Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.047
Filtrar
Más filtros











Intervalo de año de publicación
1.
Carbohydr Polym ; 339: 122238, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823908

RESUMEN

The study aimed to develop a novel, transparent and non-toxic coating with antimicrobial, antioxidant, and antifogging properties. The p-coumaric acid-grafted chitosan (CS-PCA) was synthesized via a carbodiimide coupling reaction and then characterized. The CS-PCA coatings were further prepared using the casting method. The CS-PCA coatings obtained exhibited excellent transparency, UV-light barrier ability, and antifogging properties, as confirmed by spectroscopy and antifogging tests. The CS-PCA coatings showed stronger antioxidant capacity and antimicrobial properties against Escherichia coli, Staphylococcus aureus and Botrytis cinerea compared to CS. The multifunctional coatings were further coated on the polyethylene cling film and their effectiveness was confirmed through a strawberry preservation test. The decay of the strawberries was reduced by CS-PCA coated film at room temperature.


Asunto(s)
Antioxidantes , Quitosano , Ácidos Cumáricos , Escherichia coli , Embalaje de Alimentos , Fragaria , Frutas , Propionatos , Staphylococcus aureus , Quitosano/química , Quitosano/farmacología , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Fragaria/microbiología , Embalaje de Alimentos/métodos , Frutas/química , Propionatos/química , Propionatos/farmacología , Botrytis/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
2.
Carbohydr Polym ; 339: 122255, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823921

RESUMEN

Mixed infectious vaginitis poses a serious threat to female reproductive health due to complex pathogenic factors, a long course and easy recurrence. Currently, antibiotic-based treatment methods are facing a crisis of drug resistance and secondary dysbiosis. Exploring effective drugs for the treatment of mixed vaginitis from Paeonia suffruticosa Andr., a natural traditional Chinese medicine with a long history of medicinal use, is a feasible treatment strategy. P. suffruticosa Andr. leaf extract (PLE) has significant anti-bacterial effects due to its rich content of polyphenols and flavonoids. The polyphenols in peony leaves have the potential to make carboxymethyl chitosan form in situ gel. In the current study, PLE and carboxymethyl chitosan were combined to develop another type of natural anti-bacterial anti-oxidant hydrogel for the treatment of mixed infectious vaginitis. Through a series of characterisations, CP had a three-dimensional network porous structure with good mechanical properties, high water absorption, long retention and a slow-release drug effect. The mixed infectious vaginitis mouse model induced by a mixture of pathogenic bacteria was used to investigate the therapeutic effects of CP in vivo. The appearance of the vagina, H&E colouring of the tissue and inflammatory factors (TNF-α, IL-6) confirm the good anti-vaginal effect of CP. Therefore, CP was expected to become an ideal effective strategy to improve mixed infection vaginitis due to its excellent hydrogel performance and remarkable ability to regulate flora.


Asunto(s)
Antibacterianos , Quitosano , Hidrogeles , Paeonia , Extractos Vegetales , Hojas de la Planta , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Femenino , Animales , Hidrogeles/química , Hidrogeles/farmacología , Hojas de la Planta/química , Ratones , Extractos Vegetales/química , Extractos Vegetales/farmacología , Paeonia/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/microbiología , Antioxidantes/farmacología , Antioxidantes/química
3.
Carbohydr Polym ; 339: 122262, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823926

RESUMEN

Chitosan has been widely used in biomedical fields due to its good antibacterial properties, excellent biocompatibility, and biodegradability. In this study, a pH-responsive and self-healing hydrogel was synthesized from 3-carboxyphenylboronic acid grafted with chitosan (CS-BA) and polyvinyl alcohol (PVA). The dynamic boronic ester bonds and intermolecular hydrogen bonds are responsible for the hydrogel formation. By changing the mass ratio of CS-BA and PVA, the tensile stress and compressive stress of hydrogel can controlled in the range of 0.61 kPa - 0.74 kPa and 295.28 kPa - 1108.1 kPa, respectively. After doping with tannic acid (TA)/iron nanocomplex (TAFe), the hydrogel successful killed tumor cells through the near infrared laser-induced photothermal conversion and the TAFe-triggered reactive oxygen species generation. Moreover, the photothermal conversion of the hydrogel and the antibacterial effect of CS and TA give the hydrogel a good antibacterial effect. The CS-BA/PVA/TAFe hydrogel exhibit good in vivo and in vitro anti-tumor recurrence and antibacterial ability, and therefore has the potential to be used as a powerful tool for the prevention of local tumor recurrence and bacterial infection after surgery.


Asunto(s)
Antibacterianos , Quitosano , Hidrogeles , Recurrencia Local de Neoplasia , Alcohol Polivinílico , Taninos , Quitosano/química , Quitosano/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Concentración de Iones de Hidrógeno , Animales , Antibacterianos/farmacología , Antibacterianos/química , Alcohol Polivinílico/química , Ratones , Recurrencia Local de Neoplasia/prevención & control , Taninos/química , Taninos/farmacología , Humanos , Staphylococcus aureus/efectos de los fármacos , Ácidos Borónicos/química , Escherichia coli/efectos de los fármacos , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Hierro/química , Infección de la Herida Quirúrgica/prevención & control
4.
Sci Rep ; 14(1): 13050, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844812

RESUMEN

This study introduces a novel approach for synthesizing a Cu(II)-based coordination polymer (CP), {[Cu(L)(4,4´-OBA)]·H2O}n (1), using a mixed ligand method. The CP was successfully prepared by reacting Cu(NO3)2·3H2O with the ligand 3,6-bis(benzimidazol-1-yl)pyridazine in the presence of 4,4´-H2OBA, demonstrating an innovative synthesis strategy. Furthermore, a novel hydrogel composed of hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) with a porous structure was developed for drug delivery purposes. This hydrogel facilitates the encapsulation of CP1, and enables the loading of paclitaxel onto the composite to form HA/CMCS-CP1@paclitaxel. In vitro cell experiments demonstrated the promising modulation of thyroid cancer biomarker genes S100A6 and ARID1A by HA/CMCS-CP1@paclitaxel. Finally, reinforcement learning simulations were employed to optimize novel metal-organic frameworks, underscoring the innovative contributions of this study.


Asunto(s)
Cobre , Hidrogeles , Paclitaxel , Neoplasias de la Tiroides , Paclitaxel/química , Paclitaxel/farmacología , Cobre/química , Hidrogeles/química , Humanos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Quitosano/química , Quitosano/análogos & derivados , Línea Celular Tumoral , Ácido Hialurónico/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Portadores de Fármacos/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología
5.
Stem Cell Res Ther ; 15(1): 158, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824568

RESUMEN

BACKGROUND: Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS: In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS: Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS: The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.


Asunto(s)
Tejido Adiposo , Quitosano , Células Madre Mesenquimatosas , Microesferas , Regeneración Nerviosa , Ratas Sprague-Dawley , Quitosano/química , Regeneración Nerviosa/fisiología , Animales , Ratas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Nervio Ciático/fisiología , Porosidad , Andamios del Tejido/química , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Proliferación Celular , Células Cultivadas
6.
J Nanobiotechnology ; 22(1): 217, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725012

RESUMEN

Excess free radicals at the wound site can cause an inflammatory response, which is not conducive to wound healing. Hydrogels with antioxidant properties can prevent inflammatory storms by scavenging free radicals from the wound site and inhibiting the release of inflammatory factors. In this study, we prepared the carboxymethyl chitosan (CMCS)/polyvinyl pyrrolidone (PVP)/Molybdenum (IV) Selenide (MoSe2), and platelet-rich plasma (PRP) (CMCS/PVP/MoSe2/PRP) hydrogels for accelerating the repair of wounds. In the hydrogels, the MoSe2 can scavenge various free radicals to reduce oxidative stress at the site of inflammation, endowed the hydrogels with antioxidant properties. Interestingly, growth factors released by PRP assisted the tissue repair by promoting the formation of new capillaries. CMCS as a backbone not only showed good biocompatibility and biodegradability but also played a significant role in maintaining the sustained release of growth factors. In addition, incorporating PVP enhanced the tissue adhesion and mechanical properties. The multifunctional composite antioxidant hydrogels have good swelling properties and biodegradability, which is completely degraded within 28 days. Thus, the antioxidant CMCS/PVP/MoSe2/PRP hydrogels provide a new idea for designing ideal multifunctional wound dressings.


Asunto(s)
Antioxidantes , Vendajes , Quitosano , Hidrogeles , Plasma Rico en Plaquetas , Povidona , Cicatrización de Heridas , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Povidona/química , Povidona/análogos & derivados , Hidrogeles/química , Hidrogeles/farmacología , Plasma Rico en Plaquetas/química , Animales , Ratones , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Estrés Oxidativo/efectos de los fármacos , Humanos
7.
BMC Biotechnol ; 24(1): 27, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725019

RESUMEN

Cyanobacteria represent a rich resource of a wide array of unique bioactive compounds that are proving to be potent sources of anticancer drugs. Selenium nanoparticles (SeNPs) have shown an increasing potential as major therapeutic platforms and led to the production of higher levels of ROS that can present desirable anticancer properties. Chitosan-SeNPs have also presented antitumor properties against hepatic cancer cell lines, especially the Cht-NP (Chitosan-NPs), promoting ROS generation and mitochondria dysfunction. It is proposed that magnetic fields can add new dimensions to nanoparticle applications. Hence, in this study, the biosynthesis of SeNPs using Alborzia kermanshahica and chitosan (CS) as stabilizers has been developed. The SeNPs synthesis was performed at different cyanobacterial cultivation conditions, including control (without magnetic field) and magnetic fields of 30 mT and 60 mT. The SeNPs were characterized by uv-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), zeta potential, and TEM. In addition, the antibacterial activity, inhibition of bacterial growth, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the antifungal activity and cytotoxicity of SeNPs, were performed. The results of uv-visible spectrometry, DLS, and zeta potential showed that 60 mT had the highest value regarding the adsorption, size, and stabilization in compared to the control. FTIR spectroscopy results showed consistent spectra, but the increased intensity of peaks indicates an increase in bond number after exposure to 30 mT and 60 mT. The results of the antibacterial activity and the inhibition zone diameter of synthesized nanoparticles showed that Staphylococcus aureus was more sensitive to nanoparticles produced under 60 mT. Se-NPs produced by Alborzia kermanshahica cultured under a 60 mT magnetic field exhibit potent antimicrobial and anticancer properties, making them a promising natural agent for use in the pharmaceutical and biomedical industries.


Asunto(s)
Quitosano , Campos Magnéticos , Selenio , Selenio/química , Selenio/farmacología , Quitosano/química , Quitosano/farmacología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/química , Nanopartículas del Metal/química
8.
J Oleo Sci ; 73(5): 709-716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692893

RESUMEN

Epigallocatechin-3-gallate (EGCG), a polyphenol derived from Green Tea, is one of the sources of natural bioactive compounds which are currently being developed as medicinal ingredients. Besides other biological activities, this natural compound exhibits anti-cariogenic effects. However, EGCG has low physical-chemical stability and poor bioavailability. Thus, the purpose of this study was to develop and characterize lipid-chitosan hybrid nanoparticle with EGCG and to evaluate its in vitro activity against cariogenic planktonic microorganisms. Lipid-chitosan hybrid nanoparticle (LCHNP-EGCG) were prepared by emulsion and sonication method in one step and characterized according to diameter, polydispersity index (PdI), zeta potential (ZP), encapsulation efficiency (EE), mucoadhesion capacity and morphology. Strains of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus casei were treated with LCHNP- EGCG, and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated. LCHNP-EGCG exhibited a size of 217.3 ± 5.1 nm with a low polydispersity index (0.17) and positive zeta potential indicating the presence of chitosan on the lipid nanoparticle surface (+33.7 mV). The LCHNP-EGCG showed a spherical morphology, high stability and a mucoadhesive property due to the presence of chitosan coating. In addition, the EGCG encapsulation efficiency was 96%. A reduction of almost 15-fold in the MIC and MBC against the strains was observed when EGCG was encapsulated in LCHNP, indicating the potential of EGCG encapsulation in lipid-polymer hybrid nanoparticles. Taking the results together, the LCHNP-EGCG could be an interesting system to use in dental care due to their nanometric size, mucoadhesive properties high antibacterial activity against relevant planktonic microorganisms.


Asunto(s)
Antibacterianos , Catequina , Catequina/análogos & derivados , Quitosano , Pruebas de Sensibilidad Microbiana , Nanopartículas , Streptococcus mutans , Catequina/farmacología , Catequina/química , Quitosano/química , Quitosano/farmacología , Streptococcus mutans/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Streptococcus sobrinus/efectos de los fármacos , Lacticaseibacillus casei/efectos de los fármacos , Lípidos/química , Plancton/efectos de los fármacos , Caries Dental/microbiología , Caries Dental/prevención & control , Portadores de Fármacos/química , Tamaño de la Partícula , Emulsiones , Sonicación
9.
Vet Med Sci ; 10(3): e1439, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38695208

RESUMEN

This study evaluated the effect of ozone, chitosan-hyaluronic (Cs-HA) acid and mesenchymal stem cells (MSCs) on wound healing in rats. A total of 64 rats were randomly divided into four groups: control, ozone, Cs-HA + ozone and Cs-HA + ozone + MSCs. A 5 mm full-thickness wound was created on the back of each rat. The wound area was measured macroscopically on days 3, 5, 9 and 14. Tissue sections were prepared for histopathological evaluation of inflammation, collagen arrangement, neovascularization and epithelial tissue rearrangement. Macroscopic assessment showed differences in wound area on days 5, 9 and 14. Histopathological examination showed that the Cs-HA + ozone + MSCs and Cs-HA + ozone groups had significantly higher vascularization on day 3 compared to the ozone-treated and control groups. All treatment groups had significantly better collagen arrangement than the control group. On day 5, no significant difference was observed between different groups. On day 9, the inflammation level in the Cs-HA + ozone + MSCs group was significantly lower than in the other groups. All treatment groups had significantly better vascularization compared to the control group. On day 14, the rate of inflammation was significantly lower in the treatment groups than in the control group. Significantly higher collagen arrangement levels were observed in the Cs-HA + ozone and Cs-HA + ozone + MSCs groups compared to the control and ozone groups. All treatment groups had significantly better epithelial tissue rearrangement than the control group. Overall, the results of this study indicated that treatment with ozone, Cs-HA acid, Cs-HA and MSCs accelerated wound healing in rats. The effect of using Cs-HA acid with mesenchymal cells was better than the other types of treatment. Larger clinical trials are needed to assess these factors for improving chronic wound treatment.


Asunto(s)
Quitosano , Ácido Hialurónico , Trasplante de Células Madre Mesenquimatosas , Ozono , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Ozono/farmacología , Ratas , Ácido Hialurónico/farmacología , Masculino , Trasplante de Células Madre Mesenquimatosas/veterinaria , Ratas Wistar , Distribución Aleatoria
10.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708178

RESUMEN

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Asunto(s)
Antibacterianos , Biopelículas , Quitosano , Liposomas , Nanopartículas , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Nanopartículas/química , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/farmacocinética , Portadores de Fármacos/química , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Lípidos/química , Lípidos/farmacología , Percepción de Quorum/efectos de los fármacos , Células A549 , Alginatos/química
11.
Sci Rep ; 14(1): 10228, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702418

RESUMEN

Chitosan (CH) exhibits low antimicrobial activity. This study addresses this issue by modifying the chitosan with a sulfonamide derivative, 3-(4-(N,N-dimethylsulfonyl)phenyl)acrylic acid. The structure of the sulfonamide-chitosan derivative (DMS-CH) was confirmed using Fourier transform infrared spectroscopy and Nuclear magnetic resonance. The results of scanning electron microscopy, thermal gravimetric analysis, and X-ray diffraction indicated that the morphology changed to a porous nature, the thermal stability decreased, and the crystallinity increased in the DMS-CH derivative compared to chitosan, respectively. The degree of substitution was calculated from the elemental analysis data and was found to be moderate (42%). The modified chitosan exhibited enhanced antimicrobial properties at low concentrations, with a minimum inhibitory concentration (MIC) of 50 µg/mL observed for B. subtilis and P. aeruginosa, and a value of 25 µg/mL for S. aureus, E. coli, and C. albicans. In the case of native chitosan, the MIC values doubled or more, with 50 µg/mL recorded for E. coli and C. albicans and 100 µg/mL recorded for B. subtilis, S. aureus, and P. aeruginosa. Furthermore, toxicological examinations conducted on MCF-7 (breast adenocarcinoma) cell lines demonstrated that DMS-CH exhibited greater toxicity (IC50 = 225.47 µg/mL) than pure CH, while still maintaining significant safety limits against normal lung fibroblasts (WI-38). Collectively, these results suggest the potential use of the newly modified chitosan in biomedical applications.


Asunto(s)
Antiinfecciosos , Quitosano , Pruebas de Sensibilidad Microbiana , Sulfonamidas , Quitosano/química , Quitosano/farmacología , Humanos , Sulfonamidas/farmacología , Sulfonamidas/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Candida albicans/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Supervivencia Celular/efectos de los fármacos , Difracción de Rayos X , Células MCF-7
12.
J Nanobiotechnology ; 22(1): 232, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720301

RESUMEN

Diabetic wounds pose a challenge to healing due to increased bacterial susceptibility and poor vascularization. Effective healing requires simultaneous bacterial and biofilm elimination and angiogenesis stimulation. In this study, we incorporated polyaniline (PANI) and S-Nitrosoglutathione (GSNO) into a polyvinyl alcohol, chitosan, and hydroxypropyltrimethyl ammonium chloride chitosan (PVA/CS/HTCC) matrix, creating a versatile wound dressing membrane through electrospinning. The dressing combines the advantages of photothermal antibacterial therapy and nitric oxide gas therapy, exhibiting enduring and effective bactericidal activity and biofilm disruption against methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Furthermore, the membrane's PTT effect and NO release exhibit significant synergistic activation, enabling a nanodetonator-like burst release of NO through NIR irradiation to disintegrate biofilms. Importantly, the nanofiber sustained a uniform release of nitric oxide, thereby catalyzing angiogenesis and advancing cellular migration. Ultimately, the employment of this membrane dressing culminated in the efficacious amelioration of diabetic-infected wounds in Sprague-Dawley rats, achieving wound closure within a concise duration of 14 days. Upon applying NIR irradiation to the PVA-CS-HTCC-PANI-GSNO nanofiber membrane, it swiftly eradicates bacteria and biofilm within 5 min, enhancing its inherent antibacterial and anti-biofilm properties through the powerful synergistic action of PTT and NO therapy. It also promotes angiogenesis, exhibits excellent biocompatibility, and is easy to use, highlighting its potential in treating diabetic wounds.


Asunto(s)
Antibacterianos , Vendajes , Biopelículas , Óxido Nítrico , Terapia Fototérmica , Ratas Sprague-Dawley , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Ratas , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Biopelículas/efectos de los fármacos , Terapia Fototérmica/métodos , Masculino , Quitosano/química , Quitosano/farmacología , Nanofibras/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Staphylococcus aureus/efectos de los fármacos , Alcohol Polivinílico/química , Alcohol Polivinílico/farmacología , S-Nitrosoglutatión/farmacología , S-Nitrosoglutatión/química
13.
Pak J Pharm Sci ; 37(1(Special)): 235-243, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38747275

RESUMEN

Stimulus-responsive mesoporous silica nanoparticles (MSNs) have displayed great potentiality for controlled-release and targeted drug delivery. In the current work, a supercritical fluid method was utilized to successfully prepare cinnamon oil loaded into chitosan grafted MSNs (CO@CS-MSNs). The influencing factors of drug loads, such as pressure, temperature, impregnation time and depressure time, were investigated. The structure of CO@CS-MSNs was demonstrated with Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), scanning electron microscopy (SEM), thermogravimetry (TG) as well as X-ray diffraction (XRD). The drug release assays in vitro at various pH conditions displayed that CO@CS-MSNs had an excellent pH-responsive release behavior, which confirmed that CO was loaded successfully into the CO@CS-MSNs. The findings indicated that the supercritical fluid approach is a non-destructive and efficient approach for stimulus-responsive MSNs, which is expected to further expand its application range.


Asunto(s)
Dióxido de Carbono , Quitosano , Cinnamomum zeylanicum , Liberación de Fármacos , Nanopartículas , Dióxido de Silicio , Quitosano/química , Dióxido de Silicio/química , Nanopartículas/química , Concentración de Iones de Hidrógeno , Dióxido de Carbono/química , Porosidad , Cinnamomum zeylanicum/química , Portadores de Fármacos/química , Aceites Volátiles/química , Aceites Volátiles/administración & dosificación , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía Electrónica de Rastreo , Preparaciones de Acción Retardada
14.
Biosens Bioelectron ; 258: 116372, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735081

RESUMEN

Epithelial-mesenchymal transition (EMT) promotes tumor cell infiltration and metastasis. Tracking the progression of EMT could potentially indicate early cancer metastasis. A key characteristic of EMT is the dynamic alteration in the molecular levels of E-cadherin and N-cadherin. Traditional assays have limited sensitivity and multiplexing capabilities, relying heavily on cell lysis. Here, we developed a multiplex electrochemical biosensor to concurrently track the upregulation of N-cadherin expression and reduction of E-cadherin in breast cancer cells undergoing EMT. Small-sized gold nanoparticles (Au NPs) tagged with redox probes (thionin or amino ferrocene) and bound to two types of antibodies were used as distinguishable signal tags. These tags specifically recognized E-cadherin and N-cadherin proteins on the tumor cell surface without cross-reactivity. The diphenylalanine dipeptide (FF)/chitosan (CS)/Au NPs (FF-CS@Au) composites with high surface area and good biocompatibility were used as the sensing platforms for efficiently fixing cells and recording the dynamic changes in electrochemical signals of surface proteins. The electrochemical immunosensor allowed for simultaneous monitoring of E- and N-cadherins on breast cancer cell surfaces in a single run, enabling tracking of the EMT dynamic process for up to 60 h. Furthermore, the electrochemical detection results are consistent with Western blot analysis, confirming the reliability of the methodology. This present work provides an effective, rapid, and low-cost approach for tracking the EMT process, as well as valuable insights into early tumor metastasis.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Técnicas Electroquímicas , Transición Epitelial-Mesenquimal , Oro , Nanopartículas del Metal , Humanos , Técnicas Biosensibles/métodos , Neoplasias de la Mama/patología , Oro/química , Femenino , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Cadherinas , Línea Celular Tumoral , Inmunoensayo/métodos , Quitosano/química
15.
Sci Rep ; 14(1): 11161, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750054

RESUMEN

Biodegradable plastics are those subjected easily to a degradation process, in which they can be decomposed after disposal in the environment through microbial activity. 30 bioplastic film formulations based only on chitosan film were used in the current investigation as a positive control together with chitosan film recovered from chitin-waste of locally obtained Aristeus antennatus. Additionally, castor oil was used as a plasticizer. While the yield of chitosan was 18% with 7.65% moisture content and 32.27% ash in the shells, the isolated chitin had a degree of deacetylation (DD) of 86%. The synthesized bioplastic films were characterized via numerous criteria. Firstly, the swelling capacity of these biofilms recorded relatively high percentages compared to polypropylene as synthetic plastic. Noticeably, the FTIR profiles, besides DSC, TGA, and XRD, confirmed the acceptable characteristics of these biofilms. In addition, their SEM illustrated the homogeneity and continuity with a few straps of the chitosan film and showed the homogeneous mixes of chitosan and castor oil with 5 and 20%. Moreover, data detected the antibacterial activity of different bioplastic formulas against some common bacterial pathogens (Enterococcus feacalis, Kelbsiella pnumina, Bacillus subtilis, and Pseudomonas aeruginosa). Amazingly, our bioplastic films have conducted potent antimicrobial activities. So, they may be promising in such a direction. Further, the biodegradability efficacy of bioplastic films formed was proved in numerous environments for several weeks of incubation. However, all bioplastic films decreased in their weights and changed in their colors, while polypropylene, was very constant all the time. The current findings suggest that our biofilms may be promising for many applications, especially in the field of food package protecting the food, and preventing microbial contamination, consequently, it may help in extending the shelf life of products.


Asunto(s)
Plásticos Biodegradables , Aceite de Ricino , Quitosano , Plastificantes , Almidón , Quitosano/química , Quitosano/farmacología , Aceite de Ricino/química , Plásticos Biodegradables/química , Plásticos Biodegradables/farmacología , Plastificantes/química , Almidón/química , Animales , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Mariposas Nocturnas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
16.
Int J Nanomedicine ; 19: 4465-4493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779103

RESUMEN

Background: Liver cancer remains to be one of the leading causes of cancer worldwide. The treatment options face several challenges and nanomaterials have proven to improve the bioavailability of several drug candidates and their applications in nanomedicine. Specifically, chitosan nanoparticles (CNPs) are extremely biodegradable, pose enhanced biocompatibility and are considered safe for use in medicine. Methods: CNPs were synthesized by ionic gelation, loaded with rutin (rCNPs) and characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The rCNPs were tested for their cytotoxic effects on human hepatoma Hep3B cells, and experiments were conducted to determine the mechanism of such effects. Further, the biocompatibility of the rCNPs was tested on L929 fibroblasts, and their hemocompatibility was determined. Results: Initially, UV-vis and FTIR analyses indicated the possible loading of rutin on rCNPs. Further, the rutin load was quantitatively measured using Ultra-Performance Liquid Chromatography (UPLC) and the concentration was 88 µg/mL for 0.22 micron filtered rCNPs. The drug loading capacity (LC%) of the rCNPs was observed to be 13.29 ± 0.68%, and encapsulation efficiency (EE%) was 19.55 ± 1.01%. The drug release was pH-responsive as 88.58% of the drug was released after 24 hrs at the lysosomal pH 5.5, whereas 91.44% of the drug was released at physiological pH 7.4 after 102 hrs. The cytotoxic effects were prominent in 0.22 micron filtered samples of 5 mg/mL rutin precursor. The particle size for the rCNPs at this concentration was 144.1 nm and the polydispersity index (PDI) was 0.244, which is deemed to be ideal for tumor targeting. A zeta potential (ζ-potential) value of 16.4 mV indicated rCNPs with good stability. The IC50 value for the cytotoxic effects of rCNPs on human hepatoma Hep3B cells was 9.7 ± 0.19 µg/mL of rutin load. In addition, the increased production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential (MMP) were observed. Gene expression studies indicated that the mechanism for cytotoxic effects of rCNPs on Hep3B cells was due to the activation of Unc-51-like autophagy-activating kinase (ULK1) mediated autophagy and nuclear factor kappa B (NF-κB) signaling besides inhibiting the epithelial-mesenchymal Transition (EMT). In addition, the rCNPs were less toxic on NCTC clone 929 (L929) fibroblasts in comparison to the Hep3B cells and possessed excellent hemocompatibility (less than 2% of hemolysis). Conclusion: The synthesized rCNPs were pH-responsive and possessed the physicochemical properties suitable for tumor targeting. The particles were effectively cytotoxic on Hep3B cells in comparison to normal cells and possessed excellent hemocompatibility. The very low hemolytic profile of rCNPs indicates that the drug could be administered intravenously for cancer therapy.


Asunto(s)
Autofagia , Carcinoma Hepatocelular , Quitosano , Neoplasias Hepáticas , FN-kappa B , Nanopartículas , Rutina , Transducción de Señal , Rutina/farmacología , Rutina/química , Rutina/administración & dosificación , Rutina/farmacocinética , Quitosano/química , Quitosano/farmacología , Humanos , FN-kappa B/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Nanopartículas/química , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones , Animales , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Supervivencia Celular/efectos de los fármacos
17.
Sci Rep ; 14(1): 11765, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782958

RESUMEN

In vitro use of articular cartilage on an organ-on-a-chip (OOAC) via microfluidics is challenging owing to the dense extracellular matrix (ECM) composed of numerous protein moieties and few chondrocytes, which has limited proliferation potential and microscale translation. Hence, this study proposes a novel approach for using a combination of biopolymers and decellularised ECM (dECM) as a bioink additive in the development of scalable OOAC using a microfluidic platform. The bioink was tested with native chondrocytes and mesenchymal stem cell-induced chondrocytes using biopolymers of alginate and chitosan composite hydrogels. Two-dimensional (2D) and three-dimensional (3D) biomimetic tissue construction approaches have been used to characterise the morphology and cellular marker expression (by histology and confocal laser scanning microscopy), viability (cell viability dye using flow cytometry), and genotypic expression of ECM-specific markers (by quantitative PCR). The results demonstrated that the bioink had a significant impact on the increase in phenotypic and genotypic expression, with a statistical significance level of p < 0.05 according to Student's t-test. The use of a cell-laden biopolymer as a bioink optimised the niche conditions for obtaining hyaline-type cartilage under culture conditions, paving the way for testing mechano-responsive properties and translating these findings to a cartilage-on-a-chip microfluidics system.


Asunto(s)
Alginatos , Cartílago Articular , Quitosano , Condrocitos , Matriz Extracelular , Ingeniería de Tejidos , Quitosano/química , Alginatos/química , Cartílago Articular/metabolismo , Cartílago Articular/citología , Animales , Matriz Extracelular/metabolismo , Condrocitos/metabolismo , Condrocitos/citología , Ingeniería de Tejidos/métodos , Biopolímeros/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Andamios del Tejido/química , Dispositivos Laboratorio en un Chip , Hidrogeles/química , Células Cultivadas , Supervivencia Celular , Sistemas Microfisiológicos
18.
Acta Biomater ; 181: 249-262, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704113

RESUMEN

Endoscopic surgery is an effective and common clinical practice for chronic sinusitis. Nasal packing materials are applied in nasal surgery to prevent hemorrhage and promote wound healing. In this study, a degradable polyurethane foam dressing is successfully developed as a promising nasal packing material with good biocompatibility and antibacterial capability. Specifically, quaternized chitosan (QCS) serves as the crosslinker instead of polyols to offer polyurethane foam (PUF-QCS) antibacterial capability. The PUF-QCS2.0 % (with 2.0 wt% QCS) exhibits satisfactory liquid absorption capacity (19.4 g/g), high compressive strengths at both wet (14.5 kPa) and dry states (7.7 kPa), and a good degradation rate (8.3 %) within 7 days. Meanwhile, PUF-QCS2.0 % retains long-term antibacterial activity for 7 days and kills 97.3 % of S. aureus and 91.8 % of E. coli within 6 hours in antibacterial testing. Furthermore, PUF-QCS2.0 % demonstrates a positive hemostatic response in the rabbit nasal septum mucosa trauma model by reducing hemostatic time over 50.0 % and decreasing blood loss up to 76.1 % compared to the commercial PVA nasal packing sponge. Importantly, PUF-QCS also exhibits a significant antibacterial activity in nasal cavity. This nasal packing material has advantages in post-surgery bleeding control and infection prevention. STATEMENT OF SIGNIFICANCE: The performance of a nasal packing sponge requires good mechanical properties, fast and high liquid absorption rate, effective degradability and strong antibacterial activity. These features are helpful for improving the postoperative recovery and patient healing. However, integrating these into a single polyurethane foam is a challenge. In this study, quaternized chitosan (QCS) is synthesized and used as a chain extender and antibacterial agent in preparing a degradable polyurethane foam (PUF-QCS) dressing. PUF-QCS undergoes partial degradation and exhibits effective broad-spectrum antibacterial activity in 7 days. The reduction of postoperative bleeding and infection observed in the animal experiment further demonstrates that the PUF-QCS developed here outperforms the existing commercial nasal packing materials.


Asunto(s)
Antibacterianos , Quitosano , Poliuretanos , Poliuretanos/química , Poliuretanos/farmacología , Quitosano/química , Quitosano/farmacología , Conejos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Hemostasis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Hemostáticos/química , Hemostáticos/farmacología , Vendajes , Escherichia coli/efectos de los fármacos , Masculino
19.
Food Chem ; 452: 139424, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754167

RESUMEN

This study explores the influence of incorporating L-cysteine (L-Cys), chitosan (CTS), and citric acid (CA) on the enzymatic modification of potato starch (EPS) films to enhance anti-browning properties. Four types of EPS composite films were evaluated for preserving fresh-cut potato slices at low temperatures to inhibit browning. Their thermal, physiochemical, mechanical, and digestibility properties were assessed. Results indicate that the addition of CTS, CA, and L-Cys improved the anti-browning activity of the EPS films by increasing film thickness and reducing water vapor permeability (WVP), oxygen transmission rate (OTR), ultraviolet (UV) transmittance, and tensile strength (TS). Furthermore, these additives improved the film's microstructure, resulting in reinforced intermolecular interactions, increased elongation at break, heightened crystallinity, enhanced thermal stability, and favorable gastrointestinal digestibility. Overall, EPS/CTS/L-Cys/CA composite films show promise as edible packaging materials with effective anti-browning properties.


Asunto(s)
Quitosano , Ácido Cítrico , Cisteína , Solanum tuberosum , Almidón , Solanum tuberosum/química , Quitosano/química , Almidón/química , Ácido Cítrico/química , Cisteína/química , Resistencia a la Tracción , Embalaje de Alimentos/instrumentación , Permeabilidad
20.
J Agric Food Chem ; 72(19): 11140-11152, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703140

RESUMEN

Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.


Asunto(s)
Colitis Ulcerosa , Curcumina , Estructuras Metalorgánicas , Péptidos , Curcumina/química , Curcumina/administración & dosificación , Estructuras Metalorgánicas/química , Animales , Humanos , Péptidos/química , Péptidos/administración & dosificación , Colitis Ulcerosa/tratamiento farmacológico , Ratones , Quitosano/química , Clara de Huevo/química , Polisacáridos/química , Masculino , Administración Oral , Sinergismo Farmacológico , gamma-Ciclodextrinas/química , Portadores de Fármacos/química , Proteínas del Huevo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA