Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.619
Filtrar
1.
J Mass Spectrom ; 59(7): e5063, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953332

RESUMEN

An unprecedented and direct PS-MS (paper spray ionization mass spectrometry) method was proposed for the detection of native peptides, that is, glutathiones (GSHs), homoglutathiones (hGSHs), and phytochelatins (PCs), in basil (Ocimum basilicum L.) roots before and after cadmium exposure. The roots were submitted to cold maceration followed by sonication with formic acid as the extractor solvent for sample preparation. PS-MS was used to analyze such extracts in the positive mode, and the results allowed for the detection of several GSHs, hGSHs, and PCs. Some of these PCs were not distinguished in the control samples, that is, basil roots not exposed to cadmium. Other PCs were noticed in both types of roots, uncontaminated and cadmium-contaminated, but the intensities were higher in the former samples. Moreover, long-time exposure to cadmium stimulated the formation of some of these PCs and their cadmium complexes. The results, therefore, provided some crucial insights into the defense mechanism of plants against an external stress condition due to exposure to a toxic heavy metal. The present study represents a promising alternative to investigate other crucial physiological processes in plants submitted to assorted stress conditions.


Asunto(s)
Cadmio , Ocimum basilicum , Fitoquelatinas , Raíces de Plantas , Fitoquelatinas/química , Fitoquelatinas/metabolismo , Raíces de Plantas/química , Cadmio/análisis , Ocimum basilicum/química , Espectrometría de Masas/métodos , Glutatión/análisis , Glutatión/metabolismo , Glutatión/química
2.
J Agric Food Chem ; 72(25): 14326-14336, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870410

RESUMEN

Cadmium (Cd) is a hazardous element that may jeopardize environmental safety and human health through biotransfer and trophic accumulation. Here, we tested Cd toxicity on cotton plants, cotton bollworms, and their responses. Results demonstrated that Cd accumulated in plant roots, aerial parts, insect larvae, pupae, and frass in a dose-dependent pattern. The ∼9.35 mg kg-1 of Cd in plant aerial parts, ∼3.68 in larvae, ∼6.43 in pupae, and high transfer coefficient (∼5.59) indicate significant mobility. The ∼19.61 mg kg-1 of Cd in larvae frass suggests an effective detoxification strategy, while BAFcotton (∼1.14) and BAFworm (∼0.54) indicated low bioaccumulation. Cadmium exposure resulted in compromised plant growth and yield as well as alterations in photosynthetic pigment contents, antioxidant enzyme activities, and certain life history traits of cotton bollworms. Furthermore, carboxylesterase activity and encapsulation rates of insect larvae decreased with increasing Cd concentrations, whereas acetylcholinesterase, phenol oxidase, glutathione S-transferase, and multifunctional oxidase exhibited hormesis responses.


Asunto(s)
Cadmio , Gossypium , Larva , Contaminantes del Suelo , Animales , Cadmio/metabolismo , Cadmio/toxicidad , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Gossypium/parasitología , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Inactivación Metabólica , Glutatión Transferasa/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/química , Raíces de Plantas/parasitología , Monofenol Monooxigenasa/metabolismo , Biotransformación , Acetilcolinesterasa/metabolismo
3.
Phytomedicine ; 130: 155482, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38824823

RESUMEN

BACKGROUND: Acute lung injury (ALI) is characterized by acute pulmonary inflammatory infiltration. Alveolar epithelial cells (AECs) release numerous pro-inflammatory cytokines, which result in the pathological changes seen in ALI. Ophiopogonin D (OD), extracted from the roots of Ophiopogon japonicus (Thunb.) Ker Gawl. (Liliaceae), reduces inflammation; however, the efficacy of OD in ALI has not been reported and the underlying molecular mechanisms remain unclear. PURPOSE: This study investigated the anti-inflammatory effects of OD, as well as the underlying mechanisms, in AECs and a mouse ALI model. METHODS: Lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were used to stimulate macrophages and A549 cells, and a mouse ALI model was established by intratracheal LPS administration. The anti-inflammatory effects and mechanisms of OD in the TNF-α-induced in vitro inflammation model was evaluated using real-time quantitative polymerase chain reaction qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting, nuclear and cytoplasmic protein extraction, and immunofluorescence. The in vivo anti-inflammatory activity of OD was evaluated using hematoxylin and eosin staining, qPCR, ELISA, and western blotting. RESULTS: The bronchoalveolar lavage fluid and lung tissue of LPS-induced ALI mice exhibited increased TNF-α expression. TNF-α induced a significantly greater pro-inflammatory effect in AECs than LPS. OD reduced inflammation and mitogen-activated protein kinase (MAPK) and transcription factor p65 phosphorylation in vivo and in vitro and promoted signal transducer and activator of transcription 3 (STAT3) phosphorylation and A20 expression, thereby inducing apoptosis signal-regulating kinase 1 (ASK1) proteasomal degradation. CONCLUSION: OD exerts an anti-inflammatory effect by promoting STAT3-dependent A20 expression and ASK1 degradation. OD may therefore have therapeutic value in treating ALI and other TNF-α-related inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda , Antiinflamatorios , Lipopolisacáridos , Factor de Transcripción STAT3 , Saponinas , Espirostanos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Animales , Saponinas/farmacología , Espirostanos/farmacología , Ratones , Factor de Transcripción STAT3/metabolismo , Humanos , Antiinflamatorios/farmacología , Masculino , MAP Quinasa Quinasa Quinasa 5/metabolismo , Células A549 , Modelos Animales de Enfermedad , Factor de Necrosis Tumoral alfa/metabolismo , Células RAW 264.7 , Ratones Endogámicos C57BL , Ophiopogon/química , Inflamación/tratamiento farmacológico , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Transducción de Señal/efectos de los fármacos , Raíces de Plantas/química
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124601, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38852307

RESUMEN

Heavy metals, including Hg2+, Cr6+ and Cd2+, have always been a major issue in environmental pollution, leading to abnormal changes in the levels of biologically active molecules including Cys in plants, seriously affecting all aspects of the growth and development of plants. This makes it essential to develop a simple and practical method to study the potential impact of heavy metals on plants. In this paper, our research group has developed near-infrared fluorescent probe WRM-S, which has the advantages of fast response, sensitivity to Cys, and successfully applying it to cells and zebrafish. Moreover, it combined the close relationship between heavy metal stress on plants and Cys, using Cys as the detection target, monitoring the internal environment changes of two plants under Hg2+, Cr6+, and Cd2+ stress in the environment, and then conducting 3D imaging. The results indicated that the probe has strong penetration ability in plant tissues, and revealed abnormal changes in plant Cys levels caused by heavy metal stress-induced cellular oxidative stress or cytotoxicity. Thus, the in-situ imaging detection of this probe provides a direction for the physiological dynamics research of plant environmental stress.


Asunto(s)
Cisteína , Colorantes Fluorescentes , Metales Pesados , Raíces de Plantas , Pez Cebra , Colorantes Fluorescentes/química , Cisteína/metabolismo , Cisteína/química , Animales , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo
5.
Molecules ; 29(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893436

RESUMEN

Volatile oil serves as a traditional antipyretic component of Bupleuri Radix. Bupleurum marginatum var. stenophyllum (Wolff) Shan et Y. Li belongs to the genus Bupleurum and is distinguished for its high level of saikosaponins and volatile oils; nonetheless, prevailing evidence remains inconclusive regarding its viability as an alternative resource of other official species. This study aims to systematically compare the volatile oil components of both dried and fresh roots of B. marginatum var. stenophyllum and the four legally available Bupleurum species across their chemical, molecular, bionics, and anatomical structures. A total of 962 compounds were determined via GC-MS from the dried roots; B. marginatum var. stenophyllum showed the greatest differences from other species in terms of hydrocarbons, esters, and ketones, which was consistent with the results of fresh roots and the e-nose analysis. A large number of DEGs were identified from the key enzyme family of the monoterpene synthesis pathway in B. marginatum var. stenophyllum via transcriptome analysis. The microscopic observation results, using different staining methods, further showed the distinctive high proportion of phloem in B. marginatum var. stenophyllum, the structure which produces volatile oils. Together, these pieces of evidence hold substantial significance in guiding the judicious development and utilization of Bupleurum genus resources.


Asunto(s)
Bupleurum , Aceites Volátiles , Raíces de Plantas , Aceites Volátiles/química , Bupleurum/química , Raíces de Plantas/química , Cromatografía de Gases y Espectrometría de Masas , Plantas Medicinales/química
6.
Molecules ; 29(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38893558

RESUMEN

Polysaccharides have been assessed as a potential natural active component in Chinese herbal medicine with anti-inflammatory properties. However, the complex and indefinite structures of polysaccharides limit their applications. This study explains the structures and anti-inflammatory potentials of three neutral polysaccharides, RIP-A1 (Mw 1.8 × 104 Da), RIP-B1 (Mw 7.4 × 104 Da) and RIP-B2 (Mw 9.3 × 104 Da), which were isolated from the roots of Isatis indigotica Fort. with sequenced ultrafiltration membrane columns, DEAE-52 and Sephadex G-100. The planar structures and microstructures of RIP-A1, RIP-B1 and RIP-B2 were further determined by HPGPC, GC-MS, methylation analysis, FT-IR, SEM and AFM, in which the structure of RIP-A1 was elucidated in detail using 1D/2D NMR. The Raw 264.7 cells were used for the anti-inflammatory activity in vitro. The results showed that RIP-A1, RIP-B1 and RIP-B2 are all neutral polysaccharides, with RIP-A1 having the smallest Mw and the simplest monosaccharide composition of the three. RIP-A1 is mainly composed of Ara and Gal, except for a small quantity of Rha. Its main structure is covered with glycosidic linkages of T-α-Araf, 1,2-α-Rhap, 1,5-α-Araf, T-ß-Galp, 1,2,4-α-Rhap, 1,3,5-α-Araf and 1,6-ß-Galp with 0.33:0.12:1.02:0.09:0.45:11.41:10.23. RIP-A1 significantly inhibited pro-inflammatory cytokines (NO, TNF-α, IL-6 and IL-1ß) and increased anti-inflammatory cytokines (IL-4) in LPS-stimulated RAW 264.7 cells. Moreover, RIP-A1 could significantly inhibit the mRNA expression of TNF-α, IL-6 and L-1ß. It could also activate IKK, p65 and IκBα (the components of the NF-κB signaling pathway). In conclusion, the above results show the structural characterization and anti-inflammatory potentials of RIP-A1 as an effective natural anti-inflammatory drug.


Asunto(s)
Antiinflamatorios , Isatis , Raíces de Plantas , Polisacáridos , Ratones , Animales , Raíces de Plantas/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Isatis/química , Células RAW 264.7 , FN-kappa B/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Citocinas/metabolismo
7.
J Integr Neurosci ; 23(6): 122, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38940090

RESUMEN

BACKGROUND: Rheum tanguticum root, cataloged as "Daehwang" in the Korean Pharmacopeia, is rich in various anthraquinones known for their anti-inflammatory and antioxidant properties. Formulations containing Daehwang are traditionally employed for treating neurological conditions. This study aimed to substantiate the antiepileptic and neuroprotective efficacy of R. tanguticum root extract (RTE) against trimethyltin (TMT)-induced epileptic seizures and hippocampal neurodegeneration. METHODS: The constituents of RTE were identified by ultra-performance liquid chromatography (UPLC). Experimental animals were grouped into the following five categories: control, TMT, and three TMT+RTE groups with dosages of 10, 30, and 100 mg/kg. Seizure severity was assessed daily for comparison between the groups. Brain tissue samples were examined to determine the extent of neurodegeneration and neuroinflammation using histological and molecular biology techniques. Network pharmacology analysis involved extracting herbal targets for Daehwang and disease targets for epilepsy from multiple databases. A protein-protein interaction network was built using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and pivotal targets were determined by topological analysis. Enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool to elucidate the underlying mechanisms. RESULTS: The RTE formulation was found to contain sennoside A, sennoside B, chrysophanol, emodin, physcion, (+)-catechin, and quercetin-3-O-glucuronoid. RTE effectively inhibited TMT-induced seizures at 10, 30, and 100 mg/kg dosages and attenuated hippocampal neuronal decay and neuroinflammation at 30 and 100 mg/kg dosages. Furthermore, RTE significantly reduced mRNA levels of tumor necrosis factor (TNF-α), glial fibrillary acidic protein (GFAP), and c-fos in hippocampal tissues. Network analysis revealed TNF, Interleukin-1 beta (IL-1ß), Interleukin-6 (IL-6), Protein c-fos (FOS), RAC-alpha serine/threonine-protein kinase (AKT1), and Mammalian target of rapamycin (mTOR) as the core targets. Enrichment analysis demonstrated significant involvement of R. tanguticum components in neurodegeneration (p = 4.35 × 10-5) and TNF signaling pathway (p = 9.94 × 10-5). CONCLUSIONS: The in vivo and in silico analyses performed in this study suggests that RTE can potentially modulate TMT-induced epileptic seizures and neurodegeneration. Therefore, R. tanguticum root is a promising herbal treatment option for antiepileptic and neuroprotective applications.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Epilepsia , Hipocampo , Fármacos Neuroprotectores , Extractos Vegetales , Raíces de Plantas , Rheum , Compuestos de Trimetilestaño , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Rheum/química , Raíces de Plantas/química , Masculino , Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Simulación por Computador , Farmacología en Red , Mapas de Interacción de Proteínas , Ratas
8.
Molecules ; 29(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930835

RESUMEN

Ginseng (Panax ginseng C.A. Mey) is known for its rich saponin compounds and tonic effects. To better utilize the medicinal value of ginseng, this study investigated the extraction process, components, free radical scavenging ability, and immunomodulatory activity of total saponins of ginseng fibrous roots. The response surface methodology was employed to optimize the extraction process of total saponins, and Q-Orbitrap high-resolution liquid chromatography-mass spectrometry (LC-MS) was used to identify the chemical constituents in the total saponins extract of ginseng fibrous roots (GRS). The results showed that the optimal extraction process was achieved with an ethanol concentration of 68%, a material-solvent ratio of 1:25 mL/g, and an extraction time of 20 min, yielding a total saponin content of 6.34% under these conditions. The extract contained four terpenoid compounds and four polyphenolic compounds. GRS exhibited considerable scavenging activity against DPPH and ABTS radicals, with IC50 values of 0.893 and 0.210 mg/mL, respectively. Moreover, GRS restored immune suppression in mice by increasing white blood cell, red blood cell, and neutrophil counts, and improving the lymphocyte. It also promoted immune system recovery, as evidenced by elevated serum levels of IL-2, IFN-γ, TNF-α, and IL-1ß in mice. GRS is a natural compound with promising potential for developing antioxidants and immunomodulatory foods.


Asunto(s)
Depuradores de Radicales Libres , Panax , Extractos Vegetales , Raíces de Plantas , Saponinas , Panax/química , Saponinas/farmacología , Saponinas/química , Saponinas/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Raíces de Plantas/química , Animales , Ratones , Extractos Vegetales/química , Extractos Vegetales/farmacología , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Antioxidantes/farmacología , Antioxidantes/química
9.
J Evid Based Integr Med ; 29: 2515690X241251558, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689490

RESUMEN

Liver cancer is the most common cancer among males in Africa. The disease has a poor prognosis and its treatment is associated with toxicity and resistance. For this reason, numerous herbal combinations are being subjected to anticancer screening to circumvent the shortcomings of the conventional anticancer drugs. In the current study, the in vivo anti-cancer effects of the chloroform root extract of the herb, Clausena excavata Burm were investigated. Liver cancer was induced in mice by a single intraperitoneal injection of diethylnitrosamine (DEN) followed by oral administration of the promoter of carcinogenesis, 2-aminoacetyl fluorine that was mixed with the mice feed. The cytotoxicity of the root extract of C. excavata on liver cancer cells was investigated using liver enzyme, histology, DNA fragmentation and caspases assays. Real time qPCR was conducted to evaluate the effect of the extract on apoptotic genes. The findings revealed that the extract of C. excavata significantly decreased the progression of hepatocarcinogenesis and the toxicity-induced production of the liver enzymes, alanine and aspartate aminotransferases. The histological analyses of the liver tissues revealed evidence of apoptotic cell death. The extract also provoked significant (p < .05) expressions of caspase 9 protein and gene as well as other apoptotic genes (P53, P27, Apaf-1, cytochrome C, bax and bid). Therefore, we postulate that the chloroform root extract of C. excavata induces apoptosis of liver cancer in mice.


Asunto(s)
Cloroformo , Hígado , Carcinoma Hepatocelular/inducido químicamente , Raíces de Plantas/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Clausena , Dietilaminas/toxicidad , Antineoplásicos Fitogénicos/farmacología
10.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792128

RESUMEN

The main varieties of Echinopsis Radix recorded in the Chinese Pharmacopoeia are the roots of Echinops latifolius Tausch or Echinops grijsii Hance. However, the chemical constituents and biological activities of this herb have not been reviewed. In order to clarify the chemical constituents of the main varieties of this herb and improve the quality of Chinese medicinal material resources, this paper systematically reviewed their chemical constituents and related biological activities. Phytochemical investigations reveal eighty-five compounds including fort y-nine thiophenes (1-49), eight flavonoids (50-57), seven caffeic acids and its derivatives (58-64), eight sesquiterpenoids (65-72), and thirteen triterpenoids and other compounds (73-85) were reported from Echinopsis Radix. The review of biological activities suggests that thiophenes are the main secondary metabolites of the medicinal material which exert antitumor, insecticidal and antifungal activities. In addition, caffeic acid and its derivatives and sesquiterpenes are potential active ingredients worthy of further study. This review provides an important scientific basis for the development of active ingredients and resource quality evaluation of Echinopsis Radix.


Asunto(s)
Fitoquímicos , Fitoquímicos/química , Fitoquímicos/farmacología , Echinops (Planta)/química , Humanos , Raíces de Plantas/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Flavonoides/química , Flavonoides/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología
11.
Yakugaku Zasshi ; 144(5): 553-565, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38692932

RESUMEN

A series of antitumor bicyclic hexapeptide RA-VII analogues modified at residue 2, 3, or 6 were prepared by the chemical transformation of the hydroxy, methoxy, or carboxy groups or the aromatic rings of natural peptides RA-II, III, V, VII, and X. Analogues with modified side chains or peptide backbones, which cannot be prepared by the chemical transformation of their natural peptides, and newly isolated peptides from Rubia cordifolia roots were synthesized by using protected cycloisodityrosines prepared by the degradation of bis(thioamide) obtained from RA-VII or the diphenyl ether formation of boronodipeptide under the modified Chan-Lam coupling reaction conditions. Studies of the conformational features of the analogues and the newly isolated peptides and their relationships with cytotoxic activities against the HCT-116, HL-60, KATO-III, KB, L1210, MCF-7, and P-388 cell lines revealed the following: the methoxy group at residue 3 is essential for the potent cytotoxic activity; the methyl group at Ala-2 and Ala-4 but not at D-Ala-1 is required to establish the bioactive conformation; the N-methyl group at Tyr-5 is necessary for the peptides to adopt the active conformation preferentially; and the orientation of Tyr-5 and/or Tyr-6 phenyl rings has a significant effect on the cytotoxic activity.


Asunto(s)
Péptidos Cíclicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Oligopéptidos/química , Oligopéptidos/farmacología , Oligopéptidos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Raíces de Plantas/química , Conformación Proteica , Rubia/química , Relación Estructura-Actividad
12.
Fitoterapia ; 176: 106035, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801890

RESUMEN

Six undescribed bicyclic sesquiterpene coumarins, kuhistanin A, ferukrin isovalerate, 9'ß,12'α - ferukrin isovalerate, (17'E)- 9'α, 12'ß - isomarcandin, (17'Z)- 9'α, 12'ß - isomarcandin and (17'E) - isomarcandin, together with nine known ones were isolated from the roots of Ferula kuhistanica Korovin. The structures of them were elucidated using NMR and HRESIMS data analysis. The relative configurations of the isolates were confirmed by NOE correlations and NMR calculation. The absolute configurations of them were confirmed by X-ray diffraction analysis and ECD calculation. Anti-vitiligo, anti-inflammatory and cytotoxicity of the isolates were tested. Acetyl feselol, feselol, ferusingensine I and farnesiferol A significantly increased the melanin content at the concentration of 10 µM. (17'E) - 9'α, 12'ß - isomarcandin exhibited strong cytotoxicity against HT-29 cell line with IC50 values of 8.94 ± 0.47 µM, and (17'E) - isomarcandin demonstrated strong cytotoxicity against Hela, A549 and HT-29 cell lines with IC50 values of 5.29 ± 0.25, 4.01 ± 0.20, and 4.16 ± 0.21 µM, respectively. This study concluded that, isolated compounds from F. kuhistanica demonstrated strong bioactivity towards anti-vitiligo and cytotoxicity and active compounds are suggested as anti-vitiligo and cytotoxicity agent for future drug development.


Asunto(s)
Antiinflamatorios , Antineoplásicos Fitogénicos , Cumarinas , Ferula , Fitoquímicos , Raíces de Plantas , Sesquiterpenos , Ferula/química , Humanos , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Cumarinas/farmacología , Cumarinas/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Estructura Molecular , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Raíces de Plantas/química , Células HT29 , Animales , Ratones , Células RAW 264.7 , China , Melaninas
13.
Food Chem ; 454: 139794, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797094

RESUMEN

Sweet potatoes are rich in cardioprotective phytochemicals with potential anti-platelet aggregation activity, although this benefit may vary among cultivars/genotypes. The phenolic profile [HPLC-ESI(-)-qTOF-MS2], cheminformatics (ADMET properties, affinity toward platelet proteins) and anti-PA activity of phenolic-rich hydroalcoholic extracts obtained from orange (OSP) and purple (PSP) sweet potato storage roots, was evaluated. The phenolic richness [Hydroxycinnamic acids> flavonoids> benzoic acids] was PSP > OSP. Their main chlorogenic acids could interact with platelet proteins (integrins/adhesins, kinases/metalloenzymes) but their bioavailability could be poor. Just OSP exhibited a dose-dependent anti-platelet aggregation activity [inductor (IC50, mg.ml-1): thrombin receptor activator peptide-6 (0.55) > Adenosine-5'-diphosphate (1.02) > collagen (1.56)] and reduced P-selectin expression (0.75-1.0 mg.ml-1) but not glycoprotein IIb/IIIa secretion. The explored anti-PA activity of OSP/PSP seems to be inversely related to their phenolic richness. The poor first-pass bioavailability of its chlorogenic acids (documented in silico) may represent a further obstacle for their anti-PA in vivo.


Asunto(s)
Ipomoea batatas , Fenoles , Extractos Vegetales , Raíces de Plantas , Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Ipomoea batatas/química , Fenoles/química , Agregación Plaquetaria/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacología , Raíces de Plantas/química , Humanos , Quimioinformática , Animales , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos
14.
Bioorg Chem ; 147: 107420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718461

RESUMEN

Phytochemical analysis of Chloranthus henryi var. hupehensis roots led to the identification of a new eudesmane sesquiterpenoid dimer, 18 new sesquiterpenoids, and three known sesquiterpenoids. Among the isolates, 1 was a rare sesquiterpenoid dimer that is assembled by a unique oxygen bridge (C11-O-C8') of two highly rearranged eudesmane-type sesquiterpenes with the undescribed C16 carbon framework. (+)-2 and (-)-2 were a pair of new skeleton dinorsesquiterpenoids with a remarkable 6/6/5 tricyclic ring framework including one γ-lactone ring and the bicyclo[3.3.1]nonane core. Their structures were elucidated using spectroscopic data, single-crystal X-ray diffraction analysis, and quantum chemical computations. In the LPS-induced BV-2 microglial cell model, 17 suppressed IL-1ß and TNF-α expression with EC50 values of 6.81 and 2.76 µM, respectively, indicating its excellent efficacy in inhibiting inflammatory factors production in a dose dependent manner and without cytotoxicity. In subsequent mechanism studies, compounds 3, 16, and 17 could reduce IL-1ß and TNF-α production by inhibiting IKBα/p65 pathway activation.


Asunto(s)
Relación Dosis-Respuesta a Droga , Raíces de Plantas , Sesquiterpenos , Transducción de Señal , Sesquiterpenos/farmacología , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Raíces de Plantas/química , Transducción de Señal/efectos de los fármacos , Estructura Molecular , Ratones , Animales , Relación Estructura-Actividad , Factor de Transcripción ReIA/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Descubrimiento de Drogas , Inhibidor NF-kappaB alfa/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación
15.
Pak J Biol Sci ; 27(4): 224-233, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38812114

RESUMEN

<b>Background and Objective:</b> <i>Ruellia tuberosa</i> is a common plant in the Mekong Delta and is widely used in many Vietnamese folk remedies. This study was conducted to investigate the potential use of roots, stems, leaves of <i>Ruellia tuberosa</i> as antioxidant, antimicrobial, α-amylase and α-glucosidase inhibitors. <b>Materials and Methods:</b> The extracts were tested for their ability to inhibit the enzymes α-amylase and α-glucosidase associated with diabetes. The antioxidant activities of the extracts were evaluated using 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2-Azino-Bis-(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS), ferric reducing antioxidant power (FRAP), total antioxidant capacity (TAC) and reducing power (RP) assays. The antibacterial activity of extracts from <i>Ruellia tuberosa</i> was evaluated by the agar well diffusion method. <b>Results:</b> The root extract of <i>Ruellia tuberosa</i> has more polyphenols (32.49±0.72 mg GAE/g extract) and flavonoids (15.48±1.32 mg QE/g extract) than the other parts. Simultaneously, the root extract of <i>Ruellia tuberosa</i> has antioxidant activity (IC<sub>50</sub> values range from 117.67±2.82 to 569.20±7.68 µg/mL), inhibiting amylase (IC<sub>50</sub> = 266.72±10.58 µg/mL) and glucosidase (IC<sub>50</sub> = 147.13±3.58 µg/mL) enzymes more effectively than the other parts. Research results also show that extracts from <i>Ruellia tuberosa</i> are capable of inhibiting <i>Staphylococcus aureus</i>, <i>Escherichia coli</i> and <i>Pseudomonas aeruginosa</i> bacteria with minimum inhibitory concentrations ranging from 1280 to 10240 mg/mL. <b>Conclusion:</b> These results highlighted the potential using of <i>Ruellia tuberosa</i> extracts as natural antioxidant, antimicrobial, α-amylase and α-glucosidase inhibitors agents.


Asunto(s)
Antioxidantes , Extractos Vegetales , alfa-Amilasas , Extractos Vegetales/farmacología , Antioxidantes/farmacología , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Antiinfecciosos/farmacología , Raíces de Plantas/química , Antibacterianos/farmacología , Hojas de la Planta/química
16.
J Agric Food Chem ; 72(19): 10842-10852, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708761

RESUMEN

Guvermectin, as a novel nucleoside-like biopesticide, could increase the rice yield excellently, but the potential environmental behaviors remain unclear, which pose potential health risks. Therefore, the uptake and biotransformation of guvermectin in three types of crops (rice, lettuce, and carrot) were first evaluated with a hydroponic system. Guvermectin could be rapidly absorbed and reached equilibrium in roots (12-36 h) and shoots (24-60 h) in three plants, and guvermectin was also vulnerable to dissipation in roots (t1/2 1.02-3.65 h) and shoots (t1/2 9.30-17.91 h). In addition, 8 phase I and 2 phase II metabolites, transformed from guvermectin degradation in vivo and in vitro exposure, were identified, and one was confirmed as psicofuranine, which had antibacterial and antitumor properties; other metabolites were nucleoside-like chemicals. Molecular simulation and quantitative polymerase chain reaction further demonstrated that guvermectin was metabolized by the catabolism pathway of an endogenous nucleotide. Guvermectin had similar metabolites in three plants, but the biotransformation ability had a strong species dependence. In addition, all the metabolites exhibit neglectable toxicities (bioconcentration factor <2000 L/kg b.w., LC50,rat > 5000 mg/kg b.w.) by prediction. The study provided valuable evidence for the application of guvermectin and a better understanding of the biological behavior of nucleoside-like pesticides.


Asunto(s)
Biotransformación , Daucus carota , Ivermectina , Lactuca , Oryza , Raíces de Plantas , Ivermectina/metabolismo , Ivermectina/análogos & derivados , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Lactuca/metabolismo , Lactuca/química , Lactuca/crecimiento & desarrollo , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Oryza/química , Daucus carota/metabolismo , Daucus carota/química , Productos Agrícolas/metabolismo , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo
17.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732003

RESUMEN

Berberis vulgaris L. (Berberidaceae) is a shrub that has been widely used in European folk medicine as an anti-inflammatory and antimicrobial agent. The purpose of our study was to elucidate the mechanisms of the chemopreventive action of the plant's methanolic root extract (BVR) against colon cancer cells. Studies were conducted in human colon adenocarcinoma cell lines (LS180 and HT-29) and control colon epithelial CCD841 CoN cells. According to the MTT assay, after 48 h of cell exposure, the IC50 values were as follows: 4.3, 46.1, and 50.2 µg/mL for the LS180, HT-29, and CCD841 CoN cells, respectively, showing the greater sensitivity of the cancer cells to BVR. The Cell Death Detection ELISAPLUS kit demonstrated that BVR induced programmed cell death only against HT-29 cells. Nuclear double staining revealed the great proapoptotic BVR properties in HT-29 cells and subtle effect in LS180 cells. RT-qPCR with the relative quantification method showed significant changes in the expression of genes related to apoptosis in both the LS180 and HT-29 cells. The genes BCL2L1 (126.86-421.43%), BCL2L2 (240-286.02%), CASP3 (177.19-247.83%), and CASP9 (157.99-243.75%) had a significantly elevated expression, while BCL2 (25-52.03%) had a reduced expression compared to the untreated control. Furthermore, in a panel of antioxidant tests, BVR showed positive effects (63.93 ± 0.01, 122.92 ± 0.01, and 220.29 ± 0.02 mg Trolox equivalents (TE)/g in the DPPH•, ABTS•+, and ORAC assays, respectively). In the lipoxygenase (LOX) inhibition test, BVR revealed 62.60 ± 0.87% of enzyme inhibition. The chemical composition of BVR was determined using a UHPLC-UV-CAD-MS/MS analysis and confirmed the presence of several known alkaloids, including berberine, as well as other alkaloids and two derivatives of hydroxycinnamic acid (ferulic and sinapic acid hexosides). The results are very promising and encourage the use of BVR as a comprehensive chemopreventive agent (anti-inflammatory, antioxidant, and pro-apoptotic) in colorectal cancer, and were widely discussed alongside data from the literature.


Asunto(s)
Adenocarcinoma , Apoptosis , Berberis , Neoplasias del Colon , Extractos Vegetales , Raíces de Plantas , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Apoptosis/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Raíces de Plantas/química , Berberis/química , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Células HT29 , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología
18.
Sci Rep ; 14(1): 10675, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724667

RESUMEN

Trillium govanianum is traditionally used to treat innumerable alignments like sexual disorders, cancer, inflammation etc. Mainly rhizomes of T. govanianum have been explored for phytochemical profiling but comprehensive metabolomics of other parts has not been yet deeply investigated. Thus, current study was aimed for organs-specific (roots, rhizomes, rhizomatous buds, stems, leaves, and fruits) phytochemical profiling of T. govanianum via metabolomics approach. Targeted (steroidal saponins and free sugars) and non-targeted metabolomics were performed by UPLC-PDA/ELSD & UHPLC-Q-TOF-IMS. Among steroidal compounds, 20-hydroxyecdysone, pennogenin-3-O-ß-chacotrioside, dioscin were found predominantly in all samples while diosgenin was identified only in rhizomes. Further, four free sugars viz. 2-deoxyribose (116.24 ± 1.26 mg/g: leaves), fructose (454.76 ± 12.14 mg/g: rhizomes), glucose (243.21 ± 7.53 mg/g: fruits), and galactose (69.06 ± 2.14 mg/g: fruits) were found significant in respective parts of T. govanianum. Elemental analysis of targeted samples was determined by atomic absorption spectrophotometer. Heavy metals (Cd, Hg, Pd, As) were absent while micro- (Mn, Na, Zn, Cu) and macro- (Ca, Fe, Mg, K) elements were found in all samples. Furthermore, UHPLC-Q-TOF-IMS had identified 103 metabolites based on their mass fragmentation patterns and 839 were tentatively predicted using METLIN database. The multivariate statistical analysis showed organs specific clustering and variance of metabolites. Apart from this, extracts were evaluated for in vitro anticholinesterase activity, and found potentials inhibitors with IC50 values 2.02 ± 0.15 to 27.65 ± 0.89 mg/mL and 3.58 ± 0.12 to 16.81 ± 2.48 mg/mL of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzyme, respectively. Thus, comprehensive metabolomics and anti-cholinesterase activity of different parts of T. govanianum would lay the foundation for improving medicinal importance and health benefits of T. govanianum.


Asunto(s)
Inhibidores de la Colinesterasa , Metabolómica , Trillium , Metabolómica/métodos , Inhibidores de la Colinesterasa/farmacología , Trillium/química , Trillium/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/metabolismo , Fitoquímicos/análisis , Cromatografía Líquida de Alta Presión , Rizoma/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo
19.
Phytochemistry ; 223: 114122, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710376

RESUMEN

Quantitative analysis of Rumex nepalensis var. remotiflorus revealed that its roots contain rich anthraquinones, which has emodin, chrysophanol, and physcion contents of up to 0.30, 0.67, and 0.98 mg/g, respectively. Further phytochemical study led to the isolation and purification of seven undescribed phenolic constituents, including one flavan derivative with a 13-membered ring, polygorumin A (1), two dianthrone glucosides, polygonumnolides F and G (2, 3), two diphenylmethanones, rumepalens A and B (4, 5), and a pair of epimeric oxanthrone C-glucosides, rumejaposides K and L (6a, 6b) from the roots of R. nepalensis var. remotiflorus. Furthermore, 1 undescribed natural product, 1-ß-D-glucoside-6'-[(2E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate]-3-hydroxy-5-methylphenyl (19), and 21 known phenolic compounds were obtained from the aforementioned plant for the first time. Their structures were elucidated through extensive spectroscopic data analysis. Notably, compounds 1, 4-5, and 7-9 exhibited inhibitory activity on α-glucosidase with IC50 values ranging from 1.61 ± 0.17 to 32.41 ± 0.87 µM. In addition, the isolated dianthrone, chrysophanol bianthrone (14), showed obvious cytotoxicity against four human cancer cell lines (HL-60, SMMC-7721, A-549, and MDA-MB-231) with IC50 values ranging from 3.81 ± 0.17 to 35.15 ± 2.24 µM. In silico target prediction and molecular docking studies demonstrated that the mechanism of the anticancer activity of 14 may be related to the interaction with protein kinase CK2.


Asunto(s)
Antineoplásicos Fitogénicos , Inhibidores de Glicósido Hidrolasas , Fenoles , Rumex , alfa-Glucosidasas , Humanos , Fenoles/farmacología , Fenoles/química , Fenoles/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Rumex/química , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Línea Celular Tumoral , Raíces de Plantas/química , Relación Dosis-Respuesta a Droga , Proliferación Celular/efectos de los fármacos
20.
Steroids ; 207: 109439, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740121

RESUMEN

The bushy plant Withania frutescens (L.) Pauquy is well distributed in the West-Mediterranean area, notably in the south of Spain, Algeria and Morocco where is it is used traditionally for the treatment of various human diseases, including diabetes. Unlike the two major species W. somnifera and W. coagulans extensively studied, the genomically close species W. frutescens has been much less investigated. Nevertheless, this shrub species displays a comparable phytochemical profile and marked antioxidant and anti-inflammatory properties, at the origin of reported pharmacological effects and its traditional uses. Here we have analyzed the diversity of biological effects reported with leaves and root extracts of W. frutescens. Hydroalcoholic extracts prepared from the aerial parts of the plant have revealed antihyperglycemic and cell-protective activities along with antimicrobial and anticorrosive effects. The extracts contained diverse polyphenolic compounds and a few alkaloids (calystegines) but most of the observed effects have been attributed to the presence of withanolides which are modified C28 ergostane-type steroids. Our analysis focused in part on specific withanolides found in W. frutescens, in particular an unusual 3-O-sulfated withanolide considered as a potential pro-drug of the major active compound withaferin A (WA) and a lead compound for the development of a potential drug candidate. The mechanism of action of this sulfated WA analogue is discussed. Altogether, our unprecedented extensive analysis of W. frutescens highlighted the pharmacological potential of this atypical medicinal plant. By analogy with the major cultivated Withania species, the market potential of little-known plant is underlined.


Asunto(s)
Extractos Vegetales , Withania , Witanólidos , Withania/química , Witanólidos/farmacología , Witanólidos/química , Witanólidos/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Animales , Hojas de la Planta/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Raíces de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA