Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 470
Filtrar
1.
J Agric Food Chem ; 72(26): 14678-14683, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38910321

RESUMEN

Matrix metalloproteinase 9 (MMP9), an MMP isozyme, plays a crucial role in tumor progression by degrading basement membranes. It has therefore been proposed that the pharmacological inhibition of MMP9 expression or activity could inhibit tumor metastasis. We previously isolated two novel methoxylated flavones, casedulones A and B, from the leaves and/or roots of Casimiroa edulis La Llave and determined that these casedulones have antitumor activity that acts via the reduction of MMP9. Here, we examined how these casedulones suppress lipopolysaccharide (LPS)-induced MMP9 expression in human monocytic THP-1 cells. The casedulones suppressed the LPS-induced signal transducer and activator of transcription 3 (STAT3) pathway, which participates in MMP9 induction. In addition, AG490 and S3I-201, inhibitors of Janus kinase (JAK) and STAT3, suppressed LPS-mediated MMP9 induction, suggesting that the casedulones suppressed MMP9 induction through the inhibition of JAK/STAT3 pathways. Based on the findings that cycloheximide, an inhibitor of de novo protein synthesis, completely inhibited LPS-mediated MMP9 induction, the role of de novo proteins in MMP9 induction was further investigated. We found that the casedulones inhibited the induction of interleukin-6 (IL-6), a key inflammatory cytokine that participates in STAT3 activation. Moreover, tumor necrosis factor-α (TNFα)-mediated MMP9 induction was significantly suppressed in the presence of the casedulones. Taken together, these findings suggest that casedulones inhibit the IL-6/STAT3 and TNFα pathways, which all involve LPS-mediated MMP9 induction.


Asunto(s)
Flavonas , Quinasas Janus , Metaloproteinasa 9 de la Matriz , Extractos Vegetales , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Necrosis Tumoral alfa , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonas/farmacología , Flavonas/química , Quinasas Janus/metabolismo , Quinasas Janus/genética , Transducción de Señal/efectos de los fármacos
2.
Nature ; 629(8012): 688-696, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658752

RESUMEN

Although cancer initiation and progression are generally associated with the accumulation of somatic mutations1,2, substantial epigenomic alterations underlie many aspects of tumorigenesis and cancer susceptibility3-6, suggesting that genetic mechanisms might not be the only drivers of malignant transformation7. However, whether purely non-genetic mechanisms are sufficient to initiate tumorigenesis irrespective of mutations has been unknown. Here, we show that a transient perturbation of transcriptional silencing mediated by Polycomb group proteins is sufficient to induce an irreversible switch to a cancer cell fate in Drosophila. This is linked to the irreversible derepression of genes that can drive tumorigenesis, including members of the JAK-STAT signalling pathway and zfh1, the fly homologue of the ZEB1 oncogene, whose aberrant activation is required for Polycomb perturbation-induced tumorigenesis. These data show that a reversible depletion of Polycomb proteins can induce cancer in the absence of driver mutations, suggesting that tumours can emerge through epigenetic dysregulation leading to inheritance of altered cell fates.


Asunto(s)
Transformación Celular Neoplásica , Proteínas de Drosophila , Drosophila melanogaster , Epigénesis Genética , Neoplasias , Proteínas del Grupo Polycomb , Animales , Femenino , Masculino , Transformación Celular Neoplásica/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Quinasas Janus/genética , Quinasas Janus/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas del Grupo Polycomb/deficiencia , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo
3.
Am J Physiol Cell Physiol ; 326(5): C1494-C1504, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38406824

RESUMEN

Primary Sjögren's syndrome (pSS) is characterized by its autoimmune nature. This study investigates the role of the IFNγ SNP rs2069705 in modulating the susceptibility to pSS. Differential expression of IFNγ and BAFF was analyzed using the GEO database's mRNA microarray GSE84844. Genotyping of the IFNγ SNP rs2069705 was conducted via the dbSNP website. The JASPAR tool was used for predicting transcription factor bindings. Techniques such as dual-luciferase reporter assays, Chromatin immunoprecipitation, and analysis of a pSS mouse model were applied to study gene and protein interactions. A notable increase in the mutation frequency of IFNγ SNP rs2069705 was observed in MNCs from the exocrine glands of pSS mouse models. Bioinformatics analysis revealed elevated levels of IFNγ and BAFF in pSS samples. The model exhibited an increase in both CD20+ B cells and cells expressing IFNγ and BAFF. Knocking down IFNγ resulted in lowered BAFF expression and less lymphocyte infiltration, with BAFF overexpression reversing this suppression. Activation of the Janus kinase (JAK)/STAT1 pathway was found to enhance transcription in the BAFF promoter region, highlighting IFNγ's involvement in pSS. In addition, rs2069705 was shown to boost IFNγ transcription by promoting interaction between its promoter and STAT4. SNP rs2069705 in the IFNγ gene emerges as a pivotal element in pSS susceptibility, primarily by augmenting IFNγ transcription, activating the JAK/STAT1 pathway, and leading to B-lymphocyte infiltration in the exocrine glands.NEW & NOTEWORTHY The research employed a combination of bioinformatics analysis, genotyping, and experimental models, providing a multifaceted approach to understanding the complex interactions in pSS. We have uncovered that the rs2069705 SNP significantly affects the transcription of IFNγ, leading to altered immune responses and B-lymphocyte activity in pSS.


Asunto(s)
Linfocitos B , Interferón gamma , Polimorfismo de Nucleótido Simple , Síndrome de Sjögren , Activación Transcripcional , Animales , Femenino , Humanos , Ratones , Factor Activador de Células B/genética , Factor Activador de Células B/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Interferón gamma/genética , Interferón gamma/metabolismo , Quinasas Janus/metabolismo , Quinasas Janus/genética , Polimorfismo de Nucleótido Simple/genética , Transducción de Señal , Síndrome de Sjögren/genética , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT4/genética , Factor de Transcripción STAT4/metabolismo
4.
Gastric Cancer ; 27(3): 506-518, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386237

RESUMEN

BACKGROUND: Advanced gastric cancer (GC) has a poor prognosis. This study aimed to identify novel GC-related genes as potential therapeutic targets. METHODS: Killer cell lectin-like receptor G2 (KLRG2) was identified as a candidate gene by transcriptome analysis of metastatic GC tissues. Small interfering RNA-mediated KLRG2 knockdown in human GC cell lines was used to investigate KLRG2 involvement in signaling pathways and functional behaviors in vitro and in vivo. Clinicopathological data were analyzed in patients stratified according to tumor KLRG2 mRNA expression. RESULTS: KLRG2 knockdown in GC cells decreased cell proliferation, migration, and invasion; caused cell cycle arrest in G2/M phase; induced apoptosis via caspase activation; suppressed JAK/STAT and MAPK-ERK1/2 pathway activities; and upregulated p53 and p38 MAPK activities. In mouse xenograft models of peritoneal metastasis, the number and weight of disseminated GC nodules were decreased by KLRG2 knockdown. High tumor levels of KLRG2 mRNA were significantly associated with lower 5-year overall survival (OS) and relapse-free survival (RFS) rates in patients with Stage I-III GC (5-year OS rate: 64.4% vs. 80.0%, P = 0.009; 5-year RFS rate: 62.8% vs. 78.1%, P = 0.030). CONCLUSIONS: KLRG2 knockdown attenuated the malignant phenotypes of GC cells via downregulation of JAK/STAT and MAPK-ERK1/2 pathway activity and upregulation of p38 MAPK and p53. Targeted suppression of KLRG2 may serve as a new treatment approach for GC.


Asunto(s)
Quinasas Janus , Neoplasias Gástricas , Humanos , Animales , Ratones , Quinasas Janus/genética , Quinasas Janus/metabolismo , Transducción de Señal , Neoplasias Gástricas/patología , Sistema de Señalización de MAP Quinasas , Proteína p53 Supresora de Tumor/genética , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Proliferación Celular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , ARN Mensajero/metabolismo , Receptores Similares a Lectina de Células NK/genética , Receptores Similares a Lectina de Células NK/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
5.
Sci Rep ; 14(1): 359, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172590

RESUMEN

This study aimed to investigate the molecular mechanism of sporotrichosis and identify possible novel therapeutic targets. Total RNA was extracted from skin lesion samples from sporotrichosis patients and used to construct a long-chain RNA transcriptome library and miRNA transcriptome library for whole transcriptome sequencing. The differentially expressed genes (DEGs) between the groups were identified, and then Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis enrichment analyses were performed based on the DEGs. An lncRNA-miRNA-mRNA ceRNA network was constructed. The expressions of JAK/STAT pathway-related proteins were detected in the patient and control tissues using RT-qPCR and Western blot analysis. Enrichment analysis showed that the DEGs were mainly enriched in various infectious diseases and immune response-related signaling pathways. Competing endogenous RNA network analysis was performed and identified the hub lncRNAs, miRNAs, and mRNAs. Compared with the control group, the mRNA expressions of SOCS3, IL-6, and JAK3 were significantly upregulated, while the expression of STAT3 did not change significantly. Also, the protein expressions of SOCS3, IL-6, JAK3, and STAT3, as well as phosphorylated JAK3 and STAT3, were significantly upregulated. We identified 671 lncRNA DEGs, 3281 mRNA DEGs, and 214 miRNA DEGs to be involved in Sporothrix globosa infection. The study findings suggest that the JAK/STAT pathway may be a therapeutic target for sporotrichosis.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Esporotricosis , Humanos , ARN Largo no Codificante/genética , Esporotricosis/genética , Secuenciación del Exoma , Interleucina-6/genética , Quinasas Janus/genética , Redes Reguladoras de Genes , Transducción de Señal/genética , Factores de Transcripción STAT/genética , MicroARNs/genética , Transcriptoma , ARN Mensajero/genética
6.
Mol Cancer ; 23(1): 25, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273387

RESUMEN

Over the past three decades, considerable efforts have been expended on understanding the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in leukemia, following the identification of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs). The aim of this review is to summarize the latest progress in our understanding of the involvement of the JAK/STAT signaling pathway in the development of leukemia. We also attempt to provide insights into the current use of JAK/STAT inhibitors in leukemia therapy and explore pertinent clinical trials in this field.


Asunto(s)
Leucemia , Trastornos Mieloproliferativos , Humanos , Quinasas Janus/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Transducción de Señal
7.
BMC Med Genomics ; 17(1): 26, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243290

RESUMEN

BACKGROUND: To compare the expression levels of long non-coding RNA (lncRNA) and messenger RNA (mRNA) in pre-receptive endometrium between patients with Polycystic Ovary Syndrome (PCOS)and normal ovulation undergoing in vitro fertilization-embryo transfer (IVF-ET). METHODS: Endometrial tissues were collected with endometrial vacuum curette in pre-receptive phase (3 days after oocytes retrieval) from PCOS and control groups. LncRNAs and mRNAs of endometrium were identified via RNA sequencing and alignments. A subset of 9 differentially expressed lncRNAs and 11 mRNAs were validated by quantitative reverse transcription polymerase chain reaction(qRT-PCR)in 22 PCOS patients and 18 ovulation patients. The function of mRNAs with differential expression patterns were explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS: We found out 687 up-regulated and 680 down-regulated mRNAs, as well as 345 up-regulated and 63 down-regulated lncRNAs in the PCOS patients in contrast to normal ovulation patients. qRT-PCR was used to detect the expression of 11 mRNAs, and validated that the expression of these 6 mRNAs CXCR4, RABL6, OPN3, SYBU, IDH1, NOP10 were significantly elevated among PCOS patients, and the expression of ZEB1 was significantly decreased. qRT-PCR was performed to detect the expression of 9 lncRNAs, and validated that the expression of these 7 lncRNAs IDH1-AS1, PCAT14, FTX, DANCR, PRKCQ-AS1, SNHG8, TPT1-AS1 were significantly enhanced among PCOS patients. Bioinformatics analysis showed that differentially expressed genes (DEGs) involved KEGG pathway were tyrosine metabolism, PI3K-Akt pathway, metabolic pathway, Jak-STAT pathway, pyruvate metabolism, protein processing in endoplasmic reticulum, oxidative phosphorylation and proteasome. The up-regulation of GO classification was involved in ATP metabolic process, oxidative phosphorylation, RNA catabolic process, and down-regulation of GO classification was response to corticosteroid, steroid hormone, and T cell activation. CONCLUSION: Our results determined the characteristics and expression profile of endometrial lncRNAs and mRNAs in PCOS patients in pre-receptive phase, which is the day 3 after oocytes retrival. The possible pathways and related genes of endometrial receptivity disorders were found, and those lncRNAs may be developed as a predictive biomarker of endometrium in pre-receptive phase.


Asunto(s)
Síndrome del Ovario Poliquístico , ARN Largo no Codificante , Humanos , Femenino , ARN Mensajero/metabolismo , ARN Largo no Codificante/metabolismo , Síndrome del Ovario Poliquístico/genética , Quinasas Janus/genética , Quinasas Janus/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Perfilación de la Expresión Génica , Transferencia de Embrión , Endometrio/metabolismo , Fertilización In Vitro , Redes Reguladoras de Genes , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo
8.
J Biosci ; 482023.
Artículo en Inglés | MEDLINE | ID: mdl-38047488

RESUMEN

MicroRNA functions as an important part of the activity and development of immune cells. miR-499 has been demonstrated to play a significant role in the activity and development of immune cells. The precise mechanism by which miR-499 regulates the inflammatory response, however, remains unclear. This study was aimed to examine the role of microRNA miR-499 in the regulation of the inflammatory response in macrophages. RAW 264.7 macrophages were used as a cell model. The levels of miR-499 were measured in Porphyromonas gingivalis LPS-stimulated macrophages using qRT-PCR, and the levels of inflammatory cytokines (IL-6, IL-1ß, and TNF-α) were determined using both qRT-PCR and ELISA. StarBase was used to predict the binding sites between NRIP1 and miR-499, and the mRNA expression of NRIP1 was measured using qRT-PCR. The regulation of inflammatory factors controlled by miR-499 was also evaluated by using miR-499 inhibitor and sh-NRIP1. The activation of the JAK/STAT pathway was determined using western blotting to measure the levels of phosphorylated JAK2 and STAT1. Porphyromonas gingivalis LPS caused a high expression of miR-499, which promoted the inflammatory response in macrophages. miR-499 targeted the NRIP1 3' UTR and regulated the mRNA expression of inflammatory cytokines, including IL-6, IL-1ß, and TNF-α. The positive correlation between miR-499 and the expression of inflammatory factors and the negative correlation between NRIP1 and miR-499 suggests that the regulation of inflammatory factors controlled by miR-499 was associated with NRIP1. The phosphorylated proteins of the JAK/STAT pathway (p-JAK2 and p-STAT1) were activated by miR-499 through its regulation of NRIP1. These findings suggest that miR-499 regulates the P. gingivalis LPS-induced inflammatory response in macrophages and activates the JAK/STAT pathway through the regulation of NRIP1.


Asunto(s)
MicroARNs , Factor de Necrosis Tumoral alfa , Animales , Ratones , Citocinas/genética , Citocinas/metabolismo , Interleucina-6/metabolismo , Quinasas Janus/genética , Quinasas Janus/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/genética , Factores de Transcripción STAT/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Línea Celular
9.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834019

RESUMEN

Janus tyrosine kinase (JAK) variants are known drivers for hematological disorders. With the full-length structure of mouse JAK1 being recently resolved, new observations on the localization of variants within closed, open, and dimerized JAK structures are possible. Full-length homology models of human wild-type JAK family members were developed using the Glassman et al. reported mouse JAK1 containing the V658F structure as a template. Many mutational sites related to proliferative hematological disorders reside in the JH2 pseudokinase domains facing the region important in dimerization of JAKs in both closed and open states. More than half of all JAK gain of function (GoF) variants are changes in polarity, while only 1.2% are associated with a change in charge. Within a JAK1-JAK3 homodimer model, IFNLR1 (PDB ID7T6F) and the IL-2 common gamma chain subunit (IL2Rγc) were aligned with the respective dimer implementing SWISS-MODEL coupled with ChimeraX. JAK3 variants were observed to encircle the catalytic site of the kinase domain, while mutations in the pseudokinase domain align along the JAK-JAK dimerization axis. FERM domains of JAK1 and JAK3 are identified as a hot spot for hematologic malignancies. Herein, we propose new allosteric surfaces for targeting hyperactive JAK dimers.


Asunto(s)
Neoplasias Hematológicas , Quinasas Janus , Animales , Humanos , Ratones , Quinasas Janus/genética , Tirosina/genética , Janus Quinasa 1/genética , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Mutación , Desarrollo de Medicamentos , Janus Quinasa 2/genética , Receptores de Interferón/genética
10.
EMBO J ; 42(21): e114719, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37737566

RESUMEN

Activation of the IκB kinase (IKK) complex has recurrently been linked to colorectal cancer (CRC) initiation and progression. However, identification of downstream effectors other than NF-κB has remained elusive. Here, analysis of IKK-dependent substrates in CRC cells after UV treatment revealed that phosphorylation of BRD4 by IKK-α is required for its chromatin-binding at target genes upon DNA damage. Moreover, IKK-α induces the NF-κB-dependent transcription of the cytokine LIF, leading to STAT3 activation, association with BRD4 and recruitment to specific target genes. IKK-α abrogation results in defective BRD4 and STAT3 functions and consequently irreparable DNA damage and apoptotic cell death upon different stimuli. Simultaneous inhibition of BRAF-dependent IKK-α activity, BRD4, and the JAK/STAT pathway enhanced the therapeutic potential of 5-fluorouracil combined with irinotecan in CRC cells and is curative in a chemotherapy-resistant xenograft model. Finally, coordinated expression of LIF and IKK-α is a poor prognosis marker for CRC patients. Our data uncover a functional link between IKK-α, BRD4, and JAK/STAT signaling with clinical relevance.


Asunto(s)
Quinasa I-kappa B , Transducción de Señal , Humanos , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas Janus/genética , Factores de Transcripción STAT , Fosforilación , Factor de Necrosis Tumoral alfa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
11.
Leuk Lymphoma ; 64(10): 1662-1672, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37424335

RESUMEN

Even though overexpression of the immune checkpoint protein, programmed cell death ligand-1 (PD-L1), is observed in solid tumors, its expression patterns in acute myeloid leukemia remain understudied. As activation of the JAK/STAT pathway has been shown to enhance PD-L1 expression in preclinical models, we evaluated biopsies from AML patients with activating mutations in JAK2/STATs. PD-L1 expression was significantly upregulated in JAK2/STAT mutant cases when compared to JAK2 wildtype controls as demonstrated by PD-L1 immunohistochemistry staining and quantified using the combined positive score (CPS) system. There is significant overexpression of phosphorylated STAT3 expression in patients with oncogenic JAK2 activation and a positive correlation between p-STAT3 and PD-L1 expression. In conclusion, we demonstrate the CPS scoring system could be applied as a quantitative measure of PD-L1 expression in leukemias and that JAK2/STATs mutant AML can be potential candidates for checkpoint inhibitor trials.


Asunto(s)
Antígeno B7-H1 , Leucemia Mieloide Aguda , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Quinasas Janus/genética , Quinasas Janus/metabolismo , Leucemia Mieloide Aguda/genética , Mutación , Transducción de Señal/genética , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Regulación hacia Arriba
12.
J Cell Mol Med ; 27(19): 2922-2936, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37480214

RESUMEN

Although combination chemotherapy is widely used for bladder cancer (BC) treatment, the recurrence and progression rates remain high. Therefore, novel therapeutic targets are required. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) contributes to tumourigenesis and immune evasion in several cancers; however, its biological function in BC remains unknown. This study aimed to investigate the expression, prognostic value and protumoural function of MTHFD2 in BC and elucidate the mechanism of programmed death-ligand 1 (PD-L1) upregulation by MTHFD2. An analysis using publicly available databases revealed that a high MTHFD2 expression was correlated with clinical features and a poor prognosis in BC. Furthermore, MTHFD2 promoted the growth, migration, invasion and tumourigenicity and decreased the apoptosis of BC cells in vivo and in vitro. The results obtained from databases showed that MTHFD2 expression was correlated with immune infiltration levels, PD-L1 expression, and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. The expression of MTHFD2, PD-L1 and JAK/STAT signalling pathway-related proteins increased after interferon gamma treatment and decreased after MTHFD2 knockdown. Moreover, addition of a JAK/STAT pathway activator partially reduced the effect of MTHFD2 knockdown on BC cells. Collectively, our findings suggest that MTHFD2 promotes the expression of PD-L1 through the JAK/STAT signalling pathway in BC.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Vejiga Urinaria , Humanos , Antígeno B7-H1/genética , Transducción de Señal , Quinasas Janus/genética , Factores de Transcripción STAT/genética , Neoplasias de la Vejiga Urinaria/genética
13.
J Environ Pathol Toxicol Oncol ; 42(4): 15-29, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522565

RESUMEN

According to the World Health Organization (WHO), cancer is the second-highest cause of mortality worldwide, killing nearly 9.6 million people annually. Despite the advances in diagnosis and treatment during the last couple of decades, it remains a serious concern due to the limitations of currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. In addition, many etiological factors such as environmental and genetic factors initiate the activation of the Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) pathway. This aberrant activation of the JAK-STAT pathway has been reported in various disease states, including inflammatory conditions, hematologic malignancies, and cancer. For instance, many patients with myeloproliferative neoplasms carry the acquired gain-of-function JAK2 V617F somatic mutation. This knowledge has dramatically improved our understanding of pathogenesis and has facilitated the development of therapeutics capable of suppressing the constitutive activation of the JAK-STAT pathway. Our aim is not to be expansive but to highlight emerging ideas towards preventive therapy in a modern view of JAK-STAT inhibitors. A series of agents with different specificities against different members of the JAK family of proteins is currently undergoing evaluation in clinical trials. Here we give a summary of how JAK-STAT inhibitors function and a detailed review of current clinical drugs for managing cancer as a new therapeutic approach.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Quinasas Janus/genética , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo
14.
Asian Pac J Cancer Prev ; 24(6): 1841-1854, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37378911

RESUMEN

Epigenetic changes such as histone deacetylation and DNA methylation play to regulate gene expression. DNA methylation plays a major role in cancer induction via transcriptional silencing of critical regulators such as tumor suppressor genes (TSGs). One approach to inhibit TSGs inactivation is to use chemical compounds, DNA methyltransferase inhibitors (DNMTIs). Previously, we investigated the effect of 5-aza-2'-deoxycytidine (5 AZA CdR or decitabine) on colon cancer and hepatocellular carcinoma cell lines. The present study aimed to investigate the effect of 5 AZA CdR on extrinsic (DR4, DR5, FAS, FAS-L, and TRAIL genes), intrinsic [pro- (Bax, Bak, and Bim) and anti- (Bcl-2, Bcl-xL, and Mcl-1) apoptotic genes], and JAK/STAT (SOCS1, SOCS3, JAK1, JAK2, STAT3, STAT5A, and STAT5B genes) pathways in neuroblastoma (IMR-32, SK-N-AS, UKF-NB-2, UKF-NB-3, and UKF-NB-4) and glioblastoma (SF-767, SF-763, A-172, U-87 MG, and U-251 MG) cell lines. MATERIALS AND METHODS: The neuroblastoma and glioblastoma cells were cultured and treated with 5 AZA CdR. To determine cell viability, cell apoptosis, and the relative gene expression level, MTT assay, flow cytometry assay, and qRT-PCR were done respectively. RESULTS: 5 AZA CdR changed the expression level of the genes of the extrinsic, intrinsic, and JAK/STAT pathways by which induced cell apoptosis and inhibited cell growth in neuroblastoma and glioblastoma cell lines. CONCLUSION: 5 AZA CdR can play its role through extrinsic, intrinsic, and JAK/STAT pathways to induce cell apoptosis.


Asunto(s)
Glioblastoma , Neuroblastoma , Humanos , Decitabina/farmacología , Quinasas Janus/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Transducción de Señal , Factores de Transcripción STAT/genética , Azacitidina/farmacología , Línea Celular , Metilación de ADN , Desoxicitidina , Línea Celular Tumoral
15.
Mol Biol (Mosk) ; 57(3): 483-491, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-37326051

RESUMEN

The Gagr gene is a domesticated gag retroelement gene in Drosophila melanogaster, whose function is associated with the stress response. The protein products of the Gagr gene and its homologues in different Drosophila species have a highly conserved structure; however, they demonstrate variability in the promoter region of the gene, which is apparently associated with the gradual acquisition of a new function and involvement in new signaling pathways. In this work, we studied the effect of oxidative stress induced by ammonium persulfate on the survival of various species of the genus Drosophila (D. melanogaster, D. mauritiana, D. simulans, D. yakuba, D. teissieri, and D. pseudoobscura), analyzed the correlation between the structure of promoter regions and stress-induced changes in the expression of the Gagr gene and its homologues in different Drosophila species, and compared the stress-induced changes in the expression of oxidative stress markers: the Jak-STAT signaling pathway activator gene upd3, Jak-STAT pathway effector vir-1, and IMD signaling pathway target Rel. It was found that in D. simulans and D. mauritiana sensitivity to ammonium persulfate is significantly increased, which correlates with a reduced level of transcription of vir-1 gene orthologues. The latter is due to a decrease in the number of binding sites for the transcription factor STAT92E, a component of the Jak-STAT signaling pathway, in the vir-1 promoter region. Consistent changes in the expression of the Gagr, upd3, and vir-1 genes are observed in all species of the melanogaster subgroup, except for D. pseudoobscura, which indicates an increase in the role of Gagr in the regulation of stress response pathways during the phylogenesis of the genus Drosophila.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Quinasas Janus/genética , Quinasas Janus/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , Genes vif , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
16.
Genes (Basel) ; 14(6)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37372319

RESUMEN

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway constitutes a rapid signaling module from the cell surface to the nucleus, and activates different cellular responses, such as proliferation, survival, migration, invasion, and inflammation. When the JAK/STAT pathway is altered, it contributes to cancer progression and metastasis. STAT proteins play a central role in developing cervical cancer, and inhibiting the JAK/STAT signaling may be necessary to induce tumor cell death. Several cancers show continuous activation of different STATs, including cervical cancer. The constitutive activation of STAT proteins is associated with a poor prognosis and overall survival. The human papillomavirus (HPV) oncoproteins E6 and E7 play an essential role in cervical cancer progression, and they activate the JAK/STAT pathway and other signals that induce proliferation, survival, and migration of cancer cells. Moreover, there is a crosstalk between the JAK/STAT signaling cascade with other signaling pathways, where a plethora of different proteins activate to induce gene transcription and cell responses that contribute to tumor growth. Therefore, inhibition of the JAK/STAT pathway shows promise as a new target in cancer treatment. In this review, we discuss the role of the JAK/STAT pathway components and the role of the HPV oncoproteins associated with cellular malignancy through the JAK/STAT proteins and other signaling pathways to induce tumor growth.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Quinasas Janus/genética , Quinasas Janus/metabolismo , Transducción de Señal/fisiología , Neoplasias del Cuello Uterino/genética , Infecciones por Papillomavirus/genética , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo
17.
Cell Mol Biol (Noisy-le-grand) ; 69(2): 157-161, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37224029

RESUMEN

This study was performed to analyze the biological behavior of childhood leukemia cells regulated by miR-708 by binding to the 3' UTR end of the target gene and reducing the level of the target gene. In this regard, human leukemia Jurkat cell lines were selected and divided into a control group, miR-708 overexpression group and miR-708 inhibition group. MTT assay was used to detect the cell proliferation inhibition rate, flow cytometry was used to detect the apoptosis rate and cell cycle change, the scratch test was used to detect the cell migration capacity, and Western Blot assay was used to detect the expression of CNTFR, apoptosis and JAK/STAT pathway related proteins. To verify the binding site of miR-708 and target gene CNTFR. The results showed that the cell proliferation inhibition rate, apoptosis rate, G1 phase ratio, Bax protein, and CNTFR protein in the miR-708 overexpression group were significantly lower than those in the control group at each time point, while the S phase ratio, Bcl-2 protein, cell migration ability, JAK3 and STAT3 protein were significantly higher than those in the control group (P<0.05). The results of the miR-708 inhibition group were contrary to those of the miR-708 overexpression group. The binding sites of miR-708 and CNTFR were predicted by TargetScan bioinformatics software. It was found that there were two binding sites of miR-708 and CNTFR, 394-400 bp and 497-503 bp respectively. In conclusion, miR-708 can reduce the expression of CNTFR by binding to the target gene CNTFR3' UTR, activate the JAK/STAT pathway to regulate apoptosis-related proteins, reduce apoptosis, and enhance the migration ability of leukemia cells.


Asunto(s)
Subunidad alfa del Receptor del Factor Neurotrófico Ciliar , Quinasas Janus , Leucemia , MicroARNs , Humanos , Regiones no Traducidas 3'/genética , Quinasas Janus/genética , MicroARNs/genética , Transducción de Señal , Factores de Transcripción STAT , Células Jurkat , Subunidad alfa del Receptor del Factor Neurotrófico Ciliar/genética , Leucemia/genética
18.
Ann Hematol ; 102(9): 2445-2457, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37209119

RESUMEN

The objective of this study is to explore the clinical features and outcomes of pediatric patients with acute lymphoblastic leukemia (ALL) harboring JAK-STAT signaling pathway genetic abnormalities. This retrospective case series examined the clinical data of pediatric patients diagnosed with ALL harboring JAK-STAT pathway genetic abnormality at the Children's Hospital of the Capital Institute of Pediatrics between January 2016 and January 2022. Bone marrow next-generation sequencing was used to reveal the JAK pathway abnormalities. Descriptive statistics were used. From 432 children with ALL during the study period, eight had JAK-STAT pathway genetic abnormalities. Regarding immunotyping, there were four patients with common-B cell types and one with pre-B cell type. The three patients with T-ALL had early T-cell precursor(ETP) type, pre-T cell type, and T cell type. Gene mutations were more common than fusion genes. There was no central nervous system involvement in eight patients. All patients were considered at least at intermediate risk before treatments. Four patients underwent hematopoietic stem cell transplantation (HSCT). One child had a comprehensive relapse and died. The child had a severe infection and could not tolerate high-intensity chemotherapy. Another child relapsed 2 years after HSCT and died. Disease-free survival was achieved in six children. JAK-STAT pathway genetic abnormalities in pediatric Ph-like ALL are rare. Special attention should be paid to treatment-related complications, such as infection and combination therapy (chemotherapy, small molecule targeted drugs, immunotherapy, etc.) to reduce treatment-related death and improve long-term quality of life.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Niño , Quinasas Janus/genética , Quinasas Janus/metabolismo , Estudios Retrospectivos , Calidad de Vida , Transducción de Señal , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Pronóstico
19.
Tissue Cell ; 82: 102082, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37027968

RESUMEN

BACKGROUND: The aim of our study was to investigate the roles and the underlying mechanisms of orthodenticle homolog 1 (OTX1) in ovarian cancer. METHODS: OTX1 expression was obtained from TCGA database. OTX1 expression in ovarian cancer cells was detected using qRT-PCR and western blot assay. The cell viability and proliferation was detected by CCK-8 and EdU assays. Cell invasion and migration were detected by transwell assay. Flow cytometry was utilized to determine cell apoptosis and cycle. In addition, western blot assay was used to detect the expression of cell cycle related protein (Cyclin D1 and p21), epithelial-mesenchymal transition (EMT) related protein (E-cadherin, N-cadherin, Vimentin, and Snail), apoptosis related protein (Bcl-2, Bax, and cleaved caspase-3), and JAK/STAT pathway related protein (p-JAK2, JAK2, STAT3, and p-STAT3). RESULTS: OTX1 was highly expressed in ovarian cancer tissues and cells. OTX1 silencing blocked the cell cycle and repressed cell viability, proliferation, invasion, and migration, while OTX1 silencing facilitated the apoptosis of OVCAR3 and Caov3 cells. OTX1 silencing increased the protein levels of p21, E-cadherin, Bax, and cleaved caspase-3, while the protein levels of Cyclin D1, Bcl-2, N-cadherin, Vimentin, and Snail were decreased by OTX1 silencing. Furthermore, OTX1 silencing suppressed the protein levels of p-JAK2/JAK2 and p-STAT3/STAT3 in OVCAR3 and Caov3 cells. Moreover, overexpression of OTX1 promoted cell proliferation and invasion and inhibited apoptosis in Caov3 cells, but AG490 (an inhibitor of JAK/STAT pathway) reversed the influences on cell biological behavior induced by overexpression of OTX1. CONCLUSIONS: OTX1 silencing repressed ovarian cancer cell proliferation, invasion, and migration and induced cell apoptosis, which might be involved in JAK/STAT signaling pathway. OTX1 may be considered as a novel therapeutic target for ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Vimentina/metabolismo , Ciclina D1/metabolismo , Caspasa 3/metabolismo , Transducción de Señal/genética , Quinasas Janus/genética , Quinasas Janus/metabolismo , Apoptosis/genética , Proteína X Asociada a bcl-2/metabolismo , Movimiento Celular/genética , Línea Celular Tumoral , Factores de Transcripción STAT/metabolismo , Cadherinas/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética
20.
Leukemia ; 37(6): 1287-1297, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100881

RESUMEN

Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFß1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Trastornos Mieloproliferativos , Mielofibrosis Primaria , Animales , Ratones , Janus Quinasa 2/genética , Quinasas Janus/genética , Mutación , Trastornos Mieloproliferativos/genética , Mielofibrosis Primaria/genética , Proteínas de Unión al ARN/genética , Transducción de Señal , Factores de Transcripción STAT/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA