Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Signal ; 117: 111101, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38365112

RESUMEN

Breast cancer (BC) is a common cancer whose incidence continues to grow while its medical progress has stagnated. miRNAs are vital messengers that facilitate communications among different cancer cells. This study was to reveal the correlation of miR-122-3p expression with BC metastasis and Adriamycin (ADM) resistance and its mechanism of inhibiting BC metastasis. We found that expression of miR-122-3p is negatively correlated with BC metastasis and is lower in MCF-7/ADR cells. Overexpression of miR-122-3p in MCF-7/ADR cancer cells impairs their ability to migrate, invade, and stimulate blood vessel formation. Further research found that miR-122-3p directly binds to the 3' UTR of GRK4, reducing the phosphorylation of LRP6, which activates the Wnt/ß-catenin signaling pathway, facilitating BC development and metastasis. In addition, we observed that miR-122-3p is present in MCF-7  cells, and treatment of MCF-7/ADR cells with MCF-7-derived exosomes, but not with exosomes from miR-122-3p-deficient MCF-7 cells, has identical effects to miR-122-3p overexpression. Data from xenograft experiments further suggest that excess miR-122-3p and MCF-7-derived exosomes inhibit the growth and metastasis of MCF-7/ADR cancer cells in vivo. In conclusion our data reveal that exosomal miR-122-3p may negatively regulate BC growth and metastasis, potentially serving as a diagnostic and druggable target for BC treatment.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Células MCF-7 , Vía de Señalización Wnt , beta Catenina/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo
2.
Clin Sci (Lond) ; 136(12): 989-1003, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35695067

RESUMEN

Activation of the angiotensin II type 2 receptor (AT2R) induces diuresis and natriuresis. Increased expression or/and activity of G-protein-coupled receptor kinase 4 (GRK4) or genetic variants (e.g., GRK4γ142V) cause sodium retention and hypertension. Whether GRK4 plays a role in the regulation of AT2R in the kidney remains unknown. In the present study, we found that spontaneously hypertensive rats (SHRs) had increased AT2R phosphorylation and impaired AT2R-mediated diuretic and natriuretic effects, as compared with normotensive Wistar-Kyoto (WKY) rats. The regulation by GRK4 of renal AT2R phosphorylation and function was studied in human (h) GRK4γ transgenic mice. hGRK4γ142V transgenic mice had increased renal AT2R phosphorylation and impaired AT2R-mediated natriuresis, relative to hGRK4γ wild-type (WT) littermates. These were confirmed in vitro; AT2R phosphorylation was increased and AT2R-mediated inhibition of Na+-K+-ATPase activity was decreased in hGRK4γ142V, relative to hGRK4γ WT-transfected renal proximal tubule (RPT) cells. There was a direct physical interaction between renal GRK4 and AT2R that was increased in SHRs, relative to WKY rats. Ultrasound-targeted microbubble destruction of renal GRK4 decreased the renal AT2R phosphorylation and restored the impaired AT2R-mediated diuresis and natriuresis in SHRs. In vitro studies showed that GRK4 siRNA reduced AT2R phosphorylation and reversed the impaired AT2R-mediated inhibition of Na+-K+-ATPase activity in SHR RPT cells. Our present study shows that GRK4, at least in part, impairs renal AT2R-mediated diuresis and natriuresis by increasing its phosphorylation; inhibition of GRK4 expression and/or activity may be a potential strategy to improve the renal function of AT2R.


Asunto(s)
Quinasa 4 del Receptor Acoplado a Proteína-G , Hipertensión , Adenosina Trifosfatasas/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Ratones , Fosforilación , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo
3.
J Am Heart Assoc ; 5(10)2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27792639

RESUMEN

BACKGROUND: G protein-coupled receptor kinase type 4 (GRK4) plays a vital role in the long-term control of blood pressure (BP) and sodium excretion by regulating renal G protein-coupled receptor phosphorylation, including dopamine type 1 receptor (D1R). Ultrasound-targeted microbubble destruction (UTMD) is a promising method for gene delivery. Whether this method can deliver GRK4 small interfering RNA (siRNA) and lower BP is not known. METHODS AND RESULTS: BP, 24-hour sodium excretion, and urine volume were measured after UTMD-targeted GRK4 siRNA delivery to the kidney in spontaneously hypertensive rats. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. The present study revealed that UTMD-mediated renal GRK4 siRNA delivery efficiently reduced GRK4 expression and lowered BP in spontaneously hypertensive rats, accompanied by increased sodium excretion. The increased sodium excretion might be accounted for by the UTMD regulation of D1R phosphorylation and function in spontaneously hypertensive rats. Further analysis showed that, although UTMD had no effect on D1R expression, it reduced D1R phosphorylation in spontaneously hypertensive rats kidneys and consequently increased D1R-mediated natriuresis and diuresis. CONCLUSIONS: Taken together, these study results indicate that UTMD-targeted GRK4 siRNA delivery to the kidney effectively reduces D1R phosphorylation by inhibiting renal GRK4 expression, improving D1R-mediated natriuresis and diuresis, and lowering BP, which may provide a promising novel strategy for gene therapy for hypertension.


Asunto(s)
Presión Sanguínea/genética , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Técnicas de Silenciamiento del Gen/métodos , Técnicas de Transferencia de Gen , Receptores de Dopamina D1/metabolismo , Ondas Ultrasónicas , Animales , Regulación hacia Abajo , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Riñón , Masculino , Microburbujas , ARN Interferente Pequeño , Ratas , Ratas Endogámicas SHR , Sodio/orina
4.
Transl Res ; 165(4): 505-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25134060

RESUMEN

Salt sensitivity of blood pressure, whether in hypertensive or normotensive subjects, is associated with increased cardiovascular risk and overall mortality. Salt sensitivity can be treated by reducing NaCl consumption. However, decreasing salt intake in some may actually increase cardiovascular risk, including an increase in blood pressure, that is, inverse salt sensitivity. Several genes have been associated with salt sensitivity and inverse salt sensitivity. Some of these genes encode proteins expressed in the kidney that are needed to excrete a sodium load, for example, dopamine receptors and their regulators, G protein-coupled receptor kinase 4 (GRK4). We review here research in this field that has provided several translational opportunities, ranging from diagnostic tests to gene therapy, such as (1) a test in renal proximal tubule cells isolated from the urine of humans that may determine the salt-sensitive phenotype by analyzing the recruitment of dopamine D1 receptors to the plasma membrane; (2) the presence of common GRK4 gene variants that are not only associated with hypertension but may also be predictive of the response to antihypertensive therapy; (3) genetic testing for polymorphisms of the dopamine D2 receptor that may be associated with hypertension and inverse salt sensitivity and may increase the susceptibility to chronic kidney disease because of loss of the antioxidant and anti-inflammatory effects of the renal dopamine D2 receptor, and (4) in vivo renal selective amelioration of renal tubular genetic defects by a gene transfer approach, using adeno-associated viral vectors introduced to the kidney by retrograde ureteral infusion.


Asunto(s)
Dopamina/metabolismo , Hipertensión/tratamiento farmacológico , Enfermedades Renales/tratamiento farmacológico , Riñón/metabolismo , Animales , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Hipertensión/metabolismo , Enfermedades Renales/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo
5.
Appl Biochem Biotechnol ; 171(2): 366-81, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23839509

RESUMEN

ß-lactoglobulin (ß-lg), a major whey protein was purified and characterised from buffalo colostrum. The in silico analysis of the tryptic peptides based on LC-CID-MS/MS facilitated the identification of protein as ß-lg. The sequences IIVTQ f[1-5] and LSFNPTQLEEQCHV f(149-162) of m/z 933(+) and 851(2+) were found to match N- and C-extreme of ß-lg while IDALNENK f(84-91) and TPEVDDEALEKFDK f(125-138) sequences deduced for m/z 916(+) and 818(2+) were in compliance to buffalo milk ß-lg. Considering the sequence similarity of ß-lg to glycodelin, a proven angiogenic protein, similar role for ß-lg from buffalo colostrum (BLG-col) was examined. Interestingly, BLG-col exhibited anti-angiogenic activity by potently inhibiting cell proliferation, micro-vessel sprouting, cell migration and tube formation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner but having varied effect on Ehrlich ascites tumor cells, MCF-7, MDA-MB 435 and MDA-MB 231 cell lines. The anti-angiogenic potential of BLG-col was found to be vascular endothelial growth factor mediated. The immunolocalisation of BLG-col on the cell surface of HUVECs evidenced using FITC-labelled ß-lg antibody indicated its extra-cellular binding. Furthermore, BLG-col interacting HUVEC membrane protein (64 kDa) was detected by immunoblot and its identity was established by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry analysis, which showed peptide sequence homology to G protein-coupled receptor kinase 4.


Asunto(s)
Búfalos , Calostro/química , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Lactoglobulinas/metabolismo , Lactoglobulinas/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Lactoglobulinas/química , Masculino , Unión Proteica , Proteómica , Ratas
6.
Hypertension ; 61(5): 1021-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23509080

RESUMEN

The G protein-coupled receptor kinase 4 (GRK4) negatively regulates the dopaminergic system by desensitizing the dopamine-1-receptor. The expressional control of GRK4 has not been reported, but here we show that the transcription factor c-Myc binds to the promoter of GRK4 and positively regulates GRK4 protein expression in human renal proximal tubule cells (RPTCs). Addition of phorbol esters to RPTCs not only increased c-Myc binding to the GRK4 promoter but also increased both phospho-c-Myc and GRK4 expression. The phorbol ester-mediated increase in GRK4 expression was completely blocked by the c-Myc inhibitor, 10074-G5, indicating that GRK4 is downstream of phospho-c-Myc. The autocrine production of angiotensin II (Ang II) in RPTCs increased the phosphorylation and activation of c-Myc and subsequently GRK4 expression. 3-Amino-4-thio-butyl sulfonate, an inhibitor of aminopeptidase A, increased RPTC secretion of Ang II. 3-Amino-4-thio-butyl sulfonate or Ang II increased the expression of both phospho-c-Myc and GRK4, which was blocked by 10074-G5. Blockade of the Ang II type 1 receptor with losartan decreased phospho-c-Myc and GRK4 expression. Both inhibition of c-Myc activity and blockade of Ang II type 1 receptor restored the coupling of dopamine-1-receptor to adenylyl cyclase stimulation in uncoupled RPTCs, whereas phorbol esters or Ang II caused the uncoupling of normally coupled RPTCs. We suggest that the Ang II type 1 receptor impairs dopamine-1-receptor function via c-Myc activation of GRK4. This novel pathway may be involved in the increase in blood pressure in hypertension that is mediated by increased activity of the renin-angiotensin system and decreased activity of the renal dopaminergic system.


Asunto(s)
Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Túbulos Renales Proximales/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transcripción Genética/fisiología , Angiotensina II/metabolismo , Línea Celular , Células Cultivadas , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Humanos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Losartán/farmacología , Oxadiazoles/farmacología , Ésteres del Forbol/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Dopaminérgicos/metabolismo , Transcripción Genética/efectos de los fármacos
7.
Hypertension ; 56(3): 505-11, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20660820

RESUMEN

HK-2 human renal proximal tubule cells (RPTC) are commonly used in the in vitro study of "normal" RPTCs. We discovered recently that HK-2 cells are uncoupled from dopamine 1 receptor (D(1)R) adenylyl cyclase (AC) stimulation. We hypothesized that G protein-coupled receptor kinase type 4 (GRK4) single nucleotide polymorphisms may be responsible for the D(1)R/AC uncoupling in HK-2. This hypothesis was tested by genotyping GRK4 single nucleotide polymorphisms, measuring D(1)-like receptor agonist (fenoldopam)-stimulated cAMP accumulation, quantifying D(1)R inhibition of sodium transport, and testing the ability of GRK4 small interfering RNA to reverse the D(1)R/AC uncoupling. We compared HK-2 with 2 normally coupled human RPTC cell lines and 2 uncoupled RPTC cell lines. The HK-2 cell line was found to have 4 of 6 potential GRK4 single nucleotide polymorphisms known to uncouple the D(1)R from AC (namely, R65L, A142V, and A486V). AC response to fenoldopam stimulation was increased in the 2 normally coupled human RPTC cell lines (FEN: 2.02+/-0.05-fold and 2.33+/-0.19-fold over control; P<0.001; n=4) but not in the 2 uncoupled or HK-2 cell lines. GRK4 small interfering RNA rescued the fenoldopam-mediated AC stimulation in the uncoupled cells, including HK-2. The expected fenoldopam-mediated inhibition of sodium hydrogen exchanger type 3 was absent in HK-2 (n=6) and uncoupled RPTC cell lines (n=6) but was observed in the 2 normally coupled human RPTC cell lines (-25.41+/-4.7% and -27.36+/-2.70%; P<0.001; n=6), which express wild-type GRK4. Despite the fact that HK-2 cells retain many functional characteristics of RPTCs, they are not normal from the perspective of dopaminergic function.


Asunto(s)
Adenilil Ciclasas/metabolismo , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Riñón/metabolismo , Receptores de Dopamina D1/metabolismo , Análisis de Varianza , Línea Celular , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente , Humanos , Riñón/citología , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transfección
8.
Hypertension ; 54(5): 1070-6, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19752292

RESUMEN

In moderate sodium-replete states, dopamine 1-like receptors (D1R/D5R) are responsible for regulating >50% of renal sodium excretion. This is partly mediated by internalization and inactivation of NaKATPase, when associated with adapter protein 2. We used dopaminergic stimulation via fenoldopam (D1-like receptor agonist) to study the interaction among D1-like receptors, caveolin-1 (CAV1), and the G protein-coupled receptor kinase type 4 in cultured human renal proximal tubule cells (RPTCs). We compared 2 groups of RPTCs, 1 of cell lines that were isolated from normal subjects (nRPTCs) and a second group of cell lines that have D1-like receptors that are uncoupled (uncoupled RPTCs) from adenylyl cyclase second messengers. In nRPTCs, fenoldopam increased the plasma membrane expression of D1R (10.0-fold) and CAV1 (1.3-fold) and markedly decreased G protein-coupled receptor kinase type 4 by 94+/-8%; no effects were seen in uncoupled RPTCs. Fenoldopam also increased the association of adapter protein 2 and NaKATPase by 53+/-9% in nRPTCs but not in uncoupled RPTCs. When CAV1 expression was reduced by 86.0+/-8.5% using small interfering RNA, restimulation of the D1-like receptors with fenoldopam in nRPTCs resulted in only a 7+/-9% increase in association between adapter protein 2 and NaKATPase. Basal CAV1 expression and association with G protein-coupled receptor kinase type 4 was decreased in uncoupled RPTCs (58+/-5% decrease in association) relative to nRPTCs. We conclude that the scaffolding protein CAV1 is necessary for the association of D1-like receptors with G protein-coupled receptor kinase type 4 and the adapter protein 2-associated reduction in plasma membrane NaKATPase.


Asunto(s)
Caveolina 1/metabolismo , Fenoldopam/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Análisis de Varianza , Caveolina 1/efectos de los fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Ensayo de Inmunoadsorción Enzimática , Quinasa 4 del Receptor Acoplado a Proteína-G/análisis , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Túbulos Renales Proximales/citología , Microscopía Confocal , Probabilidad , Receptores de Dopamina D1/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA