Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1359888, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828265

RESUMEN

Toxoplasma, an important intracellular parasite of humans and animals, causes life-threatening toxoplasmosis in immunocompromised individuals. Although Toxoplasma secretory proteins during acute infection (tachyzoite, which divides rapidly and causes inflammation) have been extensively characterized, those involved in chronic infection (bradyzoite, which divides slowly and is surrounded by a cyst wall) remain uncertain. Regulation of the cyst wall is essential to the parasite life cycle, and polysaccharides, such as chitin, in the cyst wall are necessary to sustain latent infection. Toxoplasma secretory proteins during the bradyzoite stage may have important roles in regulating the cyst wall via polysaccharides. Here, we focused on characterizing the hypothetical T. gondii chitinase, chitinase-like protein 1 (TgCLP1). We found that the chitinase-like domain containing TgCLP1 is partially present in the bradyzoite microneme and confirmed, albeit partially, its previous identification in the tachyzoite microneme. Furthermore, although parasites lacking TgCLP1 could convert from tachyzoites to bradyzoites and make an intact cyst wall, they failed to convert from bradyzoites to tachyzoites, indicating that TgCLP1 is necessary for bradyzoite reactivation. Taken together, our findings deepen our understanding of the molecular basis of recrudescence and could contribute to the development of novel strategies for the control of toxoplasmosis.


Asunto(s)
Quitinasas , Proteínas Protozoarias , Toxoplasma , Toxoplasmosis , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/enzimología , Animales , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Quitinasas/metabolismo , Quitinasas/genética , Toxoplasmosis/parasitología , Humanos , Ratones , Estadios del Ciclo de Vida
2.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713211

RESUMEN

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Asunto(s)
Quitinasas , Silenciador del Gen , Lacasa , Quitinasas/genética , Quitinasas/metabolismo , Quitinasas/biosíntesis , Lacasa/genética , Lacasa/metabolismo , Lacasa/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Agaricales/genética , Agaricales/enzimología , Fermentación , Interferencia de ARN , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micelio/genética , Micelio/crecimiento & desarrollo , Micelio/enzimología , Pared Celular/metabolismo , Pared Celular/genética
3.
Breast Cancer Res ; 26(1): 63, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605414

RESUMEN

BACKGROUND: Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS: Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS: Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS: Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.


Asunto(s)
Quitina , Quitinasas , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Quitina/farmacología , Quitina/uso terapéutico , Quitinasas/uso terapéutico , Terapia de Inmunosupresión , Metástasis Linfática , Proteínas/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología
4.
Int J Biol Macromol ; 269(Pt 2): 131924, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688335

RESUMEN

The objectives of this study were to purify 42 kDa chitinase derived from Trichoderma asperellum SH16 produced in Nicotiana benthamiana by a polyethylene glycol (PEG)/salt aqueous two-phase system (ATPS). The specific activities of the crude chitinase and the partially purified chitinase from N. benthamiana were about 251 unit/mg and 386 unit/mg, respectively. The study found the 300 g/L PEG 6000 + 200 g/L potassium phosphate (PP) and 300 g/L PEG 6000 + 150 g/L sodium phosphate (SP) systems had the highest partitioning efficiency for each salt in primary extraction. However, among the two types of salt, PP displayed higher efficiency than SP, with a partitioning coefficient K of 4.85 vs. 3.89, a volume ratio V of 2.94 vs. 2.68, and a partitioning yield Y of approximately 95 % vs. 83 %. After back extraction, the enzymatic activity of purified chitinase was up to 834 unit/mg (PP) and 492 unit/mg (SP). The purification factors reached 3.32 (PP) and 1.96 (SP), with recovery yields of about 59 % and 61 %, respectively. SDS-PAGE and zymogram analysis showed that the recombinant chitinase was significantly purified by using ATPS. The purified enzyme exhibited high chitinolytic activity, with the hydrolysis zone's diameter being around 2.5 cm-3 cm. It also dramatically reduced the growth of Sclerotium rolfsii; the colony diameter after treatment with 60 unit of enzyme for 104 spores was only about 1 cm, compared to 3.5 cm in the control. The antifungal effect of chitinase suggests that this enzyme has great potential for applications in agricultural production as well as postharvest fruit and vegetable preservation.


Asunto(s)
Quitinasas , Nicotiana , Fosfatos , Polietilenglicoles , Proteínas Recombinantes , Quitinasas/química , Quitinasas/aislamiento & purificación , Quitinasas/metabolismo , Nicotiana/enzimología , Fosfatos/química , Proteínas Recombinantes/aislamiento & purificación , Polietilenglicoles/química , Trichoderma/enzimología , Sales (Química)/química , Sales (Química)/farmacología , Agua/química
5.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611746

RESUMEN

Spodoptera frugiperda, the fall armyworm (FAW), is a highly invasive polyphagous insect pest that is considered a source of severe economic losses to agricultural production. Currently, the majority of chemical insecticides pose tremendous threats to humans and animals besides insect resistance. Thus, there is an urgent need to develop new pest management strategies with more specificity, efficiency, and sustainability. Chitin-degrading enzymes, including chitinases, are promising agents which may contribute to FAW control. Chitinase-producing microorganisms are reported normally in bacteria and fungi. In the present study, Serratia marcescens was successfully isolated and identified from the larvae of Spodoptera frugiperda. The bacterial strain NRC408 displayed the highest chitinase enzyme activity of 250 units per milligram of protein. Subsequently, the chitinase gene was cloned and heterologously expressed in E. coli BL21 (DE3). Recombinant chitinase B was overproduced to 2.5-fold, driven by the T7 expression system. Recombinant chitinase B was evaluated for its efficacy as an insecticidal bioagent against S. frugiperda larvae, which induced significant alteration in subsequent developmental stages and conspicuous malformations. Additionally, our study highlights that in silico analyses of the anticipated protein encoded by the chitinase gene (ChiB) offered improved predictions for enzyme binding and catalytic activity. The effectiveness of (ChiB) against S. frugiperda was evaluated in laboratory and controlled field conditions. The results indicated significant mortality, disturbed development, different induced malformations, and a reduction in larval populations. Thus, the current study consequently recommends chitinase B for the first time to control FAW.


Asunto(s)
Quitinasas , Insecticidas , Animales , Humanos , Quitinasas/genética , Quitinasas/farmacología , Larva , Serratia marcescens/genética , Zea mays , Spodoptera , Escherichia coli , Clonación Molecular , Productos Agrícolas , Insecticidas/farmacología
6.
J Med Chem ; 67(5): 3959-3985, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38427954

RESUMEN

Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes. Small molecule binders of YKL-40 were identified in our chitotriosidase inhibitors library with MST and confirmed through X-ray crystallography. Based on cocrystal structures of potent hit compounds with CHI3L1, small molecule probes 19 and 20 were designed for an AS assay. Structure-based optimization led to compounds 30 and 31 with nanomolar activities and drug-like properties. Additionally, an orthogonal AS assay using biotinylated heparan sulfate as a probe was developed. The compounds' affinity showed a significant correlation in both assays. These screening tools and compounds offer novel avenues for investigating the role of CHI3L1.


Asunto(s)
Quitinasas , Proteína 1 Similar a Quitinasa-3 , Glicoproteínas , Ensayos Analíticos de Alto Rendimiento , Heparitina Sulfato
7.
Pest Manag Sci ; 80(7): 3215-3226, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38357831

RESUMEN

BACKGROUND: Owing to their surface modifiability, smart mesoporous silica nanoparticles (MSNs) can be designed to respond to plant disease-microenvironmental stimuli, thereby achieving on-demand release of active ingredients to control disease by effectively improving citral (CT) stability. RESULTS: A pH/chitinase dual stimuli-responsive essential oil-delivery system (CT@HMS@CH/TA) was successfully fabricated by encapsulating CT in hollow mesoporous silica (HMS), and coating with tannic acid (TA) and chitosan (CH) within HMS by using the layer-by-layer assembly technique (LbL). CT@HMS@CH/TA with an average particle size of 125.12 ± 0.12 nm and a hollow mesoporous nanostructure showed high CT-loading efficiency (16.58% ± 0.17%). The photodegradation rate of CT@HMS@CH/TA under UV irradiation (48 h) was only 15.31%, indicating a 3.34-fold UV stability improvement. CT@HMS@CH/TA exhibited a higher CT release rate in response to acidic pH and the presence of chitinase, simulating the prevailing conditions as Magnaporthe oryzae infection. Furthermore, CT@HMS@CH/TA exhibited better adhesion without affecting normal rice growth, significantly upregulating chitinase gene expression and enhancing chitinase activity on M. oryzae, thus enhancing CT antifungal activity. CONCLUSION: CT@HMS@CH/TA improved CT stability and showed intelligent, controlled release-performance and higher antifungal efficacy, thus providing a new strategy for efficient application of essential oils for green control of rice blast disease. © 2024 Society of Chemical Industry.


Asunto(s)
Quitinasas , Nanopartículas , Aceites Volátiles , Oryza , Enfermedades de las Plantas , Dióxido de Silicio , Aceites Volátiles/química , Aceites Volátiles/farmacología , Nanopartículas/química , Dióxido de Silicio/química , Concentración de Iones de Hidrógeno , Quitinasas/química , Quitinasas/metabolismo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Monoterpenos Acíclicos/química , Porosidad , Quitosano/química
8.
Genes (Basel) ; 15(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254997

RESUMEN

Breast cancer is a global health problem. It is an age-dependent disease, but cases of early-onset breast cancer (eBC) are gradually increasing. There are many unresolved questions regarding eBC risk factors, mechanisms of development and screening. Only 10% of eBC cases are due to mutations in the BRCA1/BRCA2 genes, and 90% have a more complex genetic background. This poses a significant challenge to timely cancer detection in young women and highlights the need for research and awareness. Therefore, identifying genetic risk factors for eBC is essential to solving these problems. This study represents an association analysis of 144 eBC cases and 163 control participants to identify genetic markers associated with eBC risks in Kazakh women. We performed a two-stage approach in association analysis to assess genetic predisposition to eBC. First-stage genome-wide association analysis revealed two risk intronic loci in the CHI3L2 gene (p = 5.2 × 10-6) and MGAT5 gene (p = 8.4 × 10-6). Second-stage exonic polymorphisms haplotype analysis showed significant risks for seven haplotypes (p < 9.4 × 10-4). These results point to the importance of studying medium- and low-penetrant genetic markers in their haplotype combinations for a detailed understanding of the role of detected genetic markers in eBC development and prediction.


Asunto(s)
Neoplasias de la Mama , Quitinasas , Humanos , Femenino , Neoplasias de la Mama/genética , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Exones , Antecedentes Genéticos
9.
Exp Mol Med ; 56(1): 1-18, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177294

RESUMEN

Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly upregulated by various inflammatory and immunological diseases, including several cancers, Alzheimer's disease, and atherosclerosis. Several studies have shown that CHI3L1 can be considered as a marker of disease diagnosis, prognosis, disease activity, and severity. In addition, the proinflammatory action of CHI3L1 may be mediated via responses to various proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1ß, interleukin-6, and interferon-γ. Therefore, CHI3L1 may contribute to a vast array of inflammatory diseases. However, its pathophysiological and pharmacological roles in the development of inflammatory diseases remain unclear. In this article, we review recent findings regarding the roles of CHI3L1 in the development of inflammatory diseases and suggest therapeutic approaches that target CHI3L1.


Asunto(s)
Quitinasas , Neoplasias , Humanos , Proteína 1 Similar a Quitinasa-3/genética , Neoplasias/genética , Neoplasias/metabolismo , Inflamación/metabolismo , Citocinas
10.
New Phytol ; 241(1): 394-408, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36866975

RESUMEN

The extracellular space of plant tissues contains hundreds of hydrolases that might harm colonising microbes. Successful pathogens may suppress these hydrolases to enable disease. Here, we report the dynamics of extracellular hydrolases in Nicotiana benthamiana upon infection with Pseudomonas syringae. Using activity-based proteomics with a cocktail of biotinylated probes, we simultaneously monitored 171 active hydrolases, including 109 serine hydrolases (SHs), 49 glycosidases (GHs) and 13 cysteine proteases (CPs). The activity of 82 of these hydrolases (mostly SHs) increases during infection, while the activity of 60 hydrolases (mostly GHs and CPs) is suppressed during infection. Active ß-galactosidase-1 (BGAL1) is amongst the suppressed hydrolases, consistent with production of the BGAL1 inhibitor by P. syringae. One of the other suppressed hydrolases, the pathogenesis-related NbPR3, decreases bacterial growth when transiently overexpressed. This is dependent on its active site, revealing a role for NbPR3 activity in antibacterial immunity. Despite being annotated as a chitinase, NbPR3 does not possess chitinase activity and contains an E112Q active site substitution that is essential for antibacterial activity and is present only in Nicotiana species. This study introduces a powerful approach to reveal novel components of extracellular immunity, exemplified by the discovery of the suppression of neo-functionalised Nicotiana-specific antibacterial NbPR3.


Asunto(s)
Quitinasas , Hidrolasas , Proteómica , Nicotiana , Pseudomonas syringae , Enfermedades de las Plantas/microbiología
11.
Exp Biol Med (Maywood) ; 248(22): 2053-2061, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38057942

RESUMEN

Chitin is a biopolymer profusely present in nature and of pivotal importance as a structural component in cells. It is degraded by chitinases, enzymes naturally produced by different organisms. Chitinases are proteins enrolled in many cellular mechanisms, including the remodeling process of the fungal cell wall, the cell growth process, the autolysis of filamentous fungi, and cell separation of yeasts, among others. These enzymes also have properties with different biotechnological applications. They are used to produce polymers, for biological control, biofilm formation, and as antitumor and anti-inflammatory target molecules. Chitinases are classified into different glycoside hydrolase (GH) families and are widespread in microorganisms, including viruses. Among them, the GH18 family is highly predominant in the viral genomes, being present and active enzymes in baculoviruses and nucleocytoplasmic large DNA viruses (NCLDV), especially chloroviruses from the Phycodnaviridae family. These viral enzymes contain one or more GH domains and seem to be involved during the viral replication cycle. Curiously, only a few DNA viruses have these enzymes, and studying their properties could be a key feature for biological and biotechnological novelties. Here, we provide an overview of viral chitinases and their probable function in viral infection, showing evidence of at least two distinct origins for these enzymes. Finally, we discuss how these enzymes can be applied as biotechnological tools and what one can expect for the coming years on these GHs.


Asunto(s)
Quitinasas , Humanos , Quitinasas/química , Quitinasas/genética , Quitinasas/metabolismo , Proteínas , Quitina/química , Quitina/metabolismo , Biotecnología , Hongos
12.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37958973

RESUMEN

Bladder cancer is a common cancer with well-established therapeutic strategies. However, recurrence occurs in 50% of patients with non-muscle-invasive bladder cancer, and 20% of patients progress to muscle-invasive bladder cancer. The 5-year survival rate for muscle-invasive bladder cancer patients is disappointingly low, ranging from 36% to 48%. A molecular marker of interest is chitinase 3-like-1 (CHI3L1), which is elevated in various cancers, including bladder cancer. In addition to its role in cancer cells, CHI3L1 also has regulatory abilities in immune cells. Neutrophil infiltration has been shown to positively correlate with overall survival, progression-free survival, and relapse-free survival in bladder cancer patients. However, the relationship between CHI3L1 and neutrophils remain poorly understood. Therefore, this study investigated the relationship between CHI3L1 level and protumor neutrophil infiltration in bladder cancer. We analyzed the GSE128959 dataset and the data of a bladder cancer cohort undergoing chemotherapy. We observed higher expression of CHI3L1 in bladder cancer patients with invasive or chemotherapy-resistance. Our results revealed a positive correlation between CHI3L1 expression and protumor neutrophil infiltration. Elevated CHI3L1 expression was associated with genes which were related to the recruitment and infiltration of neutrophils. Consequently, CHI3L1 may serve as a novel evaluation factor for the degree of neutrophil infiltration in advanced bladder cancer in those scheduled for chemotherapy.


Asunto(s)
Quitinasas , Neoplasias de la Vejiga Urinaria , Humanos , Biomarcadores , Recurrencia Local de Neoplasia/patología , Infiltración Neutrófila , Microambiente Tumoral/genética , Neoplasias de la Vejiga Urinaria/genética
13.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003338

RESUMEN

Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neurological disorders, including diabetes, atherosclerosis, and Alzheimer's disease. Aberrant CHI3L1 expression is also reportedly associated with tumor migration and metastasis, as well as contributions to immune escape, playing important roles in tumor progression. However, the physiological and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1 and macrophages is crucial for disease progression. Recent research has uncovered the complex mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage functional polarization. In this article, we review recent findings regarding the various disease types and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1 and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases, neurodegenerative diseases, and cancers.


Asunto(s)
Quitinasas , Neoplasias , Enfermedades Neurodegenerativas , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Proteína 1 Similar a Quitinasa-3
14.
Clin Immunol ; 257: 109856, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38036279

RESUMEN

The immune modulation in the epithelium is a protective feature of the epithelial function in the mucosal airways. Dysfunction of the epithelium can lead to chronic allergic airway inflammatory diseases, such as chronic rhinosinusitis with nasal polyps (CRSwNP), allergic rhinitis (AR), and allergic asthma. Chitinase-3-like-1 (CHI3L1) is a key modulator in the epithelium against irritants, pathogens, and allergens and is involved in cancers, autoimmune diseases, neurological disorders, and other chronic diseases. Induction of epithelial cell-derived CHI3L1 is also confirmed to be implicated in the pathogenesis of Th2-related airway diseases like CRSwNP, AR, and allergic asthma, triggering a cascade of subsequent inflammatory reactions leading to the disease development. The techniques that block the biological function of CHI3L1 include small interfering RNA, neutralizing antibodies, and microRNAs and these methods proved to be successful in preclinical and clinical investigation in cancers, autoimmune diseases, asthma, and chronic obstructive pulmonary disease. Therefore, treatment with CHI3L1-blocking methods could open up therapeutic options for allergic airway diseases. This review article discusses the role of epithelial cell-derived CHI3L1 in the development of CRSwNP, AR, and allergic asthma and examines the use of CHI3L1 as a potential therapeutic agent for allergic airway diseases.


Asunto(s)
Asma , Enfermedades Autoinmunes , Quitinasas , Pólipos Nasales , Neoplasias , Rinitis Alérgica , Rinitis , Sinusitis , Humanos , Enfermedad Crónica , Pólipos Nasales/patología , Rinitis/patología
15.
J Cell Mol Med ; 27(24): 4202-4214, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37902124

RESUMEN

Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in advanced stages of several cancer types, including prostate cancer (PCa). Impacts of genetic variants of CHI3L1 on PCa development have not yet been investigated. The most common well-studied genetic variations are single-nucleotide polymorphisms (SNPs). Therefore, the objective of this study was to explore associations of CHI3L1 SNPs with both the susceptibility to PCa and its clinicopathological development. Three promoter SNPs, rs6691378 (-1371, G>A), rs10399805 (-247, G>A) and rs4950928 (-131, C>G), and one non-synonymous SNP, rs880633 (+2950, T>C), were analysed using a TaqMan allelic discrimination assay for genotyping in a cohort of 701 PCa patients and 701 healthy controls. Results indicated that there were no significant associations of PCa susceptibility with these four CHI3L1 SNPs. However, among elderly PCa patients (aged >65 years), it was observed that polymorphic variants (GA + AA) of CHI3L1 rs6691378 and 10399805 were significantly linked to reduced risks of several clinicopathological characteristics, including a high Gleason grade, advanced pathologic T stage and tumour cell invasion. Moreover, analyses of The Cancer Genome Atlas database revealed that CHI3L1 expression levels were elevated in PCa tissues compared with normal tissues. Interestingly, higher CHI3L1 expression levels were found to be associated with longer progression-free survival rates in PCa patients. Our findings indicated that levels of CHI3L1 may influence the progression of PCa, and the rs6691378 and 10399805 SNP genetic variants of CHI3L1 are linked to the clinicopathological development of PCa within a Taiwanese population.


Asunto(s)
Proteína 1 Similar a Quitinasa-3 , Neoplasias de la Próstata , Anciano , Humanos , Masculino , Alelos , Quitinasas/genética , Predisposición Genética a la Enfermedad , Glicoproteínas/genética , Polimorfismo de Nucleótido Simple/genética , Neoplasias de la Próstata/genética , Proteína 1 Similar a Quitinasa-3/genética , Proteína 1 Similar a Quitinasa-3/metabolismo
16.
Curr Microbiol ; 80(11): 360, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37796346

RESUMEN

The chitinolytic bacterium, Chitiniphilus shinanonensis SAY3T was examined to characterize its chitin-degrading enzymes in view of its potential to convert biomass chitin into useful saccharides. A survey of the whole-genome sequence revealed 49 putative genes encoding polypeptides that are thought to be related to chitin degradation. Based on an analysis of the relative quantity of each transcript and an assay for chitin-degrading activity of recombinant proteins, a chitin degradation system driven by 19 chitinolytic enzymes was proposed. These include sixteen endo-type chitinases, two N-acetylglucosaminidases, and one lipopolysaccharide monooxygenase that catalyzes the oxidative cleavage of glycosidic bonds. Among the 16 chitinases, ChiL was characterized by its remarkable transglycosylation activity. Of the two N-acetylglucosaminidases (ChiI and ChiT), ChiI was the major enzyme, corresponding to > 98% of the total cellular activity. Surprisingly, a chiI-disrupted mutant was still able to grow on medium with powdered chitin or GlcNAc dimer. However, its growth rate was slightly lower compared to that of the wild-type SAY3. This multi-enzyme machinery composed of various types of chitinolytic enzymes may support SAY3 to efficiently utilize native chitin as a carbon and energy source and may play a role in developing an enzymatic process to decompose and utilize abundant chitin at the industrial scale.


Asunto(s)
Betaproteobacteria , Quitinasas , Quitina/metabolismo , Proteínas Recombinantes/genética , Quitinasas/genética , Quitinasas/metabolismo
17.
Mol Plant Pathol ; 24(9): 1033-1046, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37448165

RESUMEN

Lipase is involved in lipid hydrolysis, which is related to nematodes' energy reserves and stress resistance. However, the role of lipases in Bursaphelenchus xylophilus, a notorious plant-parasitic nematode responsible for severe damage to pine forest ecosystems, remains largely obscure. Here, we characterized a class III lipase as a candidate effector and named it BxLip-3. It was transcriptionally up-regulated in the parasitic stages of B. xylophilus and specifically expressed in the oesophageal gland cells and the intestine. In addition, BxLip-3 suppressed cell death triggered by the pathogen-associated molecular patterns PsXEG1 and BxCDP1 in Nicotiana benthamiana, and its Lipase-3 domain is essential for immunosuppression. Silencing of the BxLip-3 gene resulted in a delay in disease onset and increased the activity of antioxidant enzymes and the expression of pathogenesis-related (PR) genes. Plant chitinases are thought to be PR proteins involved in the defence system against pathogen attack. Using yeast two-hybrid and co-immunoprecipitation assays, we identified two class I chitinases in Pinus thunbergii, PtChia1-3 and PtChia1-4, as targets of BxLip-3. The expression of these two chitinases was up-regulated during B. xylophilus inoculation and inhibited by BxLip-3. Overall, this study illustrated that BxLip-3 is a crucial virulence factor that plays a critical role in the interaction between B. xylophilus and host pine.


Asunto(s)
Quitinasas , Pinus , Tylenchida , Animales , Xylophilus , Ecosistema , Quitinasas/genética , Pinus/parasitología , Tylenchida/genética , Enfermedades de las Plantas/parasitología
18.
Kurume Med J ; 68(3.4): 221-228, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37380444

RESUMEN

OBJECTIVE: Chitinase 3-like-1 (CHI3L1), also known as YKL-40, is a partially secreted glycoprotein and is involved in inflammatory disorders, including inflammatory bowel diseases. CHI3L1 is known to play a role in biological responses such as cell proliferation, tissue remodeling, and inflammation. CHI3L1 forms an immune complex (known as a Chitosome complex) with IL-13 receptor alpha 2 (IL-13 Rα2) and transmembrane protein 219 (TMEM219) to activate the MAPK/ERK and PKB/AKT signaling pathways. The objective of this study is to investigate how the expressions of CHI3L1 and a Chitosome complex in human oral cavity epithelial cells are linked with intraoral inflammatory diseases. METHOD: CHI3L1 and Chitosome complex mRNA expressions were analyzed using human oral squamous cancer cell lines, HSC3 and HSC4 cells. Signaling activation in HSC4 cells was analyzed by using the western blot technique. Immunohistological analysis was performed using surgical samples obtained from patients with benign oral cavity tumors and cysts. RESULTS: Increased expression of CHI3L1 was observed in both HSC3 and HSC4 cells after TNFα stimulation. The expression of Chitosome complex factors increased as CHI3L1 levels increased, resulting in the activation of a downstream signaling pathway. Among the intraoral tissues, the epithelial cells from inflammatory lesions, but not benign tumors, were found to be intensively stained with the anti-CHI3L1 antibody. CONCLUSION: It was indicated that the formation of a Chitosome complex is induced during inflammation, leading to the activation of signaling pathways.


Asunto(s)
Quitinasas , Humanos , Quitinasas/metabolismo , Línea Celular , Transducción de Señal , Células Epiteliales , Inflamación/metabolismo , Proteína 1 Similar a Quitinasa-3/genética , Proteína 1 Similar a Quitinasa-3/metabolismo
19.
J Alzheimers Dis ; 93(4): 1341-1354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37182875

RESUMEN

BACKGROUND: Neurodegenerative disease pathology is associated with neuroinflammation, but evidence on idiopathic normal pressure hydrocephalus (iNPH) remains limited and cerebrospinal fluid (CSF) biomarker profiles need to be elucidated. OBJECTIVE: To investigate whether iNPH pathological mechanisms are associated with greater CSF markers of core Alzheimer's disease pathology (amyloid-ß42 (Aß42), phosphorylated tau (P-tau)), neurodegeneration (total tau (T-tau)), and neuroinflammation (soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase-3-like protein 1 (YKL-40)). METHODS: The study analyzed lumbar CSF samples from 63 patients with iNPH and 20 age-matched orthopedic surgery patients who had no preoperative gait or cognitive impairment (control group). Aß42, T-tau, P-tau, sTREM2, and YKL-40 in different subgroups were investigated. RESULTS: CSF sTREM2 levels were significantly higher in the iNPH group than in the control group, but no significant between-group difference was noted in YKL-40. Moreover, YKL-40 levels were significantly higher in the tap test non-responders than in the tap test responders (p = 0.021). At the 1-year follow-up after shunt surgery, the CSF P-tau levels were significantly lower (p = 0.020) in those with gait improvement and the CSF sTREM2 levels were significantly lower (p = 0.041) in those with cognitive improvement. In subgroup analysis, CSF sTREM2 levels were strongly correlated with CSF YKL-40 in the iNPH group (r = 0.443, p < 0.001), especially in the tap test non-responders (r = 0.653, p = 0.002). CONCLUSION: YKL-40 and sTREM2 are disease-specific markers of neuroinflammation, showing higher CSF levels in iNPH. In addition, sTREM2 is positively associated with YKL-40, indicating that interactions of glial cells play an important role in iNPH pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Quitinasas , Hidrocéfalo Normotenso , Enfermedades Neurodegenerativas , Humanos , Proteína 1 Similar a Quitinasa-3 , Péptidos beta-Amiloides/líquido cefalorraquídeo , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/patología , Proteínas tau/líquido cefalorraquídeo , Hidrocéfalo Normotenso/cirugía , Hidrocéfalo Normotenso/líquido cefalorraquídeo , Células Mieloides , Biomarcadores/líquido cefalorraquídeo
20.
Am J Sports Med ; 51(7): 1733-1742, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37191559

RESUMEN

BACKGROUND: Anterior cruciate ligament (ACL) tears often result in knee effusion and an increased risk for developing knee osteoarthritis (OA) in the long run. The molecular profile of these effusions could be informative regarding initial steps in the development of posttraumatic OA after an ACL tear. HYPOTHESIS: The proteomics of knee synovial fluid changes over time after ACL injury. STUDY DESIGN: Descriptive laboratory study. METHODS: Synovial fluid was collected from patients with an acute traumatic ACL tear presenting to the office for evaluation (18.31 ± 19.07 days from injury) (aspiration 1) and again at the time of surgery (35.41 ± 58.15 days after aspiration 1 (aspiration 2). High-resolution liquid chromatography mass spectrometry was used to assess the quantitative protein profile of synovial fluid, and differences in protein profile between the 2 aspirations were determined computationally. RESULTS: A total of 58 synovial fluid samples collected from 29 patients (12 male, 17 female; 12 isolated ACL tear, 17 combined ACL and meniscal tear) with a mean age and body mass index of 27.01 ± 12.78 years and 26.30 ± 4.93, respectively, underwent unbiased proteomics analysis. The levels of 130 proteins in the synovial fluid changed over time (87 high, 43 low). Proteins of interest that were significantly higher in aspiration 2 included CRIP1, S100A11, PLS3, POSTN, and VIM, which represent catabolic/inflammatory activities in the joint. Proteins with a known role in chondroprotection and joint homeostasis such as CHI3L2 (YKL-39), TNFAIP6/TSG6, DEFA1, SPP1, and CILP were lower in aspiration 2. CONCLUSION: Synovial fluid from knees with ACL tears exhibits an increased burden of inflammatory (catabolic) proteins relevant to OA with reduced levels of chondroprotective (anabolic) proteins. CLINICAL RELEVANCE: This study identified a set of novel proteins that provide new biological insights into the aftermath of ACL tears. Elevated inflammation and decreased chondroprotection could represent initial disruption of homeostasis, potentially initiating the development of OA. Longitudinal follow-up and mechanistic studies are necessary to assess the functional role of these proteins in the joint. Ultimately, these investigations could lead to better approaches to predict and possibly improve patient outcomes.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Quitinasas , Humanos , Masculino , Femenino , Lesiones del Ligamento Cruzado Anterior/cirugía , Líquido Sinovial/metabolismo , Ligamento Cruzado Anterior/cirugía , Proteómica , Articulación de la Rodilla/cirugía , Biomarcadores/metabolismo , Quitinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA