Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cells ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38920663

RESUMEN

Erysiphe alphitoides is a species of powdery mildew responsible for the major foliar disease of oak trees, including Quercus robur. Infection with E. alphitoides leads to a reduction in the growth of the trees and in their ability to survive. This paper reports on the biochemical changes characteristic of defence responses in oak leaves with different infection area sizes, collected in July, August, and September during three growing seasons. The study highlights the effect of E. alphitoides infection on changes in the ascorbate-glutathione cycle, phenolic compound profile, and metal content (mineral distribution). Visible symptoms of pathogen infection appeared gradually in July, but the most intense biochemical plant responses in oak leaves were detected mainly in August and September. These responses included increased ascorbate-glutathione enzyme activities, phenolic compounds, and metal contents. In addition, microscopic analyses revealed a strong fluorescence signal of lignin in the epidermis of pathogen-infected leaves. The involvement of the studied compounds in the basic defence mechanisms of oak against E. alphitoides infection is discussed in the paper.


Asunto(s)
Antioxidantes , Ascomicetos , Ácido Ascórbico , Glutatión , Enfermedades de las Plantas , Hojas de la Planta , Quercus , Quercus/microbiología , Quercus/metabolismo , Ácido Ascórbico/metabolismo , Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Antioxidantes/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Glutatión/metabolismo , Interacciones Huésped-Patógeno , Fenoles/metabolismo , Lignina/metabolismo
2.
Plant Physiol Biochem ; 211: 108724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744084

RESUMEN

Heavy metal pollution is a global environmental problem, and Quercus variabilis has a stronger tolerance to Cd stress than do other species. We aimed to explore the physiological response and molecular mechanisms of Q. variabilis to Cd stress. In this study, the antioxidant enzyme activities of leaves were determined, while the photosynthetic parameters of leaves were measured using Handy PEA, and ion fluxes and DEGs in the roots were investigated using noninvasive microtest technology (NMT) and RNA sequencing techniques, respectively. Cd stress at different concentrations and for different durations affected the uptake patterns of Cd2+ and H+ by Q. variabilis and affected the photosynthetic efficiency of leaves. Moreover, there was a positive relationship between antioxidant enzyme (CAT and POD) activity and Cd concentration. Transcriptome analysis revealed that many genes, including genes related to the cell wall, glutathione metabolism, ion uptake and transport, were significantly upregulated in response to cadmium stress in Q. variabilis roots. WGCNA showed that these DEGs could be divided into eight modules. The turquoise and blue modules exhibited the strongest correlations, and the most significantly enriched pathways were the phytohormone signaling pathway and the phenylpropanoid biosynthesis pathway, respectively. These findings suggest that Q. variabilis can bolster plant tolerance by modulating signal transduction and increasing the synthesis of compounds, such as lignin, under Cd stress. In summary, Q. variabilis can adapt to Cd stress by increasing the activity of antioxidant enzymes, and regulating the fluxes of Cd2+ and H+ ions and the expression of Cd stress-related genes.


Asunto(s)
Cadmio , Regulación de la Expresión Génica de las Plantas , Quercus , Estrés Fisiológico , Quercus/metabolismo , Quercus/efectos de los fármacos , Quercus/genética , Cadmio/toxicidad , Cadmio/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo
3.
New Phytol ; 242(6): 2702-2718, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38515244

RESUMEN

Hydrolyzable tannins (HTs), predominant polyphenols in oaks, are widely used in grape wine aging, feed additives, and human healthcare. However, the limited availability of a high-quality reference genome of oaks greatly hampered the recognition of the mechanism of HT biosynthesis. Here, high-quality reference genomes of three Asian oak species (Quercus variabilis, Quercus aliena, and Quercus dentata) that have different HT contents were generated. Multi-omics studies were carried out to identify key genes regulating HT biosynthesis. In vitro enzyme activity assay was also conducted. Dual-luciferase and yeast one-hybrid assays were used to reveal the transcriptional regulation. Our results revealed that ß-glucogallin was a biochemical marker for HT production in the cupules of the three Asian oaks. UGT84A13 was confirmed as the key enzyme for ß-glucogallin biosynthesis. The differential expression of UGT84A13, rather than enzyme activity, was the main reason for different ß-glucogallin and HT accumulation. Notably, sequence variations in UGT84A13 promoters led to different trans-activating activities of WRKY32/59, explaining the different expression patterns of UGT84A13 among the three species. Our findings provide three high-quality new reference genomes for oak trees and give new insights into different transcriptional regulation for understanding ß-glucogallin and HT biosynthesis in closely related oak species.


Asunto(s)
Biomarcadores , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica , Taninos Hidrolizables , Quercus , Biomarcadores/metabolismo , Genómica/métodos , Taninos Hidrolizables/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Quercus/genética , Quercus/metabolismo , Especificidad de la Especie
4.
Plant Physiol ; 195(1): 698-712, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38236304

RESUMEN

Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is cell wall deposition that dictates the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how valley oak (Quercus lobata) leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form unique structures and organs.


Asunto(s)
Pared Celular , Interacciones Huésped-Parásitos , Tumores de Planta , Avispas , Animales , Pared Celular/metabolismo , Avispas/fisiología , Tumores de Planta/parasitología , Quercus/metabolismo , Quercus/parasitología , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Lignina/metabolismo
5.
J Chem Ecol ; 50(5-6): 250-261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38270732

RESUMEN

To what extent particular plant defences against herbivorous insects are constitutive or inducible will depend on the costs and benefits in their neighbourhood. Some defensive chemicals in leaves are thought to be costly and hard to produce rapidly, while others, including volatile organic compounds that attract natural enemies, might be cheaper and can be released rapidly. When surrounding tree species are more closely related, trees can face an increased abundance of both specialist herbivores and their parasitoids, potentially increasing the benefits of constitutive and inducible defences. To test if oaks (Quercus robur) respond more to herbivore attacks with volatile emission than with changes in leaf phenolic chemistry and carbon to nitrogen ratio (C: N), and whether oaks respond to the neighbouring tree species, we performed an experiment in a forest in Poland. Oak saplings were placed in neighbourhoods dominated by oak, beech, or pine trees, and half of them were treated with the phytohormone methyl jasmonate (elicitor of anti-herbivore responses). Oaks responded to the treatment by emitting a different volatile blend within 24 h, while leaf phenolic chemistry and C: N remained largely unaffected after 16 days and multiple treatments. Leaf phenolics were subtly affected by the neighbouring trees with elevated flavan-3-ols concentrations in pine-dominated plots. Our results suggest that these oaks rely on phenols as a constitutive defence and when attacked emit volatiles to attract natural enemies. Further studies might determine if the small effect of the neighbourhood on leaf phenolics is a response to different levels of shading, or if oaks use volatile cues to assess the composition of their neighbourhood.


Asunto(s)
Flavonoides , Herbivoria , Hojas de la Planta , Quercus , Compuestos Orgánicos Volátiles , Quercus/química , Quercus/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Flavonoides/metabolismo , Flavonoides/análisis , Flavonoides/química , Animales , Acetatos , Oxilipinas/metabolismo , Oxilipinas/química , Ciclopentanos/metabolismo , Ciclopentanos/química , Nitrógeno/metabolismo , Carbono/metabolismo , Carbono/química
6.
Asian Pac J Cancer Prev ; 24(7): 2383-2388, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505770

RESUMEN

This study aimed to find out the mechanism of cytotoxic effects of galls of Quercus Brantii on A375 and SK-MEL-3 melanoma and AGO-1522 normal human fibroblast cell lines for the first time. Therefore, cell viability and cytotoxic activities were evaluated. Furthermore, ROS formation, lipid peroxidation, and release of cytochrome-c were also assessed. The results revealed that the extract of these galls at a concentration of 0.05 mg/ml significantly (P<0.001) increased cytotoxicity, ROS formation, TBARS formation, and cytochrome-c release in A375 and SK-MEL-3 melanoma cell lines compared to AGO-1522 normal human fibroblast. These results demonstrated that these galls can be considered a promising candidate which acts in synergy with anticancer agents used in the clinical treatment of human malignant melanoma.


Asunto(s)
Antineoplásicos , Melanoma , Quercus , Humanos , Quercus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Melanoma/patología , Antineoplásicos/farmacología , Citocromos , Apoptosis , Melanoma Cutáneo Maligno
7.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108671

RESUMEN

The drought sensitivity of the pedunculate oak (Quercus robur L.) poses a threat to its survival in light of climate change. Mycorrhizal fungi, which orchestrate biogeochemical cycles and particularly have an impact on the plant's defense mechanisms and metabolism of carbon, nitrogen, and phosphorus, are among the microbes that play a significant role in the mitigation of the effects of climate change on trees. The study's main objectives were to determine whether ectomycorrhizal (ECM) fungi alleviate the effects of drought stress in pedunculate oak and to investigate their priming properties. The effects of two levels of drought (mild and severe, corresponding to 60% and 30% of field capacity, respectively) on the biochemical response of pedunculate oak were examined in the presence and absence of ectomycorrhizal fungi. To examine whether the ectomycorrhizal fungi modulate the drought tolerance of pedunculate oak, levels of plant hormones and polyamines were quantified using UPLC-TQS and HPLC-FD techniques in addition to gas exchange measurements and the main osmolyte amounts (glycine betaine-GB and proline-PRO) which were determined spectrophotometrically. Droughts increased the accumulation of osmolytes, such as proline and glycine betaine, as well as higher polyamines (spermidine and spermine) levels and decreased putrescine levels in both, mycorrhized and non-mycorrhized oak seedlings. In addition to amplifying the response of oak to severe drought in terms of inducible proline and abscisic acid (ABA) levels, inoculation with ECM fungi significantly increased the constitutive levels of glycine betaine, spermine, and spermidine regardless of drought stress. This study found that compared to non-mycorrhized oak seedlings, unstressed ECM-inoculated oak seedlings had higher levels of salicylic (SA) and abscisic acid (ABA) but not jasmonic acid (JA), indicating a priming mechanism of ECM is conveyed via these plant hormones. According to a PCA analysis, the effect of drought was linked to the variability of parameters along the PC1 axe, such as osmolytes PRO, GB, polyamines, and plant hormones such as JA, JA-Ile, SAG, and SGE, whereas mycorrhization was more closely associated with the parameters gathered around the PC2 axe (SA, ODPA, ABA, and E). These findings highlight the beneficial function of the ectomycorrhizal fungi, in particular Scleroderma citrinum, in reducing the effects of drought stress in pedunculate oak.


Asunto(s)
Micorrizas , Quercus , Micorrizas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Quercus/metabolismo , Resistencia a la Sequía , Ácido Abscísico/metabolismo , Betaína/metabolismo , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Sequías , Prolina/metabolismo
8.
IUBMB Life ; 75(4): 337-352, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36971473

RESUMEN

In October 2020, we were finally able to gather for a celebration of Eddy Fischer's 100th birthday. As with many other events, COVID had disrupted and restricted preparations for the gathering, which ultimately was held via ZOOM. Nevertheless, it was a wonderful opportunity to share a day with Eddy, an exceptional scientist and true renaissance man, and to appreciate his stellar contributions to science. Eddy Fischer, together with Ed Krebs, was responsible for the discovery of reversible protein phosphorylation, which launched the entire field of signal transduction. The importance of this seminal work is now being felt throughout the biotechnology industry with the development of drugs that target protein kinases, which have transformed the treatment of a wide array of cancers. I was privileged to have worked with Eddy both as a postdoc and a junior faculty member, during which time we laid the foundations for our current understanding of the protein tyrosine phosphatase (PTP) family of enzymes and their importance as critical regulators of signal transduction. This tribute to Eddy is based upon the talk I presented at the event, giving a personal perspective on Eddy's influence on my career, our early research efforts together in this area, and how the field has developed since then.


Asunto(s)
COVID-19 , Quercus , Humanos , Quercus/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Fosforilación
9.
Environ Sci Pollut Res Int ; 29(5): 6526-6537, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34455564

RESUMEN

Ectomycorrhizal fungi (EMF), which form symbiotic ectomycorrhiza with tree roots, mediate heavy metal tolerance of host plants. To investigate the roles of EMF in the growth, modulation of oxidative stress, and cadmium (Cd) accumulation and translocation in Quercus acutissima seedlings, ectomycorrhizal seedlings inoculated with Suillus luteus were treated with different Cd concentrations (0.1, and 5 mg kg-1) for 14 days. EMF accelerated seedling growth and Cd accumulation in roots under the highest Cd concentration of 5 mg kg-1. Catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities increased in the leaves of ectomycorrhizal seedlings under the highest Cd concentration. Superoxide dismutase (SOD) trended to increase under both Cd concentrations. Although reduced glutathione (GSH) increased after inoculation of EMF under both Cd concentrations, the release of malondialdehyde increased in the leaves and roots under the highest Cd concentration, indicating that the defense role of EMF in Q. acutissima depends on the Cd concentration. These results indicate that EMF mitigate Cd stress by promoting plant growth and nutrient uptake while modulating the antioxidant system to reduce oxidative stress.


Asunto(s)
Micorrizas , Quercus , Antioxidantes/metabolismo , Cadmio/toxicidad , Catalasa/metabolismo , Glutatión/metabolismo , Micorrizas/metabolismo , Estrés Oxidativo , Raíces de Plantas/metabolismo , Quercus/metabolismo , Plantones/metabolismo , Superóxido Dismutasa/metabolismo
10.
Chem Biol Drug Des ; 97(1): 157-166, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32757477

RESUMEN

The HIV-1 reverse transcriptase (HIV-1 RT), which is responsible for transcription of viral RNA genomes into DNA genomes, has become an important target for the treatment of patients with HIV infection. Hydrolyzed peptides from plants are considered a new source of potential drugs. In order to develop new effective inhibitors, peptides extracted from 111 Asian medicinal plants were screened against the HIV-1 RT. The crude hydrolyzed peptides from the fruit peel of Quercus infectoria were selected for purification and peptide sequence determination by HPLC and LC-MS. Two peptides of interest were synthesized, and an IC50 test was performed to determine their ability to inhibit the HIV-1 RT. The IC50 values of the peptides AIHIILI and LIAVSTNIIFIVV were determined to be 274 ± 5.10 nm and 236.4 ± 7.07 nm, respectively. This indicated that these peptides could be further developed as potential HIV-1 RT inhibitors.


Asunto(s)
Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/enzimología , Péptidos/química , Proteínas de Plantas/metabolismo , Quercus/química , Inhibidores de la Transcriptasa Inversa/química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Frutas/química , Frutas/metabolismo , Transcriptasa Inversa del VIH/metabolismo , Hidrólisis , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Extractos Vegetales/metabolismo , Proteínas de Plantas/química , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Quercus/metabolismo , Inhibidores de la Transcriptasa Inversa/metabolismo , Espectrometría de Masas en Tándem
11.
Food Chem ; 324: 126894, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32361094

RESUMEN

This study aims to extract acorn protein isolate (API) from locally abundant waste acorn fruit and investigate its emulsification behavior by mixing different protein (0.1-2% w/v) and oil volume concentrations (5-45% v/v). Significant decrease in emulsifying activity index (EAI) and an increase in emulsifying stability index (ESI) were observed with an increase in API concentrations (P < 0.05). Droplet sizes of emulsions and viscosity were observed to decrease significantly (P < 0.05) with increase in API concentration while the increase was observed in interfacial protein concentration (Г). In contrast, increase in oil volume concentration results in increase of droplet sizes, packing fractions and viscosity, while decrease in Г values was observed. The results reveal that main fractions of API (66.2-14.4 kDa) were migrated to oil-water interface for emulsion stabilization. These results demonstrate the potential application of API in food formulation and development.


Asunto(s)
Emulsionantes/química , Aceites/química , Proteínas de Plantas/química , Quercus/metabolismo , Electroforesis en Gel de Poliacrilamida , Emulsiones/química , Frutas/metabolismo , Viscosidad
12.
Analyst ; 145(9): 3266-3273, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32236242

RESUMEN

This study developed a traceless clean-up method by combining solid phase extraction (SPE) with gas purge-microsyringe extraction (GP-MSE) to purify sample extracts for the determination of polycyclic aromatic hydrocarbons (PAHs) in plant leaves. SPE exhibited good purification performance for the removal of polar lipids, while the GP-MSE technique effectively eliminated less-volatile lipids hence realizing zero damage to the instrument, and significantly improved the peak tailings. After ultrasonic extraction, the combined two-step clean-up procedure successfully removed over 99% of lipids from nineteen types of tree leaves, and PAHs in tree leaves were determined by GC-MS. The relative standard deviations (RSDs) for intra-day (n = 3) and inter-day (n = 3) analyses of PAHs in spiked willow samples were in the range of 0.8%-12.1% and 4.7%-15.3%, respectively. The recoveries of PAHs from spiked willow extracts ranged from 74 to 90%, with an average of 86%. The method detection limit (MDL) of PAHs in tree leaves ranged from 0.1 to 4.9 ng g-1 dry weight. In conclusion, the clean-up method in this study realized the analysis of PAHs in plant leaves with high accuracy, sensitivity and reproducibility. Most importantly, the two-step purification method significantly minimizes damage to the GC-MS system particularly to the column and ion source, which is beneficial to ensure continuous analysis of a large number of samples with good performance.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Hojas de la Planta/química , Hidrocarburos Policíclicos Aromáticos/análisis , Límite de Detección , Lípidos/aislamiento & purificación , Pinus/química , Pinus/metabolismo , Hojas de la Planta/metabolismo , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Quercus/química , Quercus/metabolismo , Reproducibilidad de los Resultados , Extracción en Fase Sólida/métodos , Sonicación
13.
PLoS One ; 15(1): e0228157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31978155

RESUMEN

Insect herbivores have the potential to change both physical and chemical traits of their host plant. Although the impacts of herbivores on their hosts have been widely studied, experiments assessing changes in multiple leaf traits or functions simultaneously are still rare. We experimentally tested whether herbivory by winter moth (Operophtera brumata) caterpillars and mechanical leaf wounding changed leaf mass per area, leaf area, leaf carbon and nitrogen content, and the concentrations of 27 polyphenol compounds on oak (Quercus robur) leaves. To investigate how potential changes in the studied traits affect leaf functioning, we related the traits to the rates of leaf photosynthesis and respiration. Overall, we did not detect any clear effects of herbivory or mechanical leaf damage on the chemical or physical leaf traits, despite clear effect of herbivory on photosynthesis. Rather, the trait variation was primarily driven by variation between individual trees. Only leaf nitrogen content and a subset of the studied polyphenol compounds correlated with photosynthesis and leaf respiration. Our results suggest that in our study system, abiotic conditions related to the growth location, variation between tree individuals, and seasonal trends in plant physiology are more important than herbivory in determining the distribution and composition of leaf chemical and structural traits.


Asunto(s)
Mariposas Nocturnas/fisiología , Quercus/química , Animales , Carbono/metabolismo , Herbivoria , Interacciones Huésped-Parásitos , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Brotes de la Planta/química , Brotes de la Planta/metabolismo , Polifenoles/metabolismo , Análisis de Componente Principal , Quercus/metabolismo , Quercus/parasitología , Estaciones del Año , Estrés Mecánico
14.
Plant Biol (Stuttg) ; 22(3): 541-552, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31834980

RESUMEN

Canopy soil (CS) volume reflect epiphyte community maturity, but little is known about the factors that retain CS or species succession within it. Humus fern species (e.g. Phlebodium areolatum) appear capable of retaining CS. In ten Quercus spp. we sampled 987 epiphyte mats to examine the role of the common epiphyte species and crown traits determining CS volume, in order to infer successional stages and identify pioneer and late successional species. Branch traits (height, diameter and slope), CS volume and cover of the epiphyte species were determined for each mat. Nutrient content was determined in CS random samples of 12 epiphyte associations and sizes (one sample from each size quintile). A total of 60% of the mats lack CS. Cover of P. areolatum was the main variable explaining CS volume, and this species was present in 46.8% of those with CS. Epiphyte composition was highly variable, but pioneer (species appearing in monospecific mats, without CS) and late successional species could be identified. Canopy soil nutrient content was similar among the associations of epiphytes. Magnesium, Ca and pH decreased with CS volume, while P and N increased. Phlebodium areolatum is associated with high CS volumes and could act as a key species in its retention. Monospecific mats of pioneer species lack CS or have low volumes, while CS is much higher in mats with late successional species, but the mechanisms of CS formation and nutrient retention in response to interactions between epiphyte species remain to be tested.


Asunto(s)
Helechos , Nutrientes , Quercus , Suelo , Helechos/fisiología , Nutrientes/metabolismo , Quercus/metabolismo , Suelo/química , Árboles
15.
Plant Physiol Biochem ; 137: 130-143, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30780050

RESUMEN

Effects of supplemented UV radiation and diminished water supply on the leaf concentrations of phenols and antioxidants of two Mediterranean resprouter species, Arbutus unedo and Quercus suber, were assessed before and after entire aerial biomass removal. Potted seedlings of both species were grown outdoors for 8 months with enhanced UV-A + UV-B, enhanced UV-A or ambient UV, in combination with two watering conditions (field capacity or watering reduction). After this period, all aerial biomass was removed and new shoots (resprouts) developed for a further 8 months under the two treatments. In general, the investment in leaf phenols was substantially greater in A. unedo than in Q. suber, while Q. suber allocated more resources to non-phenolic antioxidants (ascorbate and glutathione). In response to enhanced UV-B radiation, Q. suber leaves rose their UV-screening capacity mainly via accumulation of kaempferols, accompanied by an increased concentration of rutins, being these effects exacerbated under low-watering conditions. Conversely, A. unedo leaves responded to UV-B radiation reinforcing the antioxidant machinery by increasing the overall amount of flavonols (especially quercetins) in seedlings, and of ascorbate and glutathione, along with catalase activity, in resprouts. Nevertheless, UV effects on the amount/activity of non-phenolic antioxidants of A. unedo resprouts were modulated by water supply. Indeed, the highest concentration of glutathione was found under the combination of enhanced UV-B radiation and reduced watering, suggesting an enlargement of the antioxidant response in A. unedo resprouts. Different biochemical responses to enhanced UV and drier conditions in seedlings and resprouts of these two species might modulate their competitive interactions in the near future.


Asunto(s)
Ericaceae/metabolismo , Fenoles/metabolismo , Hojas de la Planta/metabolismo , Quercus/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Ericaceae/efectos de la radiación , Glutatión/metabolismo , Región Mediterránea , Componentes Aéreos de las Plantas , Hojas de la Planta/efectos de la radiación , Quercus/efectos de la radiación , Plantones/efectos de la radiación , Rayos Ultravioleta , Agua
16.
Food Chem ; 274: 629-641, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30372988

RESUMEN

Concerning the particular nutritive value of honeydew honey compared to blossom honey, and small number of studies defining botanical origin of honeydew honey, comprehensive analysis of phenolic profile of 64 honeydew honey samples of specific botanical origin was performed. Two advanced techniques of liquid chromatography hyphenated with mass spectrometry were used for identification of a total of 52 compounds and quantification of 25 of them. Pattern recognition analysis applied on data on phenolic compounds content confirmed that quercetin, naringenin, caffeoylquinic acid, hydroxyphenylacetic acid, apigenin and genistein, could be considered as potential markers of botanical origin of honeydew honey. Spectroscopic and electrochemical approaches were applied for the evaluation of the antioxidant capacity. Quercus sps. samples, Quercus frainetto and Quercus ilex, showed high biological activity and specific chemical composition. Additionally, cyclic voltammetry profiles were used for characterization and natural clustering of honeydew honey for the first time.


Asunto(s)
Antioxidantes/química , Miel/análisis , Fenoles/análisis , Quercus/química , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Técnicas Electroquímicas , Espectrometría de Masas , Valor Nutritivo , Análisis de Componente Principal , Quercus/metabolismo
17.
Mol Ecol ; 27(9): 2176-2192, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29577469

RESUMEN

The impacts of drought are expanding worldwide as a consequence of climate change. However, there is still little knowledge of how species respond to long-term selection in seasonally dry ecosystems. In this study, we used QST -FST comparisons to investigate (i) the role of natural selection on population genetic differentiation for a set of functional traits related to drought resistance in the seasonally dry tropical oak Quercus oleoides and (ii) the influence of water availability at the site of population origin and in experimental treatments on patterns of trait divergence. We conducted a thorough phenotypic characterization of 1912 seedlings from ten populations growing in field and greenhouse common gardens under replicated watering treatments. We also genotyped 218 individuals from the same set of populations using eleven nuclear microsatellites. QST distributions for leaf lamina area, specific leaf area, leaf thickness and stomatal pore index were higher than FST distribution. Results were consistent across growth environments. Genetic differentiation among populations for these functional traits was associated with the index of moisture at the origin of the populations. Together, our results suggest that drought is an important selective agent for Q. oleoides and that differences in length and severity of the dry season have driven the evolution of genetic differences in functional traits.


Asunto(s)
Flujo Genético , Quercus/genética , Agua/metabolismo , Cambio Climático , Sequías , Estudios de Asociación Genética , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Quercus/anatomía & histología , Quercus/metabolismo , Estaciones del Año , Plantones/anatomía & histología , Plantones/genética , Plantones/metabolismo , Selección Genética
18.
Bull Entomol Res ; 108(4): 494-500, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29061198

RESUMEN

Gall-making Cynipidae manipulate the leaves of host plant to form galls where offspring find shelter and food. The relationship between oak gallwasp and biochemical mechanisms of galls still requires a better understanding. So, in this research, protein and phenolic compound contents, as well as the activity of antioxidative enzymes and pathogenesis-related (PR) proteins were determined. Galls caused by asexual generation of Cynips quercusfolii L., Neuroterus numismalis (Fourc.) and N. quercusbaccarum L., as a model were used. All cynipid species modified the protein levels of gall tissues, but they cannot be treated as protein sinks. Significantly higher levels of phenols were observed in the galled leaves and galls of all cynipid species when compared with the control tissues. Peroxidase and polyphenol oxidase activity was usually low or showed no activity in galled tissues of all species. PR proteins, such as chitinase and ß-1,3-glucanase, had a similar activity profile. Their activity significantly increased in the leaves with galls of all cynipid species, especially those infested with C. quercusfolii. Data generated in this study clearly indicate that galling Cynipidae manipulate the biochemical machinery of the galls for their own needs. However, the pattern of the biochemical features of leaves with galls and galled tissues depends on gall-making species.


Asunto(s)
Tumores de Planta/parasitología , Quercus/parasitología , Árboles/parasitología , Avispas/fisiología , Animales , Catecol Oxidasa/metabolismo , Quitinasas/metabolismo , Glucano 1,3-beta-Glucosidasa/metabolismo , Peroxidasa/metabolismo , Hojas de la Planta/metabolismo , Quercus/metabolismo , Reproducción Asexuada/fisiología , Árboles/metabolismo
19.
Chem Biol Interact ; 272: 1-9, 2017 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-28476604

RESUMEN

Black tea infusion is the common substrate for preparing kombucha; however other sources such as oak leaves infusions can be used for the same purpose. Almost any white oak species have been used for medicinal applications by some ethnic groups in Mexico and could be also suitable for preparing kombucha analogues from oak (KAO). The objective of this research was to investigate the antioxidant activity and anti-inflammatory effects of KAO by examining its modulation ability on macrophage-derived TNF-alpha and IL-6. Herbal infusions from oak and black tea were fermented by kombucha consortium during seven days at 28 °C. Chemical composition was determined by LC-ESI-MS/MS. The antioxidant activity of samples against oxidative damage caused by H2O2 in monocytes activated (macrophages) was explored. Additionally, it was determined the anti-inflammatory activity using lipopolysaccharide (LPS) - stimulated macrophages; in particular, the nitric oxide (NO), TNF-alpha, and IL-6 production was assessed. Levels of pro-inflammatory cytokines IL-6 and TNF-alpha were significantly reduced by the sample treatment. Likewise, NO production was lower in treatment with kombucha and KAO compared with LPS-stimulated macrophages. Fermented beverages of oak effectively down-regulated the production of NO, while pro-inflammatory cytokines (TNF-alpha and IL-6) in macrophages were stimulated with LPS. Additionally, phytochemical compounds present in KAO decrease oxidative stress.


Asunto(s)
Antiinflamatorios/química , Antioxidantes/química , Quercus/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Regulación hacia Abajo/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/toxicidad , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenoles/análisis , Fenoles/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Quercus/metabolismo , Espectrometría de Masas en Tándem , Té/química , Té/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
Ecotoxicol Environ Saf ; 140: 148-155, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28254725

RESUMEN

AgNP physicochemical properties may affect AgNP toxicity, but their effects on plant litter decomposition and the species driving this key ecosystem process in freshwaters have been poorly investigated. We assessed the impacts of AgNPs with different size and surface coating (100nm PVP (polyvinylpyrrolidone)-dispersant, 50-60nm and 35nm uncoated) on freshwater decomposers of leaf litter by exposing leaf associated microbial assemblages to increasing concentrations of AgNPs (up to 200mgL-1) and of AgNO3 (up to 25mgL-1). We further conducted a feeding preference experiment with a common invertebrate shredder, Limnephilus sp., which was allowed to feed on microbially-colonized leaves previously exposed to AgNPs and AgNO3. Leaf decomposition and microbial activity and diversity were inhibited when exposed to increased concentrations of 100nm AgNPs (≥25mgL-1), while microbial activity was stimulated by exposure to 35nm AgNPs (≥100mgL-1). Invertebrate shredders preferred leaves exposed to 35nm AgNPs (25mgL-1) and avoided leaves exposed to AgNO3 (≥2mgL-1). Results from the characterization of AgNPs by dynamic light scattering revealed that AgNps with PVP-dispersant were more stable than the uncoated AgNPs. Our results highlight the importance of considering the physicochemical properties of NPs when assessing their toxicity to litter decomposers in freshwaters.


Asunto(s)
Invertebrados/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Consorcios Microbianos/efectos de los fármacos , Quercus/química , Ríos/química , Plata/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Ecosistema , Conducta Alimentaria/efectos de los fármacos , Invertebrados/metabolismo , Nanopartículas del Metal/química , Tamaño de la Partícula , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Povidona/química , Quercus/metabolismo , Ríos/microbiología , Plata/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA