Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.716
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Drugs Dermatol ; 23(7): 504-509, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954621

RESUMEN

Photoaging is a complex, ongoing process that clinically manifests as cutaneous rhytides, atrophy, laxity, dyspigmentation, telangiectasias, roughness, and mottled appearance of the skin. There is an abundance of research establishing the mechanism of ultraviolet (UV) - induced photodamage as it is a significant source of photoaging and skin cancers. While UV damage is known to induce photoaging, it is important to understand how other forms of light radiation also contribute to this process. UV only constitutes 5 to 10% of solar radiation that reaches the earth's surface. The remaining nearly 90% is evenly split between infrared and visible light radiation. Early research shows that varied skin types may elicit different photobiologic responses to light. This article presents the mechanisms and biomarkers of photodamage induced by light from across the spectrum, including UV, visible light, and infrared to better prevent and reverse the damage of photoaging in all skin types.J Drugs Dermatol. 2024;23(7):504-509.  doi:10.36849/JDD.7438.


Asunto(s)
Envejecimiento de la Piel , Piel , Rayos Ultravioleta , Envejecimiento de la Piel/efectos de la radiación , Humanos , Rayos Ultravioleta/efectos adversos , Piel/efectos de la radiación , Piel/patología , Rayos Infrarrojos/efectos adversos , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/etiología
2.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(6): 857-861, 2024 Jun 06.
Artículo en Chino | MEDLINE | ID: mdl-38955733

RESUMEN

Objective: To evaluate the disinfection effect of high-energy pulse ultraviolet disinfection equipment in medical institution settings. Methods: The disinfection effect was evaluated through field tests and laboratory tests. Among them, 135 high-frequency contact points were selected from nine departments in the field test. Samples were collected before and after disinfection, and the disinfection effects of 75% alcohol wipes wiping disinfection, high-energy pulse ultraviolet disinfection robot disinfection and high-energy pulse ultraviolet handheld disinfection instrument were compared. In the laboratory test, 30 infected areas of the simulated test table were exposed to vertical ultraviolet irradiation and the bacterial-killing rate before and after disinfection was calculated. Results: In the field test, the bacteria-killing rates of 75% alcohol wipes, high-energy pulse ultraviolet disinfection robot and high-energy pulse ultraviolet handheld disinfection instrument were 94.99%, 91.53% and 95.94%, respectively, and the difference was statistically significant. The disinfection effect of the high-energy pulse ultraviolet handheld disinfection instrument was better than that of the high-energy pulse ultraviolet disinfection robot (P values <0.05). In the laboratory test, the killing log value of Staphylococcus aureus and Escherichia coli on the carrier were both greater than 3.00. In the simulated field test, the killing log value of Staphylococcus aureus on the surface samples were 4.99. Conclusion: Both the high-energy pulse ultraviolet handheld disinfection instrument and the high-energy pulse ultraviolet disinfection robot have good disinfection effects, which are similar to the disinfection effects of conventional 75% alcohol wipes.


Asunto(s)
Desinfección , Rayos Ultravioleta , Desinfección/métodos , Infección Hospitalaria/prevención & control
4.
Nat Commun ; 15(1): 5508, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951161

RESUMEN

Keratoconus, a disorder characterized by corneal thinning and weakening, results in vision loss. Corneal crosslinking (CXL) can halt the progression of keratoconus. The development of accelerated corneal crosslinking (A-CXL) protocols to shorten the treatment time has been hampered by the rapid depletion of stromal oxygen when higher UVA intensities are used, resulting in a reduced cross-linking effect. It is therefore imperative to develop better methods to increase the oxygen concentration within the corneal stroma during the A-CXL process. Photocatalytic oxygen-generating nanomaterials are promising candidates to solve the hypoxia problem during A-CXL. Biocompatible graphitic carbon nitride (g-C3N4) quantum dots (QDs)-based oxygen self-sufficient platforms including g-C3N4 QDs and riboflavin/g-C3N4 QDs composites (RF@g-C3N4 QDs) have been developed in this study. Both display excellent photocatalytic oxygen generation ability, high reactive oxygen species (ROS) yield, and excellent biosafety. More importantly, the A-CXL effect of the g-C3N4 QDs or RF@g-C3N4 QDs composite on male New Zealand white rabbits is better than that of the riboflavin 5'-phosphate sodium (RF) A-CXL protocol under the same conditions, indicating excellent strengthening of the cornea after A-CXL treatments. These lead us to suggest the potential application of g-C3N4 QDs in A-CXL for corneal ectasias and other corneal diseases.


Asunto(s)
Reactivos de Enlaces Cruzados , Grafito , Oxígeno , Puntos Cuánticos , Riboflavina , Puntos Cuánticos/química , Animales , Grafito/química , Oxígeno/metabolismo , Riboflavina/farmacología , Conejos , Masculino , Reactivos de Enlaces Cruzados/química , Compuestos de Nitrógeno/química , Especies Reactivas de Oxígeno/metabolismo , Queratocono/tratamiento farmacológico , Queratocono/metabolismo , Rayos Ultravioleta , Córnea/efectos de los fármacos , Córnea/metabolismo , Córnea/patología , Humanos , Fármacos Fotosensibilizantes/farmacología , Sustancia Propia/metabolismo , Sustancia Propia/efectos de los fármacos
5.
PLoS One ; 19(7): e0299421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954713

RESUMEN

Mold infestations in buildings pose significant challenges to human health, affecting both private residences and hospitals. While molds commonly trigger asthma and allergies in the immunocompetent, they can cause life-threatening diseases in the immunocompromised. Currently, there is an unmet need for new strategies to reduce or prevent mold infestations. Far-UVC technology can inactivate microorganisms while remaining safe for humans. This study investigates the inhibitory efficacy of far-UVC light at 222 nm on the growth of common mold-producing fungi, specifically Penicillium candidum, when delivered in low-dose on-off duty cycles, a configuration consistent with its use in real-world settings. The inhibitory effect of the low-dose duty cycles was assessed on growth induced by i) an adjacent spore-producing P. candidum donor and ii) P. candidum spores seeded directly onto agar plates. In both setups, the far-UVC light significantly inhibited both vertical and horizontal growth of P. candidum, even when the UV doses were below the Threshold Value Limit of 23 mJ/cm2. These results suggest that far-UVC light holds the potential to improve indoor air quality by reducing or preventing mold growth, also when people are present.


Asunto(s)
Penicillium , Rayos Ultravioleta , Penicillium/crecimiento & desarrollo , Penicillium/efectos de la radiación , Esporas Fúngicas/efectos de la radiación , Esporas Fúngicas/crecimiento & desarrollo , Hongos/efectos de la radiación , Hongos/crecimiento & desarrollo , Humanos , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Valores Limites del Umbral
6.
Sci Rep ; 14(1): 15395, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965255

RESUMEN

The APOBEC/AID family is known for its mutator activity, and recent evidence also supports the potential impact of ADARs. Furthermore, the mutator impacts of APOBEC/ADAR mutations have not yet been investigated. Assessment of pancancer TCGA exomes identified enriched somatic variants among exomes with nonsynonymous APOBEC1, APOBEC3B, APOBEC3C, ADAR, and ADARB1 mutations, compared to exomes with synonymous ones. Principal component (PC) analysis reduced the number of potential players to eight in cancer exomes/genomes, and to five in cancer types. Multivariate regression analysis was used to assess the impact of the PCs on each COSMIC mutational signature among pancancer exomes/genomes and particular cancers, identifying several novel links, including SBS17b, SBS18, and ID7 mainly determined by APOBEC1 mRNA levels; SBS40, ID1, and ID2 by age; SBS3 and SBS16 by APOBEC3A/APOBEC3B mRNA levels; ID5 and DBS9 by DNA repair/replication (DRR) defects; and SBS7a-d, SBS38, ID4, ID8, ID13, and DBS1 by ultraviolet (UV) radiation/ADARB1 mRNA levels. APOBEC/ADAR mutations appeared to potentiate the impact of DRR defects on several mutational signatures, and some factors seemed to inversely affect certain signatures. These findings potentially implicate certain APOBEC/ADAR mutations/mRNA levels in distinct mutational signatures, particularly APOBEC1 mRNA levels in aging-related signatures and ADARB1 mRNA levels in UV radiation-related signatures.


Asunto(s)
Adenosina Desaminasa , Envejecimiento , Mutación , ARN Mensajero , Proteínas de Unión al ARN , Rayos Ultravioleta , Humanos , Rayos Ultravioleta/efectos adversos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Envejecimiento/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Desaminasas APOBEC-1/genética , Desaminasas APOBEC-1/metabolismo , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Neoplasias/genética , Exoma
7.
Skin Res Technol ; 30(7): e13832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38937899

RESUMEN

OBJECTIVE: Patients with myotonic muscular dystrophy (MMD) were observed to have numerous basal cell carcinoma (BCC) and abnormal dysplastic nevi (DN) on non-sun exposed skin. Simultaneously a large study published in the Journal of American Medical Association (JAMA) illustrated that patients with MMD have "overall" an increased risk for cancer development. Based on these findings, this author in 2010 postulated that dysregulation of RNA binding proteins (RBP), responsible for clinical manifestations of MMD, is also responsible for the development of BCC and melanoma. METHODS: To report new research elucidating the etiology of melanoma, BCC, MMD-induced cancers, and potentially other environmentally induced malignancies. RESULTS: Dysregulation of RBP induces aberrant mRNA splicing; recent data indicates that abnormal mRNA splicing not just plays a key role in the pathogenesis of melanoma but is a hallmark of essentially all human malignancies. CONCLUSION: The author's hypothesis is that ultraviolet (UV) radiation induces DNA damage in intronic regions of a variety of genes. Furthermore, these UV-induced abnormal DNA dimers, repeats and mutations interfere with normal mRNA splicing thus producing abnormal proteins. These abnormal proteins in turn activate oncogenic pathways such as hedgehog, MAP kinase, and WNT.


Asunto(s)
Carcinoma Basocelular , Melanoma , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/genética , Melanoma/genética , Carcinoma Basocelular/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas , Distrofia Miotónica/genética , Distrofia Miotónica/fisiopatología , Rayos Ultravioleta/efectos adversos
8.
Mol Biol (Mosk) ; 58(1): 3-21, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38943577

RESUMEN

Photochemical reactions in cell DNA are induced in various organisms by solar UV radiation and may lead to a series of biological responses to DNA damage, including apoptosis, mutagenesis, and carcinogenesis. The chemical nature and the amount of DNA lesions depend on the wavelength of UV radiation. UV type B (UVB, 290-320 nm) causes two main lesions, cyclobutane pyrimidine dimers (CPDs) and, with a lower yield, pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Their formation is a result of direct UVB photon absorption by DNA bases. UV type A (UVA, 320-400 nm) induces only cyclobutane dimers, which most likely arise via triplet-triplet energy transfer (TTET) from cell chromophores to DNA thymine bases. UVA is much more effective than UVB in inducing sensitized oxidative DNA lesions, such as single-strand breaks and oxidized bases. Of the latter, 8-oxo-dihydroguanine (8-oxodG) is the most frequent, being produced in several oxidation processes. Many recent studies reported novel, more detailed information about the molecular mechanisms of the photochemical reactions that underlie the formation of various DNA lesions. The information is mostly summarized and analyzed in the review. Special attention is paid to the oxidation reactions that are initiated by reactive oxygen species (ROS) and radicals generated by potential endogenous photosensitizers, such as pterins, riboflavin, protoporphyrin IX, NADH, and melanin. The review discusses the role that specific DNA photoproducts play in genotoxic processes induced in living systems by UV radiation of various wavelengths, including human skin carcinogenesis.


Asunto(s)
Daño del ADN , Dímeros de Pirimidina , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Humanos , Daño del ADN/efectos de la radiación , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , ADN/efectos de la radiación , ADN/metabolismo , ADN/genética , Animales , Apoptosis/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo
9.
Food Res Int ; 190: 114550, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945594

RESUMEN

Fungal contaminations of cereal grains are a profound food-safety and food-security concern worldwide, threatening consumers' and animals' health and causing enormous economic burdens. Because far-ultraviolet C (far-UVC) light at 222 nm has recently been shown to be human-safe, we investigated its efficacy as an alternative to thermal, chemical, and conventional 254 nm UVC anti-fungal treatments. Our microplasma-based far-UVC lamp system achieved a 5.21-log reduction in the conidia of Aspergillus flavus suspended in buffer with a dose of 1032.0 mJ/cm2, and a 5.11-log reduction of Fusarium graminearum conidia in suspension with a dose of 619.2 mJ/cm2. We further observed that far-UVC treatments could induce fungal-cell apoptosis, alter mitochondrial membrane potential, lead to the accumulation of intracellular reactive oxygen species, cause lipid peroxidation, and result in cell-membrane damage. The lamp system also exhibited a potent ability to inhibit the mycelial growth of both A. flavus and F. graminearum. On potato dextrose agar plates, such growth was completely inhibited after doses of 576.0 mJ/cm2 and 460.8 mJ/cm2, respectively. To test our approach's efficacy at decontaminating actual cereal grains, we designed a cubical 3D treatment chamber fitted with six lamps. At a dose of 780.0 mJ/cm2 on each side, the chamber achieved a 1.88-log reduction of A. flavus on dried yellow corn kernels and a 1.11-log reduction of F. graminearum on wheat grains, without significant moisture loss to either cereal type (p > 0.05). The treatment did not cause significant changes in the propensity of wheat grains to germinate in the week following treatment (p > 0.05). However, it increased the germination propensity of corn kernels by more than 71% in the same timeframe (p < 0.05). Collectively, our results demonstrate that 222 nm far-UVC radiation can effectively inactivate fungal growth in liquid, on solid surfaces, and on cereal grains. If scalable, its emergence as a safe, cost-effective alternative tool for reducing fungi-related post-harvest cereal losses could have important positive implications for the fight against world hunger and food insecurity.


Asunto(s)
Aspergillus flavus , Grano Comestible , Fusarium , Rayos Ultravioleta , Fusarium/efectos de la radiación , Fusarium/crecimiento & desarrollo , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/efectos de la radiación , Grano Comestible/microbiología , Esporas Fúngicas/efectos de la radiación , Esporas Fúngicas/crecimiento & desarrollo , Contaminación de Alimentos/prevención & control , Irradiación de Alimentos/métodos , Microbiología de Alimentos , Especies Reactivas de Oxígeno/metabolismo
10.
J Agric Food Chem ; 72(25): 14294-14301, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38874060

RESUMEN

Enzymatic browning in fruits and vegetables, driven by polyphenol oxidase (PPO) activity, results in color changes and loss of bioactive compounds. Emerging technologies are being explored to prevent this browning and ensure microbial safety in foods. This study assessed the effectiveness of pulsed light (PL) and ultraviolet light-emitting diodes (UV-LED) in inhibiting PPO and inactivating Escherichia coli ATTC 25922 in fresh apple juice (Malus domestica var. Red Delicious). Both treatments' effects on juice quality, including bioactive compounds, color changes, and microbial inactivation, were examined. At similar doses, PL-treated samples (126 J/cm2) showed higher 2,2- diphenyl-1-picrylhydrazyl inhibition (9.5%) compared to UV-LED-treated samples (132 J/cm2), which showed 1.06%. For microbial inactivation, UV-LED achieved greater E. coli reduction (>3 log cycles) and less ascorbic acid degradation (9.4% ± 0.05) than PL. However, increasing PL doses to 176 J/cm2 resulted in more than 5 log cycles reduction of E. coli, showing a synergistic effect with the final temperature reached (55 °C). The Weibull model analyzed survival curves to evaluate inactivation kinetics. UV-LED was superior in preserving thermosensitive compounds, while PL excelled in deactivating more PPO and achieving maximal microbial inactivation more quickly.


Asunto(s)
Catecol Oxidasa , Escherichia coli , Jugos de Frutas y Vegetales , Malus , Viabilidad Microbiana , Rayos Ultravioleta , Catecol Oxidasa/metabolismo , Malus/química , Escherichia coli/efectos de la radiación , Jugos de Frutas y Vegetales/análisis , Jugos de Frutas y Vegetales/microbiología , Viabilidad Microbiana/efectos de la radiación , Irradiación de Alimentos/métodos
11.
Environ Toxicol Chem ; 43(7): 1615-1626, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38837484

RESUMEN

Amphibians are the most threatened vertebrate class globally. Multiple factors have been implicated in their global decline, and it has been hypothesized that interactions between stressors may be a major cause. Increased ultraviolet (UV) radiation, as a result of ozone depletion, has been identified as one such stressor. Exposure to UV radiation has been shown to have detrimental effects on amphibians and can exacerbate the effects of other stressors, such as chemical pollutants. Chemical pollution has likewise been recognized as a major factor contributing to amphibian declines, particularly, endocrine-disrupting chemicals. In this regard, 17ß-trenbolone is a potent anabolic steroid used in the agricultural industry to increase muscle mass in cattle and has been repeatedly detected in the environment where amphibians live and breed. At high concentrations, 17ß-trenbolone has been shown to impact amphibian survival and gonadal development. In the present study, we investigated the effects of environmentally realistic UV radiation and 17ß-trenbolone exposure, both in isolation and in combination, on the morphology and behavior of tadpoles (Limnodynastes tasmaniensis). We found that neither stressor in isolation affected tadpoles, nor did we find any interactive effects. The results from our 17ß-trenbolone treatment are consistent with recent research suggesting that, at environmentally realistic concentrations, tadpoles may be less vulnerable to this pollutant compared to other vertebrate classes. The absence of UV radiation-induced effects found in the present study could be due to species-specific variation in susceptibility, as well as the dosage utilized. We suggest that future research should incorporate long-term studies with multiple stressors to accurately identify the threats to, and subsequent consequences for, amphibians under natural conditions. Environ Toxicol Chem 2024;43:1615-1626. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Larva , Rayos Ultravioleta , Contaminantes Químicos del Agua , Animales , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Acetato de Trembolona/toxicidad , Anuros , Conducta Animal/efectos de los fármacos , Conducta Animal/efectos de la radiación
12.
ACS Appl Mater Interfaces ; 16(25): 32649-32661, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38865694

RESUMEN

Ultraviolet (UV) filters are the core ingredients in sunscreens and protect against UV-induced skin damage. Nevertheless, their safety and effectiveness have been questioned in terms of their poor photostability, skin penetration, and UV-induced generation of deleterious reactive oxygen species (ROS). Herein, an organic UV filter self-framed microparticle sunblock was exploited, in which quercetin (QC) and hexachlorocyclotriphosphazene (HCCP) were self-constructed into microparticles (HCCP-QC MPs) by facile precipitation polymerization without any carriers. HCCP-QC MPs could not only significantly extend the UV shielding range to the whole UV region but also remarkably reduce UV-induced ROS while avoiding direct skin contact and the resulting epidermal penetration of small-molecule QC. Meanwhile, HCCP-QC MPs possess a high QC-loading ability (697 mg g-1) by QC itself as the microparticles' building blocks. In addition, there is no leakage issue with small molecules due to its covalently cross-linked structure. In vitro and vivo experiments also demonstrated that the HCCP-QC MPs have excellent UV protection properties and effective ROS scavenging ability without toxicity. In summary, effective UV-shielding and ROS scavenging ability coupled with excellent biocompatibility and nonpenetration of small molecules make it a broad prospect in skin protection.


Asunto(s)
Depuradores de Radicales Libres , Compuestos Organofosforados , Polímeros , Especies Reactivas de Oxígeno , Piel , Protectores Solares , Rayos Ultravioleta , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Polímeros/química , Polímeros/farmacología , Piel/efectos de los fármacos , Piel/efectos de la radiación , Piel/metabolismo , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Protectores Solares/química , Protectores Solares/farmacología , Humanos , Ratones , Quercetina/química , Quercetina/farmacología
13.
Turk J Ophthalmol ; 54(3): 120-126, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38853628

RESUMEN

Objectives: To investigate the clinical efficacy and safety of the modified Cretan protocol in patients with post-laser in situ keratomileusis ectasia (PLE). Materials and Methods: In this retrospective study, 26 eyes of 16 patients with PLE were treated with the modified Cretan protocol (combined transepithelial phototherapeutic keratectomy and accelerated corneal collagen cross-linking). Visual, refractive, tomographic, and aberrometric outcomes and point spread function (PSF) were recorded preoperatively and at 6, 12, and 24 months after treatment. Results: Both uncorrected and best corrected visual acuity were stable at 24 months postoperatively compared to baseline (from 0.89±0.36 to 0.79±0.33 logarithm of the minimum angle of resolution [LogMAR] and 0.31±0.25 to 0.24±0.19 LogMAR, respectively, p>0.05 for all values). The mean K1, K2, Kmean, thinnest corneal thickness, and spherical aberration at baseline were 45.76±5.75 diopters (D), 48.62±6.17 D, 47.13±5.89 D, 433.16±56.86 µm, and -0.21±0.63 µm respectively. These values were reduced to 42.86±6.34 D, 45.92±6.74 D, 44.21±6.4 D, 391.07±54.76 µm, and -0.51±0.58 µm at 24 months postoperatively (p<0.001, p=0.002, p<0.001, p=0.001, and p=0.02, respectively). The mean spherical equivalent, manifest cylinder, Kmax, central corneal thickness, other corneal aberrations (root mean square, trefoil, coma, quatrefoil, astigmatism), and PSF remained stable (p>0.05 for all variables), while anterior and posterior elevation were significantly improved at 24 months postoperatively (p<0.001 and p=0.02, respectively). No surgical complications occurred during the 24-month follow-up. Conclusion: The modified Cretan protocol is a safe and effective treatment option for PLE patients that provides visual stabilization and significant improvement in topographic parameters during the 24-month follow-up. Further studies are needed to support our results.


Asunto(s)
Topografía de la Córnea , Reactivos de Enlaces Cruzados , Queratomileusis por Láser In Situ , Fármacos Fotosensibilizantes , Refracción Ocular , Agudeza Visual , Humanos , Estudios Retrospectivos , Queratomileusis por Láser In Situ/métodos , Queratomileusis por Láser In Situ/efectos adversos , Masculino , Femenino , Adulto , Dilatación Patológica/etiología , Refracción Ocular/fisiología , Reactivos de Enlaces Cruzados/uso terapéutico , Resultado del Tratamiento , Fármacos Fotosensibilizantes/uso terapéutico , Adulto Joven , Colágeno , Láseres de Excímeros/uso terapéutico , Estudios de Seguimiento , Riboflavina/uso terapéutico , Fotoquimioterapia/métodos , Enfermedades de la Córnea/cirugía , Enfermedades de la Córnea/etiología , Enfermedades de la Córnea/diagnóstico , Enfermedades de la Córnea/fisiopatología , Córnea/patología , Córnea/cirugía , Complicaciones Posoperatorias/diagnóstico , Miopía/cirugía , Miopía/fisiopatología , Rayos Ultravioleta
14.
Environ Geochem Health ; 46(8): 261, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916678

RESUMEN

A simple sol-gel combustion process was employed for the creation of MFe2O4 (M=Ni, Co) nanoparticles. The synthesized nanoparticles, acting as both photocatalysts and gas sensors, were analyzed using various analytical techniques. MFe2O4 (M=Ni, Co) material improved the degradation of methylene blue (MB) under UV-light irradiation, serving as an enhanced electron transport medium. UV-vis studies demonstrated that NiFe2O4 achieved a 60% degradation, while CoFe2O4 nanostructure exhibited a 76% degradation efficacy in the MB dye removal process. Furthermore, MFe2O4 (M=Ni, Co) demonstrated chemosensitive-type sensor capabilities at ambient temperature. The sensor response and recovery times for CoFe2O4 at a concentration of 100 ppm were 15 and 20, respectively. Overall, the synthesis of MFe2O4 (M=Ni, Co) holds the potential to significantly improve the photocatalytic and gas sensing properties, particularly enhancing the performance of CoFe2O4. The observed enhancements make honey MFe2O4 (M=Ni, Co) a preferable choice for environmental remediation applications.


Asunto(s)
Cobalto , Compuestos Férricos , Azul de Metileno , Níquel , Cobalto/química , Cobalto/análisis , Níquel/química , Níquel/análisis , Compuestos Férricos/química , Azul de Metileno/química , Nanopartículas del Metal/química , Gases , Catálisis , Rayos Ultravioleta , Restauración y Remediación Ambiental/métodos , Nanopartículas/química , Óxido de Aluminio , Óxido de Magnesio
15.
Elife ; 132024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860651

RESUMEN

The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.


Asunto(s)
Proteína ADAM17 , Células de Langerhans , Lupus Eritematoso Sistémico , Piel , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Animales , Humanos , Células de Langerhans/metabolismo , Ratones , Piel/metabolismo , Piel/patología , Piel/efectos de la radiación , Lupus Eritematoso Sistémico/metabolismo , Rayos Ultravioleta/efectos adversos , Femenino , Modelos Animales de Enfermedad , Trastornos por Fotosensibilidad/metabolismo , Interferones/metabolismo , Ratones Endogámicos MRL lpr
16.
Dermatologie (Heidelb) ; 75(7): 528-538, 2024 Jul.
Artículo en Alemán | MEDLINE | ID: mdl-38916603

RESUMEN

Photosensitivity represents an increased inflammatory reaction to sunlight, which can be observed particularly in the autoimmune disease lupus erythematosus. Cutaneous lupus erythematosus (CLE) can be provoked by ultraviolet (UV) radiation and can cause both acute, nonscarring and chronic, scarring skin changes. In systemic lupus erythematosus, on the other hand, provocation by UV radiation can lead to flare or progression of systemic involvement. The etiology of lupus erythematosus is multifactorial and includes genetic, epigenetic and immunologic mechanisms. In this review, we address the effect of UV radiation on healthy skin and photosensitive skin using the example of lupus erythematosus. We describe possible mechanisms of UV-triggered immune responses that could offer therapeutic approaches. Currently, photosensitivity can only be prevented by avoiding UV exposure itself. Therefore, it is important to better understand the underlying mechanisms in order to develop strategies to counteract the deleterious effects of photosensitivity.


Asunto(s)
Lupus Eritematoso Cutáneo , Rayos Ultravioleta , Humanos , Rayos Ultravioleta/efectos adversos , Lupus Eritematoso Cutáneo/etiología , Lupus Eritematoso Cutáneo/inmunología , Lupus Eritematoso Cutáneo/patología , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/inmunología , Trastornos por Fotosensibilidad/etiología , Trastornos por Fotosensibilidad/inmunología , Piel/efectos de la radiación , Piel/patología , Piel/inmunología
17.
Int J Food Microbiol ; 421: 110800, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38878705

RESUMEN

To our knowledge, this study is the first to elucidate the bactericidal efficacy of unpeeled carrots (hereafter referred to as carrots) pretreated with Ultra Violet-C (UV-C) against subsequent contamination with Listeria monocytogenes. Carrots pretreated with UV-C (240 mJ/cm2) exhibited a significant antilisterial effect within 2 h. In fact, the population of UV-C-pretreated carrots decreased from 7.94 log CFU/cm2 to levels below the limit of detection (LOD; <1.65 log CFU/cm2) within 24 h. For carrots that were not pretreated with UV-C, 3-4 log reductions were found after 24 h. Carrots pretreated with UV-C exhibited antimicrobial activity against another gram-positive pathogen, Staphylococcus aureus, but not against the gram-negative pathogens, E. coli O157:H7 and Salmonella enterica. Pretreatment with UV-C created a lasting antimicrobial effect as introducing L. monocytogenes on carrots, 72 h post-UV-C treatment, still maintained the antilisterial effect. Notably, all UV-C doses in the range of 48-240 mJ/cm2 induced a lasting antilisterial effect. The bactericidal effects against L. monocytogenes were confirmed in three varieties of washed and unwashed carrots (Danvers, Nantes, and Chantenay). Fluorescence microscopy confirmed the bactericidal effect of UV-C-pretreated carrots on the survival of L. monocytogenes. Conclusively, pretreating carrots with UV-C can reduce the population of L. monocytogenes to levels below the LOD and may further prevent pathogen growth during cold storage. Additional studies are necessary to discern the mechanism underlying the bactericidal efficacy of UV-C-pretreated carrots.


Asunto(s)
Daucus carota , Listeria monocytogenes , Rayos Ultravioleta , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/efectos de la radiación , Daucus carota/microbiología , Microbiología de Alimentos , Staphylococcus aureus/efectos de los fármacos , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Recuento de Colonia Microbiana , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/efectos de la radiación , Escherichia coli O157/crecimiento & desarrollo , Salmonella enterica/efectos de los fármacos , Salmonella enterica/efectos de la radiación , Salmonella enterica/crecimiento & desarrollo
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124556, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850820

RESUMEN

For the sustainable advancement of industrial expansion that is environmentally conscious, harmful dyes must be removed from wastewater. Untreated effluents containing colors have the potential to harm the ecosystem and pose major health risks to people, animals, and aquatic life. Here, we have fabricated Ni or Fe modified with BaTiO3 materials and effectively utilized them for Reactive Red 120 (RR 120) dye degradation under UV-A light. The synthesized materials were characterized, and their structural, and photo-physical properties were reported. Phase segregation was not present in the XRD pattern, as evidenced by the absence of secondary phase peaks linked to iron, nickel, or oxides. Low metal ion concentrations may be the cause of this, and the presence of those elements was confirmed by XPS measurements. The Raman spectra of the BaTiO3/Ni and BaTiO3/Fe samples show a widened peak at 500 cm-1, which suggests that Ni or Fe are efficiently loaded onto the BaTiO3. RR 120 dye photodegradation under UV light conditions was effectively catalyzed by BaTiO3/Fe, as evidenced by its superior performance in the UV irradiation technique over both BaTiO3 and BaTiO3/Ni. Compared to bare BaTiO3, both metal-modified materials efficiently degraded the RR 120 dye. Acidic pH facilitated the degradation process, which makes sense given that the heterogeneous photo-Fenton reaction was the mechanism of degradation along with BaTiO3 sensitization. High-acidity sewage can be dangerous and carcinogenic, and conventional biological treatment methods are not appropriate for managing it. In the current investigation, it may be used to treat color effluents with extremely low pH levels. Additionally, the ability of the produced nanocomposites to inhibit the growth of twenty pathogens was examined, along with two fungi, fifteen Gram-negative Bacilli (GNB), one Gram-positive Bacilli (GPB), and two Gram-positive Cocci (GBC).


Asunto(s)
Compuestos de Bario , Hierro , Níquel , Fotólisis , Titanio , Rayos Ultravioleta , Titanio/química , Titanio/farmacología , Hierro/química , Níquel/química , Compuestos de Bario/química , Rodaminas/química , Colorantes/química , Espectrometría Raman , Contaminantes Químicos del Agua/química , Triazinas
19.
Int J Biol Macromol ; 273(Pt 2): 133226, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38889827

RESUMEN

Multifunctional transparent woods have recently attracted a great interest as efficient products for many applications, such as smart window and smart packaging. Herein, a transparent wood with several desirable properties, including flame-retardant activity, ultraviolet shielding, superhydrophobicity, good roughness, durability and photostability was developed. The current photoluminescent wood showed a remarkable capacity to keep releasing light in the dark for extended durations. Multifunctional transparent wood was prepared by infiltrating a delignified wooden bulk with a combination of polyvinyl alcohol (PVA), ammonium polyphosphate (APP), cellulose nanocrystals, and rare-earth strontium aluminate nanoparticles (RSAN). Cellulose nanocrystals were prepared from microcrystalline cellulose, and used as reinforcement nanofiller to enhance the mechanical strength of the polyvinyl alcohol matrix and a dispersant agent to avoid agglomeration of RSAN. RSAN displayed diameters of 8-16 nm, while cellulose nanocrystals displayed lengths of 75-150 nm and diameters of 5-10 nm. According to photoluminescence spectra and the colorimetric space coordinates reported by the CIE Lab parameters, the transparent wood changed color to bright green when exposed to UV irradiation. For the produced phosphorescent wood surfaces, an absorption band was detected at 365 nm to generate an emission band at 519 nm.


Asunto(s)
Celulosa , Nanocompuestos , Nanopartículas , Alcohol Polivinílico , Madera , Celulosa/química , Nanocompuestos/química , Madera/química , Alcohol Polivinílico/química , Nanopartículas/química , Fenómenos Mecánicos , Rayos Ultravioleta
20.
J Refract Surg ; 40(6): e392-e397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38848056

RESUMEN

PURPOSE: To compare the effects of corneal allogenic intrastromal ring segment (CAIRS) implantation on topographical measurements and visual outcomes of patients with keratoconus with and without corneal cross-linking (CXL) prior to the time of implantation. METHODS: Sixty-seven eyes with corneal allograft intrastromal ring segment implantation (KeraNatural; Lions VisionGift) due to advanced keratoconus were included in the study. Thirty-seven eyes had no CXL and 30 eyes had had CXL before being referred to the authors. The changes in spherical equivalent (SE), uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), steep keratometry (K1), flat keratometry (K2), mean keratometry (Kmean), maximum keratometry (Kmax), and thinnest pachymetry were retrospectively analyzed 6 months after the implantation. RESULTS: The median age was 29 years in the CXL group and 24.0 years in the non-CXL group (P > .05), respectively. All topographical and visual parameters before implantation were similar in both groups (P > .05 for all parameters). At 6 months, CDVA, K1, and Kmean showed higher improvement in the non-CXL group than the CXL group (P = .030, .018, and .039, respectively). CONCLUSIONS: CAIRS surgery has a flattening effect on both the corneas with and without CXL. The cornea with prior CXL treatment had less flattening effect due to the stiffening effect of prior CXL. [J Refract Surg. 2024;40(6):e392-e397.].


Asunto(s)
Colágeno , Sustancia Propia , Topografía de la Córnea , Reactivos de Enlaces Cruzados , Queratocono , Fármacos Fotosensibilizantes , Prótesis e Implantes , Implantación de Prótesis , Refracción Ocular , Agudeza Visual , Humanos , Queratocono/fisiopatología , Queratocono/metabolismo , Queratocono/tratamiento farmacológico , Queratocono/cirugía , Sustancia Propia/metabolismo , Sustancia Propia/cirugía , Reactivos de Enlaces Cruzados/uso terapéutico , Agudeza Visual/fisiología , Adulto , Masculino , Femenino , Fármacos Fotosensibilizantes/uso terapéutico , Estudios Retrospectivos , Adulto Joven , Refracción Ocular/fisiología , Colágeno/metabolismo , Paquimetría Corneal , Riboflavina/uso terapéutico , Fotoquimioterapia/métodos , Adolescente , Rayos Ultravioleta , Trasplante de Córnea/métodos , Persona de Mediana Edad , Reticulación Corneal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA