Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.562
Filtrar
1.
Front Immunol ; 15: 1286270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715610

RESUMEN

Immunotherapy is renowned for its capacity to elicit anti-infective and anti-cancer effects by harnessing immune responses to microbial components and bolstering innate healing mechanisms through a cascade of immunological reactions. Specifically, mammalian Toll-like receptors (TLRs) have been identified as key receptors responsible for detecting microbial components. The discovery of these mammalian Toll-like receptors has clarified antigen recognition by the innate immune system. It has furnished a molecular foundation for comprehending the interplay between innate immunity and its anti-tumor or anti-infective capabilities. Moreover, accumulating evidence highlights the crucial role of TLRs in maintaining tissue homeostasis. It has also become evident that TLR-expressing macrophages play a central role in immunity by participating in the clearance of foreign substances, tissue repair, and the establishment of new tissue. This macrophage network, centered on macrophages, significantly contributes to innate healing. This review will primarily delve into innate immunity, specifically focusing on substances targeting TLR4.


Asunto(s)
Homeostasis , Inmunidad Innata , Macrófagos , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/inmunología , Humanos , Animales , Ligandos , Macrófagos/inmunología , Macrófagos/metabolismo , Transducción de Señal
2.
J Agric Food Chem ; 72(17): 9856-9866, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635925

RESUMEN

The purpose of this study was to identify ovalbumin-derived immunomodulatory peptides by in vitro cell experiments, de novo sequencing, and molecular docking. Ovalbumin hydrolysates were prepared by two enzymes (alkaline protease and papain) individually, sequentially, or simultaneously, respectively. The simultaneous enzymatic hydrolysate (OVAH) had a high degree of hydrolysis (38.12 ± 0.48%) and exhibited immune-enhancing and anti-inflammatory activities. A total of 160 peptides were identified by LC-MS/MS in OVAH. Three novel peptides NVMEERKIK, ADQARELINS, and WEKAFKDE bound to TLR4-MD2 through hydrogen bonds and hydrophobic interactions with high binding affinity and binding energies of -181.40, -178.03, and -168.12 kcal/mol, respectively. These three peptides were synthesized and validated for two-way immunomodulatory activity. NVMEERKIK exhibiting the strongest immunomodulatory activity, increased NO and TNF-α levels by 128.69 and 38.01%, respectively, in normal RAW264.7 cells and reduced NO and TNF-α levels by 27.31 and 39.13%, respectively, in lipopolysaccharide-induced inflammatory RAW264.7 cells. Overall, this study first revealed that ovalbumin could be used as an immunomodulatory source for controlling inflammatory factor secretion.


Asunto(s)
Simulación del Acoplamiento Molecular , Ovalbúmina , Péptidos , Ovalbúmina/inmunología , Ovalbúmina/química , Ratones , Animales , Células RAW 264.7 , Péptidos/química , Péptidos/farmacología , Péptidos/inmunología , Receptor Toll-Like 4/química , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Agentes Inmunomoduladores/química , Agentes Inmunomoduladores/farmacología , Secuencia de Aminoácidos , Espectrometría de Masas en Tándem , Óxido Nítrico/metabolismo , Óxido Nítrico/inmunología , Factores Inmunológicos/química , Factores Inmunológicos/farmacología
3.
Int J Biol Macromol ; 267(Pt 2): 131517, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621559

RESUMEN

Infection with the hepatitis C virus (HCV) is one of the causes of liver cancer, which is the world's sixth most prevalent and third most lethal cancer. The current treatments do not prevent reinfection; because they are expensive, their usage is limited to developed nations. Therefore, a prophylactic vaccine is essential to control this virus. Hence, in this study, an immunoinformatics method was applied to design a multi-epitope vaccine against HCV. The best B- and T-cell epitopes from conserved regions of the E2 protein of seven HCV genotypes were joined with the appropriate linkers to design a multi-epitope vaccine. In addition, cholera enterotoxin subunit B (CtxB) was included as an adjuvant in the vaccine construct. This study is the first to present this epitopes-adjuvant combination. The vaccine had acceptable physicochemical characteristics. The vaccine's 3D structure was predicted and validated. The vaccine's binding stability with Toll-like receptor 2 (TLR2) and TLR4 was confirmed using molecular docking and molecular dynamics (MD) simulation. The immune simulation revealed the vaccine's efficacy by increasing the population of B and T cells in response to vaccination. In silico expression in Escherichia coli (E. coli) was also successful.


Asunto(s)
Biología Computacional , Epítopos de Linfocito B , Epítopos de Linfocito T , Hepacivirus , Hepatitis C , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Hepacivirus/inmunología , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Humanos , Biología Computacional/métodos , Hepatitis C/prevención & control , Hepatitis C/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/química , Vacunas contra Hepatitis Viral/inmunología , Vacunas contra Hepatitis Viral/química , Simulación por Computador , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/química , Inmunoinformática
4.
BMC Oral Health ; 22(1): 563, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463168

RESUMEN

BACKGROUND: Toll like receptors (TLR) 2 and 4 present on innate immune cells of the dental pulp detect cariogenic bacteria. Along with bacteria, C. albicans may also be present in dental caries. The presence of C. albicans can be detected by Dectin-1 a C type Lectin receptor. Expression of Dectin-1 in human pulpits has not been reported. Similarly, cytokines are released as a consequence of dental pulp inflammation caused by cariogenic bacteria. The T helper (Th) 1 inflammatory response leads to exacerbation of inflammation and its relationship with Osteopontin (OPN) is not known in pulp inflammation. OBJECTIVE: The aim of this study was to observe the expression of Dectin-1, TLR-2, OPN and pro-inflammatory cytokines in irreversibly inflamed human dental pulp and to observe relationship between Dectin-1/TLR-2 and OPN/Pro-inflammatory cytokines in the presence of appropriate controls. METHODS: A total of 28 subjects diagnosed with irreversible pulpitis were included in this ex-vivo study. Fifteen samples were subjected to standard hematoxylin and Eosin (H&E) and immunohistochemistry staining. Whereas, gene expression analysis was performed on 13 samples to observe mRNA expression of pro-inflammatory cytokines; tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 beta (ß), IL-6 Dectin-1, OPN, TLR-2 and TLR-4. SPSS version 21 was used for statistical analysis. One way analysis of variance (ANOVA), Pearson correlation and Chi-square test were used at p ≤ 0.05. RESULTS: Gene expressions of Dectin-1, TLR-2 and TLR-4 were observed in all samples. Dectin-1 and TLR-2 expressions were significantly correlated (r = 0.5587, p = 0.0002). Similarly, OPN and TNF-α expression showed a significant correlation (r = 0.5860, p = 0001). The agreement between histologic and clinical diagnosis was 69.2% in the cases of irreversible pulpitis. CONCLUSION: Dectin-1 was expressed by inflamed human dental pulp. Dectin-1 and TLR-2 expression pattern was suggestive of a collaborative receptor response in inflamed pulp environment. OPN and TNF-α expressions showed a positive correlation indicating a possible relationship.


Asunto(s)
Caries Dental , Pulpa Dental , Pulpitis , Humanos , Candida albicans , Citocinas , Caries Dental/genética , Caries Dental/inmunología , Pulpa Dental/inmunología , Expresión Génica , Inflamación/genética , Inflamación/inmunología , Osteopontina/genética , Osteopontina/inmunología , Pulpitis/genética , Pulpitis/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Perfilación de la Expresión Génica
5.
Nature ; 608(7921): 161-167, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896747

RESUMEN

Invasive fungal pathogens are major causes of human mortality and morbidity1,2. Although numerous secreted effector proteins that reprogram innate immunity to promote virulence have been identified in pathogenic bacteria, so far, there are no examples of analogous secreted effector proteins produced by human fungal pathogens. Cryptococcus neoformans, the most common cause of fungal meningitis and a major pathogen in AIDS, induces a pathogenic type 2 response characterized by pulmonary eosinophilia and alternatively activated macrophages3-8. Here, we identify CPL1 as an effector protein secreted by C. neoformans that drives alternative activation (also known as M2 polarization) of macrophages to enable pulmonary infection in mice. We observed that CPL1-enhanced macrophage polarization requires Toll-like receptor 4, which is best known as a receptor for bacterial endotoxin but is also a poorly understood mediator of allergen-induced type 2 responses9-12. We show that this effect is caused by CPL1 itself and not by contaminating lipopolysaccharide. CPL1 is essential for virulence, drives polarization of interstitial macrophages in vivo, and requires type 2 cytokine signalling for its effect on infectivity. Notably, C. neoformans associates selectively with polarized interstitial macrophages during infection, suggesting a mechanism by which C. neoformans generates its own intracellular replication niche within the host. This work identifies a circuit whereby a secreted effector protein produced by a human fungal pathogen reprograms innate immunity, revealing an unexpected role for Toll-like receptor 4 in promoting the pathogenesis of infectious disease.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Proteínas Fúngicas , Hipersensibilidad , Inflamación , Receptor Toll-Like 4 , Factores de Virulencia , Animales , Criptococosis/inmunología , Criptococosis/microbiología , Criptococosis/patología , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/patogenicidad , Citocinas/inmunología , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/metabolismo , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Inmunidad Innata , Inflamación/inmunología , Inflamación/microbiología , Lipopolisacáridos/inmunología , Pulmón/inmunología , Pulmón/microbiología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Virulencia , Factores de Virulencia/inmunología
6.
Mol Med Rep ; 26(3)2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35856408

RESUMEN

Sepsis serves as a leading cause of admission to and death of patients in the intensive care unit (ICU) and is described as a systemic inflammatory response syndrome caused by abnormal host response to infection. Adipose­derived mesenchymal stem cells (ADSCs) have exhibited reliable and promising clinical application potential in multiple disorders. However, the function and the mechanism of ADSCs in sepsis remain elusive. In the present study, the crucial inhibitory effect of ADSC­derived hydroxy­carboxylic acid receptor 1 (HCAR1) on sepsis was identified. Reverse transcription quantitative­PCR determined that the mRNA expression of HCAR1 was reduced while the mRNA expression of Toll­like receptor 4 (TLR4), major histocompatibility complex class II (MHC II), NOD­like receptor family pyrin domain containing 3 (NLRP3), and the levels of interleukin­1ß (IL­1ß), tumor necrosis factor­α (TNF­α), interleukin­10 (IL­10), and interleukin­18 (IL­18) were enhanced in the peripheral blood of patients with sepsis. The expression of HCAR1 was negatively correlated with TLR4 (r=­0.666), MHC II (r=­0.587), and NLRP3 (r=­0.621) expression and the expression of TLR4 was positively correlated with NLRP3 (r=0.641), IL­1ß (r=0.666), TNF­α (r=0.606), and IL­18 (r=0.624) levels in the samples. Receiver operating characteristic (ROC) curve analysis revealed that the area under the ROC curve (AUC) of HCAR1, TLR4, MHC II and NLRP3 mRNA expression was 0.830, 0.853, 0.735 and 0.945, respectively, in which NLRP3 exhibited the highest diagnostic value, and the AUC values of IL­1ß, IL­18, TNF­α, and IL­10 were 0.751, 0.841, 0.924 and 0.729, respectively, in which TNF­α exhibited the highest diagnostic value. A sepsis rat model was established by injecting lipopolysaccharide (LPS) and the rats were randomly divided into 5 groups, including a normal control group (NC group; n=6), a sepsis model group (LPS group; n=6), an ADSC transplantation group (L + M group; n=6), a combined HCAR1 receptor agonist group [L + HCAR1 inducer (Gi) + M group; n=6], and a combined HCAR1 receptor inhibitor group [L + HCAR1 blocker (Gk) + M group; n=6]. Hematoxylin and eosin staining determined that ADSCs attenuated the lung injury of septic rats and ADSC­derived HCAR1 enhanced the effect of ADSCs. The expression of HCAR1, TLR4, MHC II, NLRP3, IL­1ß, IL­18 and TNF­α levels were suppressed by ADSCs and the effect was further induced by ADSC­derived HCAR1. However, ADSC­derived HCAR1 induced the levels of anti­inflammatory factor IL­10. The negative correlation of HCAR1 expression with TLR4, MHC II, and NLRP3 expression in the peripheral blood and lung tissues of the rats was then identified. It is thus concluded that ADSC­derived HCAR1 regulates immune response in the attenuation of sepsis. ADSC­derived HCAR1 may be a promising therapeutic strategy for sepsis.


Asunto(s)
Tejido Adiposo , Células Madre Mesenquimatosas , Receptores Acoplados a Proteínas G , Sepsis , Tejido Adiposo/citología , Tejido Adiposo/inmunología , Animales , Inmunidad , Interleucina-10/inmunología , Interleucina-18/inmunología , Lipopolisacáridos/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , ARN Mensajero/metabolismo , Ratas , Receptores Acoplados a Proteínas G/inmunología , Sepsis/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
7.
Front Immunol ; 13: 879600, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720418

RESUMEN

Background: Transgender women (TW) are at increased risk for both human immunodeficiency virus (HIV) and cardiovascular disease (CVD). Antiretroviral therapy-treated HIV has been associated with a two-fold increased risk of CVD, potentially due to dysregulated Toll-like receptor (TLR)-induced immune activation. Use of estrogens in feminizing hormone therapy (FHT) may enhance inflammatory responses and the risk of cardiovascular mortality in TW. Despite this, the immunomodulatory effects of estrogen use in TW with HIV have been inadequately explored. Methods: As an in vitro model for FHT, cryopreserved PBMCs (cryoPBMCs) from HIV negative (HIV-), HIV+ ART-suppressed (HIV+SP), and HIV+ ART-unsuppressed (HIV+USP) cisgender men were cultured overnight in the presence of 17-ß estradiol or 17-α ethinylestradiol with and without the TLR4 agonist LPS or the TLR8 agonist ssPolyU. Monocyte activation (CD69, HLA-DR, CD38) was assessed by flow cytometry. Cytokine levels (IL-6, TNF-α, IL-1ß, and IL-10) were measured in cell culture supernatants by Legendplex. Levels of phosphorylated TLR signaling molecules (JNK, MAPK p38) were assessed by Phosflow. Plasma levels of immune activation biomarkers (LPS-binding protein, monocyte activation markers sCD14 and sCD163, and inflammatory molecules IL-6 and TNF-α receptor I) were measured by ELISA. Results: PBMCs from people with HIV (PWH) produced greater levels of inflammatory cytokines following exposure to LPS or ssPolyU compared to levels from cells of HIV- individuals. While estrogen exposure alone induced mild changes in immune activation, LPS-induced TLR4 activation was elevated with estrogen in cisgender men (CM) with HIV, increasing monocyte activation and inflammatory cytokine production (IL-6, TNF-α). Interestingly, testosterone inhibited LPS-induced cytokine production in CM regardless of HIV status. Plasma markers of immune activation and microbial translocation (e.g., sCD14, sCD163, LPS-binding protein) were generally higher in PWH compared to HIV- CM, and these markers were positively associated with in vitro responsiveness to estrogen and LPS in CM with HIV. Conclusions: Our in vitro data suggest that estrogen exposure may enhance innate immune activation in PWH. Further examination is needed to fully understand the complex interactions of FHT, HIV, and CVD in TW, and determine optimal FHT regimens or supplementary treatments aimed at reducing excess immune activation.


Asunto(s)
Estrógenos , Infecciones por VIH , Receptor Toll-Like 4 , Personas Transgénero , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/virología , Citocinas/metabolismo , Estrógenos/efectos adversos , Estrógenos/farmacología , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Interleucina-6/inmunología , Receptores de Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Masculino , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/inmunología
8.
Invest New Drugs ; 40(3): 519-528, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35113284

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most common malignant tumors of the pancreas. Preclinical studies show that it evades the immune system with immune checkpoints and promotes tumor development. V-domain Ig suppressor of T cell activation (VISTA) is a new immune-check point from the B7 family and is highly expressed in cancer cells. Overexpression of toll like receptor 4 (TLR4) in pancreatic adenocarcinoma is associated with induced tumorigenesis, tumor growth, resistancy to chemotherapy. Naloxone is an opioid and inhibits TLR4-ligand association. In this study, we investigated the relation of TLR4 and downstream pathways with immune-check point VISTA in pancreatic cancer proliferation. We initially collected pancreatic cancer-related datasets using the GEPIA2 and UALCAN databases. Based on this data obtained the effect of various concentrations and incubation times of naloxone were used on PANC-1 cells proliferation. A combination of naloxone and VISTA-siRNA were applied, and the effect of both naloxone and combined treatment on TLR4, Interleukin 1 receptor associated kinase 4 (IRAK4) and VISTA gene expression were analyzed in pancreatic cancer cells. As a result of analysis with Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), gene expression levels of TLR4, IRAK4 and VISTA were significantly suppressed and cell proliferation was significantly reduced. We found that administration of naloxone and VISTA-siRNA in combination with PDAC cells suppressed signaling. Therefore, we considered that the relationship between VISTA and TLR4 signaling pathways and the other possible associated signal molecules may be an important marker in determining the response of immune checkpoint inhibitors in cancer treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptor Toll-Like 4 , Antígenos B7 , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Naloxona/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , ARN Interferente Pequeño , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo
9.
Nat Commun ; 13(1): 879, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169163

RESUMEN

Dysregulation of the balance between pro-inflammatory and anti-inflammatory macrophages has a key function in the pathogenesis of Duchenne muscular dystrophy (DMD), a fatal genetic disease. We postulate that an evolutionarily ancient protective mechanism against infection, known as trained immunity, drives pathological inflammation in DMD. Here we show that bone marrow-derived macrophages from a murine model of DMD (mdx) exhibit cardinal features of trained immunity, consisting of transcriptional hyperresponsiveness associated with metabolic and epigenetic remodeling. The hyperresponsive phenotype is transmissible by bone marrow transplantation to previously healthy mice and persists for up to 11 weeks post-transplant. Mechanistically, training is induced by muscle extract in vitro. The functional and epigenetic changes in bone marrow-derived macrophages from dystrophic mice are TLR4-dependent. Adoptive transfer experiments further support the TLR4-dependence of trained macrophages homing to damaged muscles from the bone marrow. Collectively, this suggests that a TLR4-regulated, memory-like capacity of innate immunity induced at the level of the bone marrow promotes dysregulated inflammation in DMD.


Asunto(s)
Trasplante de Médula Ósea , Inmunidad Innata/inmunología , Macrófagos/inmunología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Receptor Toll-Like 4/inmunología , Animales , Células de la Médula Ósea/inmunología , Línea Celular , Modelos Animales de Enfermedad , Inflamación/inmunología , Células L , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Músculo Esquelético/inmunología , Distrofia Muscular de Duchenne/inmunología , Extractos de Tejidos/farmacología , Transcripción Genética/genética
10.
Diabetes ; 71(3): 470-482, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040474

RESUMEN

We previously showed that treating NOD mice with an agonistic monoclonal anti-TLR4/MD2 antibody (TLR4-Ab) reversed acute type 1 diabetes (T1D). Here, we show that TLR4-Ab reverses T1D by induction of myeloid-derived suppressor cells (MDSCs). Unbiased gene expression analysis after TLR4-Ab treatment demonstrated upregulation of genes associated with CD11b+Ly6G+ myeloid cells and downregulation of T-cell genes. Further RNA sequencing of purified, TLR4-Ab-treated CD11b+ cells showed significant upregulation of genes associated with bone marrow-derived CD11b+ cells and innate immune system genes. TLR4-Ab significantly increased percentages and numbers of CD11b+ cells. TLR4-Ab-induced CD11b+ cells, derived ex vivo from TLR4-Ab-treated mice, suppress T cells, and TLR4-Ab-conditioned bone marrow cells suppress acute T1D when transferred into acutely diabetic mice. Thus, the TLR4-Ab-induced CD11b+ cells, by the currently accepted definition, are MDSCs able to reverse T1D. To understand the TLR4-Ab mechanism, we compared TLR4-Ab with TLR4 agonist lipopolysaccharide (LPS), which cannot reverse T1D. TLR4-Ab remains sequestered at least 48 times longer than LPS within early endosomes, alters TLR4 signaling, and downregulates inflammatory genes and proteins, including nuclear factor-κB. TLR4-Ab in the endosome, therefore, induces a sustained, attenuated inflammatory response, providing an ideal "second signal" for the activation/maturation of MDSCs that can reverse acute T1D.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Endosomas/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Receptor Toll-Like 4/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Antígeno CD11b/análisis , Diabetes Mellitus Tipo 1/inmunología , Femenino , Regulación de la Expresión Génica/inmunología , Ratones , Ratones Endogámicos NOD , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/fisiología
11.
Carbohydr Polym ; 278: 118944, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973762

RESUMEN

Klebsiella pneumoniae serotype KN2 is a carbapenem-resistant strain and leads to the health care-associated infections, such as bloodstream infections. Its capsular polysaccharide (CPS) was isolated and cleaved by a specific enzyme from a bacteriophage into a hexasaccharide-repeating unit. With GC-MS, NMR, and Mass analyses, the structure of KN2 CPS was determined to be {→3)-ß-D-Glcp-(1→3)-[α-D-GlcpA-(1→4)-ß-D-Glcp-(1→6)]-α-D-Galp-(1→6)-ß-D-Galp-(1→3)-ß-D-Galp-(1→}n. We demonstrated that 1 µg/mL CPS could stimulate J774A.1 murine macrophages to release tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in vitro. Also, we proved that KN2 CPS induced the immune response through Toll-like receptor 4 (TLR4) in the human embryonic kidney (HEK)-293 cells. Strikingly, the hexasaccharide alone shows the same immune response as the CPS, suggesting that the hexasaccharide can shape the adaptive immunity to be a potential vaccine adjuvant. The glucuronic acid (GlcA) on other polysaccharides can affect the immune response, but the GlcA-reduced KN2 CPS and hexasaccharide still maintain their immunomodulatory activities.


Asunto(s)
Antibacterianos/farmacología , Carbapenémicos/farmacología , Factores Inmunológicos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Polisacáridos Bacterianos/farmacología , Receptor Toll-Like 4/inmunología , Antibacterianos/química , Carbapenémicos/química , Células HEK293 , Humanos , Factores Inmunológicos/química , Ligandos , Pruebas de Sensibilidad Microbiana , Polisacáridos Bacterianos/química
12.
Neurosci Lett ; 768: 136374, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34852285

RESUMEN

Macrophage-dominated inflammation by the activation of Toll-like receptor (TLR) pathway leads to neurological disruption after spinal cord injury (SCI). Regulator of G-protein signaling 1 (RGS1) is reported to be a regulator in inflammation. The present study thus purposes to identify the unknown role of RGS1 mediating TLR on inflammation post SCI. A mouse model of traumatic SCI was established by a mechanical trauma at T10. The mice underwent SCI and a macrophage line activated by lipopolysaccharide (LPS) were treated with shRNA-RGS1 to elucidate the role of RGS1 in inflammatory progression. The inflammatory factors were measured, and the degree of histology and function protection were determined. The expression levels of RGS1, myeloid differentiation primary response protein 88 (Myd88), (TIR-domain-containing adaptor inducing interferon-ß (TRIF), p38, metalloproteinase (MMP)-2, and MMP-9 were determined. RGS1 was robustly increased both in LPS-activated macrophage and SCI mice. The TLR signaling pathway-induced inflammation was suppressed by RGS1 knockdown. shRNA-mediated silence of RGS1 was exhibited a prominent decrease in TNF-α, IL-1ß and IL-6 via TLR/TRIF/ nuclear factor kappa-B (NF-κB) axis. Depletion of RGS1 also inhibited MMP-induced tissue degradation via MAPK-p38 pathway in SCI mice. Moreover, suppression of RGS1 improved spinal cord histology and function recovery. These findings suggest that RGS1 regulates inflammation and tissue disruption via TLR/TRIF/NF-κB signaling pathway in mice with SCI, thereby explaining a novel target that regulates macrophage inflammation post SCI.


Asunto(s)
Inflamación/inmunología , Macrófagos/inmunología , Proteínas RGS/inmunología , Transducción de Señal/inmunología , Traumatismos de la Médula Espinal/inmunología , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Inflamación/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/inmunología , FN-kappa B/metabolismo , Células RAW 264.7 , Proteínas RGS/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo
13.
Front Immunol ; 12: 739219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912331

RESUMEN

Active form of vitamin D (VitD) enhances human innate immunity against Mycobacterium tuberculosis (Mtb) infection. Our previous studies showed that MIR337-3p was highly expressed in lymphocytes of tuberculosis (TB) patients. Here, we identified the mechanism of MIR337-3p in the regulation of fast-acting anti-TB immunity by inhibiting VitD-dependent antimicrobial response pathways. While high-level MIR337-3p expression was induced by mycobacterial infection in cellular models and mice, TB patients exhibited significantly increased MIR337-3p in CD14+ monocytes/macrophages, innate-like Vγ2+ T cells, and CD8+ lymphocytes containing natural killer (NK)/innate lymphoid cells. MIR337-3p promoted the mycobacterial entry/infection and replication/growth in host target cells: macrophages and lung epithelial cells. Such MIR337-3p-enhanced pathogenicity coincided with the MIR337-3p depression of VitD-dependent antimicrobial response of cytochrome P450, family 27, subfamily b, polypeptide 1 (CYP27B1)/Beta-defensin 4 (DEFB4A)/ cathelicidin antimicrobial peptide CAMP pathways. Surprisingly, single MIR337-3p species could specifically target both the Toll-like receptor 4 (TLR4) and signal transducer and activator of transcription 3 (STAT3) 3'-untranslated regions (UTRs) to depress the TLR4/MYD88 and STAT3 signals and impair either of the two signals inhibiting the VitD-dependent antimicrobial pathways in macrophages. Concurrently, human peripheral blood mononuclear cells (PBMCs) expressing high-level MIR337-3p exhibited a reduced ability of innate cell populations to mount fast-acting cellular immunity against intracellular mycobacterial infection. Furthermore, a higher expression of Mir337-3p after mycobacterial infection of mice coincided with much greater colony-forming unit (CFU) counts in lungs and even the death of infected animals, whereas Mir337-3p inhibitor treatment of infected mice reduced Mir337-3p levels and reversed Mir337-3p-mediated increases in CFU counts. Thus, TB-driven single MIR337-3p species could specifically target/impair both TLR4/MYD88 and STAT3 activation signals, inhibiting VitD-dependent antimicrobial response and fast-acting anti-TB immunity, leading to enhanced pathogenicity.


Asunto(s)
Inmunidad Innata/inmunología , MicroARNs/inmunología , Mycobacterium tuberculosis/patogenicidad , Receptores de Calcitriol/inmunología , Tuberculosis/inmunología , Animales , Humanos , Inmunidad Innata/genética , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/inmunología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
14.
Cells ; 10(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34943932

RESUMEN

The extracellular protozoan parasite Giardia duodenalis is a well-known and important causative agent of diarrhea on a global scale. Macrophage pyroptosis has been recognized as an important innate immune effector mechanism against intracellular pathogens. Yet, the effects of noninvasive Giardia infection on macrophage pyroptosis and the associated molecular triggers and regulators remain poorly defined. Here we initially observed that NLRP3 inflammasome-mediated pyroptosis was activated in Giardia-treated macrophages, and inhibition of ROS, NLRP3, or caspase-1 could block GSDMD cleavage, IL-1ß, IL-18 and LDH release, and the cell viability reduction. We also confirmed that Giardia-induced NLRP3 inflammasome activation was involved in its K63 deubiquitination. Thus, six candidate deubiquitinases were screened, among which A20 was identified as an effective regulator. We then screened TLRs on macrophage membranes and found that upon stimulation TLR4 was tightly correlated to ROS enhancement, A20-mediated NLRP3 deubiquitination, and pyroptotic signaling. In addition, several Giardia-secreted proteins were predicted as trigger factors via secretome analysis, of which peptidyl-prolyl cis-trans isomerase B (PPIB) independently induced macrophage pyroptosis. This was similar to the findings from the trophozoite treatment, and also led to the TLR4-mediated activation of NLRP3 through K63 deubiquitination by A20. Collectively, the results of this study have significant implications for expanding our understanding of host defense mechanisms after infection with G. duodenalis.


Asunto(s)
Diarrea/genética , Giardia lamblia/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Receptor Toll-Like 4/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Animales , Supervivencia Celular/efectos de los fármacos , Enzimas Desubicuitinizantes/genética , Diarrea/inmunología , Diarrea/parasitología , Modelos Animales de Enfermedad , Giardia lamblia/inmunología , Giardia lamblia/patogenicidad , Interacciones Huésped-Parásitos/efectos de los fármacos , Interacciones Huésped-Parásitos/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Inflamasomas/efectos de los fármacos , Inflamasomas/inmunología , Interleucina-18/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Isoenzimas/farmacología , Macrófagos/efectos de los fármacos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Isomerasa de Peptidilprolil/farmacología , Proteínas de Unión a Fosfato/genética , Piroptosis/efectos de los fármacos , Piroptosis/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/inmunología , Trofozoítos/efectos de los fármacos , Trofozoítos/patogenicidad , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/inmunología , Ubiquitinación/genética
15.
Front Immunol ; 12: 756825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721432

RESUMEN

Objective: Systemic lupus erythematosus (SLE) is an autoimmune disease with complex etiology that is not yet entirely understood. We aimed to elucidate the mechanisms and therapeutic potential of microRNAs (miRNAs) in SLE in a Tibetan population. Methods: Peripheral blood mononuclear cells from SLE patients (n = 5) and healthy controls (n = 5) were used for miRNA-mRNA co-sequencing to detect miRNAs related to immune abnormalities associated with SLE. Luciferase reporter assay was used to identify potential targets of candidate miRNA. The target genes were verified in miRNA-agomir/antagomir transfection assays with multiple cells lines and by expression analysis. The effects of candidate miRNA on monocyte and macrophage activation were evaluated by multiple cytokine profiling. Neutrophil extracellular traps (NETs) formation was analyzed in vitro by cell stimulation with supernatants of monocytes and macrophages transfected with candidate miRNA. The rodent MRL/lpr lupus model was used to evaluate the therapeutic effect of CXCL2Ab on SLE and the regulation effect of immune disorders. Results: Integrated miRNA and mRNA expression profiling identified miRNA-4512 as a candidate miRNA involved in the regulation of neutrophil activation and chemokine-related pathways. MiR-4512 expression was significantly reduced in monocytes and macrophages from SLE patients. MiR-4512 suppressed the TLR4 pathway by targeting TLR4 and CXCL2. Decreased monocyte and macrophage miR-4512 levels led to the expression of multiple proinflammatory cytokines in vitro. Supernatants of miR-4512 antagomir-transfected monocytes and macrophages significantly promoted NETs formation (P < 0.05). Blocking of CXCL2 alleviated various pathogenic manifestations in MRL/lpr mice, including kidney damage and expression of immunological markers of SLE. Conclusions: We here demonstrated the role of miR-4512 in innate immunity regulation in SLE. The effect of miR-4512 involves the regulation of monocytes, macrophages, and NETs formation by direct targeting of TLR4 and CXCL2, indicating the miR-4512-TLR4-CXCL2 axis as a potential novel therapeutic target in SLE.


Asunto(s)
Trampas Extracelulares/inmunología , Lupus Eritematoso Sistémico/inmunología , Macrófagos/inmunología , MicroARNs/inmunología , Monocitos/inmunología , Animales , Quimiocina CXCL2/inmunología , Quimiocina CXCL2/metabolismo , Trampas Extracelulares/genética , Humanos , Inmunidad Innata/inmunología , Lupus Eritematoso Sistémico/genética , Activación de Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos MRL lpr , Monocitos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Tibet , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo
16.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34830071

RESUMEN

Enhancing the phagocytosis of immune cells with medicines provides benefits to the physiological balance by removing foreign pathogens and apoptotic cells. The fungal immunomodulatory protein (FIP) possessing various immunopotentiation functions may be a good candidate for such drugs. However, the effect and mechanism of FIP on the phagocytic activity is limitedly investigated. Therefore, the present study determined effects of Cordyceps militaris immunomodulatory protein (CMIMP), a novel FIP reported to induce cytokines secretion, on the phagocytosis using three different types of models, including microsphere, Escherichia Coli and Candida albicans. CMIMP not only significantly improved the phagocytic ability (p < 0.05), but also enhanced the bactericidal activity (p < 0.05). Meanwhile, the cell size, especially the cytoplasm size, was markedly increased by CMIMP (p < 0.01), accompanied by an increase in the F-actin expression (p < 0.001). Further experiments displayed that CMIMP-induced phagocytosis, cell size and F-actin expression were alleviated by the specific inhibitor of TLR4 (p < 0.05). Similar results were observed in the treatment with the inhibitor of the NF-κB pathway (p < 0.05). In conclusion, it could be speculated that CMIMP promoted the phagocytic ability of macrophages through increasing F-actin expression and cell size in a TLR4-NF-κB pathway dependent way.


Asunto(s)
Cordyceps/química , Proteínas Fúngicas/farmacología , Factores Inmunológicos/farmacología , Macrófagos , FN-kappa B/inmunología , Fagocitosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/inmunología , Animales , Candida albicans/inmunología , Escherichia coli/inmunología , Proteínas Fúngicas/química , Factores Inmunológicos/química , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Células RAW 264.7 , Transducción de Señal/inmunología
17.
mBio ; 12(6): e0281721, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34844429

RESUMEN

HIV-1 replicates in cells that express a wide array of innate immune sensors and may do so simultaneously with other pathogens. How a coexisting innate immune stimulus influences the outcome of HIV-1 sensing, however, remains poorly understood. Here, we demonstrate that the activation of a second signaling pathway enables a cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) response to HIV-1 infection. We used RNA sequencing to determine that HIV-1 alone induced few or no signs of an IFN-I response in THP-1 cells. In contrast, when supplemented with suboptimal levels of bacterial lipopolysaccharide (LPS), HIV-1 infection triggered the production of elevated levels of IFN-I and significant upregulation of interferon-stimulated genes. LPS-mediated enhancement of IFN-I production upon HIV-1 infection, which was observed in primary macrophages, was lost by blocking reverse transcription and with a hyperstable capsid, pointing to viral DNA being an essential immunostimulatory molecule. LPS also synergistically enhanced IFN-I production by cyclic GMP-AMP (cGAMP), a second messenger of cGAS. These observations suggest that the DNA sensor cGAS is responsible for a type I IFN response to HIV-1 in concert with LPS receptor Toll-like receptor 4 (TLR4). Small amounts of a TLR2 agonist also cooperate with HIV-1 to induce type I IFN production. These results demonstrate how subtle immunomodulatory activity renders HIV-1 capable of eliciting an IFN-I response through positive cross talk between cGAS and TLR sensing pathways. IMPORTANCE Innate immune activation is a hallmark of HIV-1 pathogenesis. Thus, it is critical to understand how HIV-1 infection elicits innate immune responses. In this work, we show that HIV-1 infection of macrophages leads to a robust type I interferon (IFN) production only when a second signaling event is initiated by a coexisting immunostimulatory molecule. Our results show that HIV-1 infection alone is not sufficient for triggering a strong IFN response. We find that bacterial membrane components, which are recognized by endosomal innate sensors, enable production of elevated levels of IFNs and significant upregulation of interferon-stimulated genes upon HIV-1 infection. This IFN response is dependent on viral DNA synthesis and prevented by a stable capsid, pointing to an essential role for a DNA sensing molecule. These observations provide new insights into how different innate immune recognition pathways synergize during HIV-1 infection and determine the outcome of innate responses.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/fisiología , Macrófagos/virología , Nucleotidiltransferasas/inmunología , Receptor Toll-Like 4/inmunología , Infecciones por VIH/enzimología , Infecciones por VIH/genética , Infecciones por VIH/virología , Humanos , Inmunidad Innata , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Macrófagos/enzimología , Macrófagos/inmunología , Nucleótidos Cíclicos , Nucleotidiltransferasas/genética , Transducción de Señal , Receptor Toll-Like 4/genética
18.
Parasit Vectors ; 14(1): 548, 2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34689797

RESUMEN

BACKGROUND: Schistosomiasis japonica is a serious zoonotic parasitic disease. Preliminary studies have shown that the expression of microRNA-181a (miR-181a) in the liver, lung and spleen tissues of susceptible host BALB/c mice and resistant host reed vole (Microtus fortis) 10 days post-infection (dpi) with Schistosoma japonicum was significantly different from pre-infection levels. This difference suggests the possibility that miR-181a expression may be related to the regulation of the hosts' early immune response against S. japonicum infection and thereby affect the development and survival of parasites in their final hosts. METHODS: BALB/c mice, M. fortis, Toll-like receptor 4 (TLR4)-deficient mice and wild-type mice (C57BL/6) were infected with S. japonicum, and differences in miR-181a expression between BALB/c mice and M. fortis over different time points post-infection (0, 3, 7, 10 and 14 dpi) were compared. MiR-181a mimic, miR-181a inhibitor and irrelevant miRNA, as well as lipopolysaccharide (LPS), a TLR4 receptor ligand, were used to transfect mouse RAW264.7 macrophages. The expression levels of the TLR4 pathway-related cytokines interleukin (IL)-1ß, tumor necrosis factor α (TNF-α) and IL-6 were detected by quantitative PCR analysis. RESULTS: The expression of miR-181a was significantly upregulated in the serum and liver of mice infected with S. japonicum and downregulated in the serum and liver of M. fortis. T-helper cell (Th1)-type cytokines, such as TNF-α, IL-6 and IL-1ß, and Th2-type cytokines, such as IL-10 and IL-4, were differentially expressed in M. fortis and BALB/c mice in the early stage of infection. The expression level of miR-181a in the serum was threefold higher in TLR4-deficient mice than in wild-type mice 10 dpi with S. japonicum. The expression of IL-1ß, TNF-α and IL-6 decreased in RAW264.7 cells transfected with miR-181a mimic and increased in cells transfected with miR-181a inhibitor. miR-181a expression was downregulated and the expressions of TLR4 and three TLR4 pathway-related cytokines (IL-1ß, IL-6, and TNF-α) were upregulated in RAW264.7 macrophages stimulated with the TLR4 receptor ligand LPS. CONCLUSION: These results suggest the possibility of mutual regulation between miR-181a and the TLR4 signaling pathway during S. japonicum infection. miR-181a may regulate the expression of pro-inflammatory factors through the TLR4 receptor pathway and participate in the immunomodulatory effect of anti-S. japonicum infection.


Asunto(s)
Regulación de la Expresión Génica , Interacciones Huésped-Parásitos , MicroARNs/genética , Schistosoma japonicum/inmunología , Esquistosomiasis Japónica/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Animales , Arvicolinae , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Inmunidad , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , MicroARNs/sangre , MicroARNs/inmunología , Schistosoma japonicum/genética , Esquistosomiasis Japónica/parasitología , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología
19.
Mol Cell Biol ; 41(12): e0025121, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34543116

RESUMEN

Toll-like receptors (TLRs) and interleukin-1 (IL-1) receptors regulate immune and inflammatory responses by activating the NF-κB pathway. Here, we report that B-cell-specific loss of dynein light chain 1 (DYNLL1, LC8) or its designated transcription factor ASCIZ (ATMIN) leads to severely reduced in vivo antibody responses to TLR4-dependent but not T-cell-dependent antigens in mice. This defect was independent of DYNLL1's established roles in modulating BIM-dependent apoptosis and 53BP1-dependent antibody class-switch recombination. In B cells and fibroblasts, the ASCIZ-DYNLL1 axis was required for TLR4-, IL-1-, and CD40-mediated NF-κB pathway activation but dispensable for antigen receptor and tumor necrosis factor α (TNF-α) signaling. In contrast to previous reports that overexpressed DYNLL1 directly inhibits the phosphorylation and degradation of the NF-κB inhibitor IκBα, we found here that under physiological conditions, DYNLL1 is required for signal-specific activation of the NF-κB pathway upstream of IκBα. Our data identify DYNLL1 as a signal-specific regulator of the NF-κB pathway and indicate that it may act as a universal modulator of TLR4 (and IL-1) signaling with wide-ranging roles in inflammation and immunity.


Asunto(s)
Formación de Anticuerpos/inmunología , Dineínas Citoplasmáticas/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/inmunología , Factores de Transcripción/metabolismo , Animales , Linfocitos B/inmunología , Antígenos CD40/metabolismo , Células Cultivadas , Dineínas Citoplasmáticas/genética , Cambio de Clase de Inmunoglobulina/inmunología , Ratones , Ratones Endogámicos C57BL , Inhibidor NF-kappaB alfa/metabolismo , Linfocitos T/inmunología , Factores de Transcripción/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/inmunología
20.
mBio ; 12(5): e0212721, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34488445

RESUMEN

Interferon (IFN) signaling is key to mucosal immunity in the gastrointestinal tract, but cellular regulatory elements that determine interferon gamma (IFN-γ)-mediated antimicrobial defense in intestinal epithelial cells are not fully understood. We report here that a long noncoding RNA (lncRNA), GenBank accession no. XR_001779380, was increased in abundance in murine intestinal epithelial cells following infection by Cryptosporidium, an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children. Expression of XR_001779380 in infected intestinal epithelial cells was triggered by TLR4/NF-κB/Cdc42 signaling and epithelial-specific transcription factor Elf3. XR_001779380 primed epithelial cells for IFN-γ-mediated gene transcription through facilitating Stat1/Swi/Snf-associated chromatin remodeling. Interactions between XR_001779380 and Prdm1, which is expressed in neonatal but not adult intestinal epithelium, attenuated Stat1/Swi/Snf-associated chromatin remodeling induced by IFN-γ, contributing to suppression of IFN-γ-mediated epithelial defense in neonatal intestine. Our data demonstrate that XR_001779380 is an important regulator in IFN-γ-mediated gene transcription and age-associated intestinal epithelial antimicrobial defense. IMPORTANCE Epithelial cells along the mucosal surface provide the front line of defense against luminal pathogen infection in the gastrointestinal tract. These epithelial cells represent an integral component of a highly regulated communication network that can transmit essential signals to cells in the underlying intestinal mucosa that, in turn, serve as targets of mucosal immune mediators. LncRNAs are recently identified long noncoding transcripts that can regulate gene transcription through their interactions with other effect molecules. In this study, we demonstrated that lncRNA XR_001779380 was upregulated in murine intestinal epithelial cells following infection by a mucosal protozoan parasite Cryptosporidium. Expression of XR_001779380 in infected cells primed host epithelial cells for IFN-γ-mediated gene transcription, relevant to age-dependent intestinal antimicrobial defense. Our data provide new mechanistic insights into how intestinal epithelial cells orchestrate intestinal mucosal defense against microbial infection.


Asunto(s)
Criptosporidiosis/inmunología , Cryptosporidium parvum/fisiología , Interferón gamma/inmunología , Mucosa Intestinal/inmunología , ARN Largo no Codificante/inmunología , Factores de Edad , Animales , Criptosporidiosis/genética , Criptosporidiosis/parasitología , Cryptosporidium parvum/genética , Células Epiteliales/inmunología , Células Epiteliales/parasitología , Humanos , Inmunidad Mucosa , Interferón gamma/genética , Mucosa Intestinal/parasitología , Ratones , FN-kappa B/genética , FN-kappa B/inmunología , ARN Largo no Codificante/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA