against HPV L2 peptides, the animals also developed cross-reactive antibodies against the cutaneous Mastomys natalensis papillomavirus (MnPV) L2, which were cross-neutralizing MnPV pseudovirions in vitro. Further, both L2-based vaccines also conferred in vivo protection as the viral loads in plucked hair after experimental infection were lower compared to mock-vaccinated control animals. Importantly, the formation of neutralizing antibodies, whether directed against L1-VLPs or L2, was able to prevent skin tumor formation and even microscopical signs of MnPV infection in the skin. For the first time, our study shows the proof-of-principle of next generation L2-based vaccines even across different PV genera in an infection animal model with its genuine PV. It provides fundamental insights into the humoral immunity elicited by L2-based vaccines against PV-induced skin tumors, with important implications to the design of next generation HPV vaccines.


Asunto(s)
Neoplasias , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Vacunas de Partículas Similares a Virus , Ratones , Animales , Humanos , Pruebas de Neutralización , Proteínas de la Cápside , Ratones Endogámicos BALB C , Papillomaviridae , Anticuerpos Neutralizantes , Péptidos
19.
Cell Rep ; 41(5): 111528, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302375

RESUMEN

The emergence and global spread of the SARS-CoV-2 Omicron variants, which carry an unprecedented number of mutations, raise serious concerns due to the reduced efficacy of current vaccines and resistance to therapeutic antibodies. Here, we report the generation and characterization of two potent human monoclonal antibodies, NA8 and NE12, against the receptor-binding domain of the SARS-CoV-2 spike protein. NA8 interacts with a highly conserved region and has a breadth of neutralization with picomolar potency against the Beta variant and the Omicron BA.1 and BA.2 sublineages and nanomolar potency against BA.2.12.1 and BA.4. Combination of NA8 and NE12 retains potent neutralizing activity against the major SARS-CoV-2 variants of concern. Cryo-EM analysis provides the structural basis for the broad and complementary neutralizing activity of these two antibodies. We confirm the in vivo protective and therapeutic efficacies of NA8 and NE12 in the hamster model. These results show that broad and potent human antibodies can overcome the continuous immune escape of evolving SARS-CoV-2 variants.


Asunto(s)
Antineoplásicos Inmunológicos , COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/genética , Pruebas de Neutralización , Anticuerpos Antivirales/uso terapéutico , Proteínas del Envoltorio Viral , Glicoproteínas de Membrana/genética , Anticuerpos Neutralizantes/uso terapéutico
20.
Nat Microbiol ; 7(11): 1756-1761, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36195753

RESUMEN

The SARS-CoV-2 Omicron variant (B.1.1.529 lineage) escapes antibodies that neutralize the ancestral virus. We tested human serum panels from participants with differing infection and vaccination status using a multiplex surrogate virus neutralization assay targeting 20 sarbecoviruses. We found that bat and pangolin sarbecoviruses showed significantly less neutralization escape than the Omicron variant. We propose that SARS-CoV-2 variants have emerged under immune selection pressure and are evolving differently from animal sarbecoviruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/genética , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral , Anticuerpos Antivirales , Glicoproteínas de Membrana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA