Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Front Immunol ; 15: 1374967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881895

RESUMEN

Background: Cholangiocarcinoma (CCA) is a typical inflammation-induced malignancy, and elevated serum interleukin-6 (IL-6) levels have been reported to be linked to the onset and progression of CCA. We aim to investigate the potential prognostic value of the IL-6 pathway for CCA. Methods: We detected the expressions of IL-6, IL-6R, glycoprotein (gp130), C-reactive protein (CRP), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3) in CCA tissue microarray using multiplex immunofluorescence. Furthermore, the clinical associations and prognostic values were assessed. Finally, single-cell transcriptome analysis was performed to evaluate the expression level of IL-6 pathway genes in CCA. Results: The results revealed that the expression of IL-6 was lower, while the expression of STAT3 was higher in tumor tissues compared to normal tissues. Especially in tumor microenvironment, the expression of IL-6 pathway genes was generally downregulated. Importantly, gp130 was strongly correlated with JAK2 in tumor tissues, while it was moderately correlated with JAK2 in normal tissue. Although none of the gene expressions were directly associated with overall survival and disease-free survival, our study found that IL-6, IL-6R, CRP, gp130, and JAK2 were inversely correlated with vascular invasion, which is a risk factor for poor prognosis in patients with CCA. Conclusion: The findings from this study suggest that the IL-6 signaling pathway may have a potential prognostic value for CCA. Further investigation is needed to understand the underlying molecular mechanisms of the IL-6 pathway in CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Receptor gp130 de Citocinas , Interleucina-6 , Janus Quinasa 2 , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/mortalidad , Colangiocarcinoma/patología , Interleucina-6/genética , Interleucina-6/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/mortalidad , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Masculino , Femenino , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Persona de Mediana Edad , Pronóstico , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Anciano , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Relevancia Clínica
2.
ACS Appl Mater Interfaces ; 16(24): 30685-30702, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38859670

RESUMEN

Macrophages play a pivotal role in the crosstalk between the immune and skeletal systems, while Mg-based biomaterials demonstrate immunomodulatory capabilities in this procedure. However, the mechanism of how Mg2+ promotes osteogenesis through the interplay of bone marrow-derived mesenchymal stem cells (BMSCs) and macrophages remains undescribed. Here, we demonstrated that a Mg-cross-linked alginate hydrogel exerted a dual enhancement of BMSCs osteogenic differentiation through the ligand-receptor pairing of the OSM/miR-370-3p-gp130 axis. On the one hand, Mg2+, released from the Mg-cross-linked hydrogel, stimulates bone marrow-derived macrophages to produce and secrete more OSM. On the other hand, Mg2+ lowers the miR-370-3p level in BMSCs and in turn, reverses its suppression on gp130. Then, the OSM binds to the gp130 heterodimer receptor and activates intracellular osteogenic programs in BMSCs. Taken together, this study reveals a novel cross-talk pattern between the skeletal and immune systems under Mg2+ stimulation. This study not only brings new insights into the immunomodulatory properties of Mg-based biomaterials for orthopedic applications but also enriches the miRNA regulatory network and provides a promising target to facilitate bone regeneration in large bone defects.


Asunto(s)
Alginatos , Regeneración Ósea , Hidrogeles , Macrófagos , Magnesio , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Transducción de Señal , Hidrogeles/química , Hidrogeles/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , MicroARNs/metabolismo , MicroARNs/genética , Animales , Regeneración Ósea/efectos de los fármacos , Alginatos/química , Transducción de Señal/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Magnesio/química , Magnesio/farmacología , Ratones , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/genética , Diferenciación Celular/efectos de los fármacos
3.
Sci Rep ; 14(1): 12224, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806529

RESUMEN

Post-ERCP pancreatitis (PEP) is an acute pancreatitis caused by endoscopic-retrograde-cholangiopancreatography (ERCP). About 10% of patients develop PEP after ERCP. Here we show that gamma-glutamyltransferase 1 (GGT1)-SNP rs5751901 is an eQTL in pancreatic cells associated with PEP and a positive regulator of the IL-6 amplifier. More PEP patients had the GGT1 SNP rs5751901 risk allele (C) than that of non-PEP patients at Hokkaido University Hospital. Additionally, GGT1 expression and IL-6 amplifier activation were increased in PEP pancreas samples with the risk allele. A mechanistic analysis showed that IL-6-mediated STAT3 nuclear translocation and STAT3 phosphorylation were suppressed in GGT1-deficient cells. Furthermore, GGT1 directly associated with gp130, the signal-transducer of IL-6. Importantly, GGT1-deficiency suppressed inflammation development in a STAT3/NF-κB-dependent disease model. Thus, the risk allele of GGT1-SNP rs5751901 is involved in the pathogenesis of PEP via IL-6 amplifier activation. Therefore, the GGT1-STAT3 axis in pancreas may be a prognosis marker and therapeutic target for PEP.


Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Interleucina-6 , Pancreatitis , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Factor de Transcripción STAT3 , gamma-Glutamiltransferasa , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Pancreatitis/genética , Pancreatitis/etiología , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Animales , gamma-Glutamiltransferasa/metabolismo , gamma-Glutamiltransferasa/genética , Ratones , Masculino , Femenino , Persona de Mediana Edad , Alelos , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Predisposición Genética a la Enfermedad , FN-kappa B/metabolismo , Transducción de Señal
4.
J Biol Chem ; 300(5): 107251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569939

RESUMEN

Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling ß-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.


Asunto(s)
Factor Neurotrófico Ciliar , Receptor gp130 de Citocinas , Interleucina-6 , Transducción de Señal , Animales , Humanos , Ratones , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/genética , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Modelos Moleculares , Ingeniería de Proteínas/métodos , Estructura Terciaria de Proteína , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Receptores OSM-LIF/metabolismo , Receptores OSM-LIF/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Ratones Endogámicos C57BL
5.
Proc Natl Acad Sci U S A ; 121(16): e2315123121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38602915

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.


Asunto(s)
Hipertensión Pulmonar , Interleucina-6 , Animales , Ratones , Ratas , Linfocitos T CD4-Positivos/patología , Receptor gp130 de Citocinas/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/patología , Interleucina-6/genética , Arteria Pulmonar/patología
6.
Nat Commun ; 15(1): 2071, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453915

RESUMEN

IL-11 and IL-6 activate signalling via assembly of the cell surface receptor gp130; however, it is unclear how signals are transmitted across the membrane to instruct cellular responses. Here we solve the cryoEM structure of the IL-11 receptor recognition complex to discover how differences in gp130-binding interfaces may drive signalling outcomes. We explore how mutations in the IL6ST gene encoding for gp130, which cause severe immune deficiencies in humans, impair signalling without blocking cytokine binding. We use cryoEM to solve structures of both IL-11 and IL-6 complexes with a mutant form of gp130 associated with human disease. Together with molecular dynamics simulations, we show that the disease-associated variant led to an increase in flexibility including motion within the cytokine-binding core and increased distance between extracellular domains. However, these distances are minimized as the transmembrane helix exits the membrane, suggesting a stringency in geometry for signalling and dimmer switch mode of action.


Asunto(s)
Interleucina-11 , Interleucina-6 , Humanos , Interleucina-11/genética , Interleucina-6/metabolismo , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Transducción de Señal , Receptores de Interleucina-6/genética
7.
BMC Cancer ; 24(1): 354, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504172

RESUMEN

Colorectal cancer (CRC) is a worldwide health concern. Chronic inflammation is a risk factor for CRC, and interleukin-6 (IL-6) plays a pivotal role in this process. Arginine-specific mono-ADP-ribosyltransferase-1 (ART1) positively regulates inflammatory cytokines. ART1 knockdown reduces the level of glycoprotein 130 (gp130), a key transducer in the IL-6 signalling pathway. However, the relationship between ART1 and IL-6 and the resulting effects on IL-6-induced proliferation in CRC cells remain unclear. The aims of this study were to investigate the effects of ART1 knockdown on IL-6-induced cell proliferation in vitro and use an in vivo murine model to observe the growth of transplanted tumours. The results showed that compared with the control, ART1-sh cancer cells induced by IL-6 exhibited reduced viability, a lower rate of colony formation, less DNA synthesis, decreased protein levels of gp130, c-Myc, cyclin D1, Bcl-xL, and a reduced p-STAT3/STAT3 ratio (P < 0.05). Moreover, mice transplanted with ART1-sh CT26 cells that had high levels of IL-6 displayed tumours with smaller volumes (P < 0.05). ART1 and gp130 were colocalized in CT26, LoVo and HCT116 cells, and their expression was positively correlated in human CRC tissues. Overall, ART1 may serve as a promising regulatory factor for IL-6 signalling and a potential therapeutic target for human CRC.


Asunto(s)
Neoplasias Colorrectales , Interleucina-6 , Humanos , Animales , Ratones , Interleucina-6/genética , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Receptor gp130 de Citocinas/genética , Línea Celular Tumoral , Poli(ADP-Ribosa) Polimerasas/genética , Proliferación Celular , Neoplasias Colorrectales/patología , Proteínas Ligadas a GPI/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(2): e2315898120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165930

RESUMEN

Protection against endothelial damage is recognized as a frontline approach to preventing the progression of cytokine release syndrome (CRS). Accumulating evidence has demonstrated that interleukin-6 (IL-6) promotes vascular endothelial damage during CRS, although the molecular mechanisms remain to be fully elucidated. Targeting IL-6 receptor signaling delays CRS progression; however, current options are limited by persistent inhibition of the immune system. Here, we show that endothelial IL-6 trans-signaling promoted vascular damage and inflammatory responses via hypoxia-inducible factor-1α (HIF1α)-induced glycolysis. Using pharmacological inhibitors targeting HIF1α activity or mice with the genetic ablation of gp130 in the endothelium, we found that inhibition of IL-6R (IL-6 receptor)-HIF1α signaling in endothelial cells protected against vascular injury caused by septic damage and provided survival benefit in a mouse model of sepsis. In addition, we developed a short half-life anti-IL-6R antibody (silent anti-IL-6R antibody) and found that it was highly effective at augmenting survival for sepsis and severe burn by strengthening the endothelial glycocalyx and reducing cytokine storm, and vascular leakage. Together, our data advance the role of endothelial IL-6 trans-signaling in the progression of CRS and indicate a potential therapeutic approach for burns and sepsis.


Asunto(s)
Receptor gp130 de Citocinas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Interleucina-6 , Receptores de Interleucina-6 , Sepsis , Animales , Ratones , Receptor gp130 de Citocinas/genética , Síndrome de Liberación de Citoquinas , Células Endoteliales , Receptores de Interleucina-6/genética , Sepsis/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
9.
Respir Res ; 24(1): 308, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062491

RESUMEN

BACKGROUND: Asthma is stratified into type 2-high and type 2-low inflammatory phenotypes. Limited success has been achieved in developing drugs that target type 2-low inflammation. Previous studies have linked IL-6 signaling to severe asthma. IL-6 cooperates with soluble-IL-6Rα to activate cell signaling in airway epithelium. OBJECTIVE: We sought to study the role of sIL-6Rα amplified IL-6 signaling in airway epithelium and to develop an IL-6+ sIL-6Rα gene signature that may be used to select asthma patients who potentially respond to anti-IL-6 therapy. METHODS: Human airway epithelial cells were stimulated with combinations of IL-6, sIL-6Rα, and inhibitors, sgp130 (Olamkicept), and anti-IL-6R (Tocilizumab), to assess effects on pathway activation, epithelial barrier integrity, and gene expression. A gene signature was generated to identify IL-6 high patients using bronchial biopsies and nasal brushes. RESULTS: Soluble-IL-6Rα amplified the activation of the IL-6 pathway, shown by the increase of STAT3 phosphorylation and stronger gene induction in airway epithelial cells compared to IL-6 alone. Olamkicept and Tocilizumab inhibited the effect of IL-6 + sIL-6Rα on gene expression. We developed an IL-6 + sIL-6Rα gene signature and observed enrichment of this signature in bronchial biopsies but not nasal brushes from asthma patients compared to healthy controls. An IL-6 + sIL-6Rα gene signature score was associated with lower levels of sputum eosinophils in asthma. CONCLUSION: sIL-6Rα amplifies IL-6 signaling in bronchial epithelial cells. Higher local airway IL-6 + sIL-6Rα signaling is observed in asthma patients with low sputum eosinophils.


Asunto(s)
Asma , Interleucina-6 , Humanos , Asma/diagnóstico , Asma/tratamiento farmacológico , Asma/genética , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Inflamación , Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Transducción de Señal
10.
J Clin Immunol ; 44(1): 30, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133879

RESUMEN

Genetic variants in IL6ST encoding the shared cytokine receptor for the IL-6 cytokine family GP130 have been associated with a diverse number of clinical phenotypes and disorders. We provide a molecular classification for 59 reported rare IL6ST pathogenic or likely pathogenic variants and additional polymorphisms. Based on loss- or gain-of-function, cytokine selectivity, mono- and biallelic associations, and variable cellular mosaicism, we grade six classes of IL6ST variants and explore the potential for additional variants. We classify variants according to the American College of Medical Genetics and Genomics criteria. Loss-of-function variants with (i) biallelic complete loss of GP130 function that presents with extended Stüve-Wiedemann Syndrome; (ii) autosomal recessive hyper-IgE syndrome (HIES) caused by biallelic; and (iii) autosomal dominant HIES caused by monoallelic IL6ST variants both causing selective IL-6 and IL-11 cytokine loss-of-function defects; (iv) a biallelic cytokine-specific variant that exclusively impairs IL-11 signaling, associated with craniosynostosis and tooth abnormalities; (v) somatic monoallelic mosaic constitutively active gain-of-function variants in hepatocytes that present with inflammatory hepatocellular adenoma; and (vi) mosaic constitutively active gain-of-function variants in hematopoietic and non-hematopoietic cells that are associated with an immune dysregulation syndrome. In addition to Mendelian IL6ST coding variants, there are common non-coding cis-acting variants that modify gene expression, which are associated with an increased risk of complex immune-mediated disorders and trans-acting variants that affect GP130 protein function. Our taxonomy highlights IL6ST as a gene with particularly strong functional and phenotypic diversity due to the combinatorial biology of the IL-6 cytokine family and predicts additional genotype-phenotype associations.


Asunto(s)
Receptor gp130 de Citocinas , Interleucina-11 , Síndrome de Job , Humanos , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Interleucina-11/metabolismo , Interleucina-6/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Factor de Transcripción STAT3/metabolismo
11.
Nat Commun ; 14(1): 7543, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985757

RESUMEN

Interleukin (IL-)11, an IL-6 family cytokine, has pivotal roles in autoimmune diseases, fibrotic complications, and solid cancers. Despite intense therapeutic targeting efforts, structural understanding of IL-11 signalling and mechanistic insights into current inhibitors are lacking. Here we present cryo-EM and crystal structures of the human IL-11 signalling complex, including the complex containing the complete extracellular domains of the shared IL-6 family ß-receptor, gp130. We show that complex formation requires conformational reorganisation of IL-11 and that the membrane-proximal domains of gp130 are dynamic. We demonstrate that the cytokine mutant, IL-11 Mutein, competitively inhibits signalling in human cell lines. Structural shifts in IL-11 Mutein underlie inhibition by altering cytokine binding interactions at all three receptor-engaging sites and abrogating the final gp130 binding step. Our results reveal the structural basis of IL-11 signalling, define the molecular mechanisms of an inhibitor, and advance understanding of gp130-containing receptor complexes, with potential applications in therapeutic development.


Asunto(s)
Citocinas , Interleucina-11 , Humanos , Interleucina-11/genética , Receptor gp130 de Citocinas/genética , Interleucina-6/metabolismo , Antígenos CD/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-6/metabolismo
12.
Front Immunol ; 14: 1221562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583704

RESUMEN

The IL-6 cytokine family signals through the common signal transduction molecule gp130 combined with a cytokine-specific receptor. Gp130 signaling on CD4 T cells is vital in controlling chronic infection of mice with lymphocytic choriomeningitis virus clone 13 (LCMV Cl13), but the precise role of individual members of the IL-6 cytokine family is not fully understood. Transcriptional analysis highlighted the importance of gp130 signaling in promoting key processes in CD4 T cells after LCMV Cl13 infection, particularly genes associated with T follicular helper (Tfh) cell differentiation and IL-21 production. Further, Il27r-/-Il6ra-/- mice failed to generate antibody or CD8 T-cell immunity and to control LCMV Cl13. Transcriptomics and phenotypic analyses of Il27r-/-Il6ra-/- Tfh cells revealed that IL-6R and IL-27R signaling was required to activate key pathways within CD4 T cells. IL-6 and IL-27 signaling has distinct and overlapping roles, with IL-6 regulating Tfh differentiation, IL-27 regulating CD4 T cell survival, and both redundantly promoting IL-21.


Asunto(s)
Interleucina-27 , Coriomeningitis Linfocítica , Ratones , Animales , Linfocitos T CD4-Positivos , Interleucina-27/metabolismo , Interleucina-6/metabolismo , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Infección Persistente , Virus de la Coriomeningitis Linfocítica , Receptores de Citocinas/genética
13.
Methods Mol Biol ; 2691: 207-224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355548

RESUMEN

Interleukin-6 (IL-6) is a cytokine synthesized by many cells in the human body. IL-6 binds to a membrane-bound receptor (IL-6R), which is only present on hepatocytes, some epithelial cells, and some leukocytes. The complex of IL-6 and IL-6R binds to the ubiquitously expressed receptor subunit gp130, which forms a homodimer and thereby initiates intracellular signaling, e.g., the JAK/STAT and MAPK pathways. Proteases can cleave the membrane-bound IL-6R from the cell surface and generate a soluble IL-6R (sIL-6R), which retains its ability to bind IL-6. The IL-6/sIL-6R complex associates with gp130 and induces signaling even on cells which do not express the IL-6R. This paradigm has been called IL-6 trans-signaling, whereas signaling via the membrane-bound IL-6R is referred to as classic signaling. We have generated several molecular tools to differentiate between both pathways and to analyze the consequences of cellular IL-6 signaling in vivo. One of these tools is soluble gp130Fc, which selectively inhibits IL-6 trans-signaling. This protein under the WHO name Olamkicept has successfully undergone phase II clinical trials in patients with autoimmune diseases. Here, in this chapter, we describe several molecular tools to differentiate between IL-6 classic and trans-signaling and to analyze the consequences of cellular IL-6 signaling in vivo.


Asunto(s)
Interleucina-6 , Neoplasias , Humanos , Interleucina-6/genética , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Receptores de Interleucina-6/genética , Neoplasias/genética , Citocinas/metabolismo , Inflamación/metabolismo
14.
Free Radic Biol Med ; 205: 163-174, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307935

RESUMEN

Prolonged activation of the PERK branch of the unfolded protein response (UPR) promotes cardiomyocytes apoptosis in response to chronic ß-adrenergic stimulation. STAT3 plays a critical role in ß-adrenergic functions in the heart. However, whether STAT3 contributed to ß-adrenoceptor-mediated PERK activation and how ß-adrenergic signaling activates STAT3 remains unclear. This study aimed to investigate whether STAT3-Y705 phosphorylation contributed to the PERK arm activation in cardiomyocytes and if IL-6/gp130 signaling was involved in the chronic ß-AR-stimulation-induced STAT3 and PERK arm activation. We found that the PERK phosphorylation was positively associated with STAT3 activation. Wild-type STAT3 plasmids transfection activated the PERK/eIF2α/ATF4/CHOP pathway in cardiomyocytes while dominant negative Y705F STAT3 plasmids caused no obvious effect on PERK signaling. Stimulation with isoproterenol produced a significant increase in the level of IL-6 in the cardiomyocyte's supernatants, while IL-6 silence inhibited PERK phosphorylation but failed to attenuate STAT3 activation in response to isoproterenol stimulation. Gp130 silence attenuated isoproterenol-induced STAT3 activation and PERK phosphorylation. Inhibiting IL-6/gp130 pathway by bazedoxifene and inhibiting STAT3 by stattic both reversed isoproterenol-induced STAT3-Y705 phosphorylation, ROS production, PERK activation, IRE1α activation, and cardiomyocytes apoptosis in vitro. Bazedoxifene (5 mg/kg/day by oral gavage once a day) exhibited similar effect as carvedilol (10 mg/kg/day by oral gavage once a day) on attenuating chronic isoproterenol (30 mg/kg by abdominal injection once a day, 7 days) induced cardiac systolic dysfunction, cardiac hypertrophy and fibrosis in C57BL/6 mice. Meanwhile, bazedoxifene attenuates isoproterenol-induced STAT3-Y705 phosphorylation, PERK/eIF2α/ATF4/CHOP activation, IRE1α activation, and cardiomyocytes apoptosis to a similar extend as carvedilol in the cardiac tissue of mice. Our results showed that chronic ß-adrenoceptor-mediated stimulation activated the STAT3 and PERK arm of the UPR at least partially via IL-6/gp130 pathway. Bazedoxifene has great potential to be used as an alternative to conventional ß-blockers to attenuate ß-adrenoceptor-mediated maladaptive UPR.


Asunto(s)
Interleucina-6 , Proteínas Serina-Treonina Quinasas , Ratones , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Isoproterenol/farmacología , Interleucina-6/genética , Interleucina-6/metabolismo , Endorribonucleasas/metabolismo , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Adrenérgicos , Carvedilol , Ratones Endogámicos C57BL , Respuesta de Proteína Desplegada , Receptores Adrenérgicos/metabolismo
15.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119489, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37271223

RESUMEN

The cytokine interleukin-6 (IL-6) has considerable pro-inflammatory properties and is a driver of many physiological and pathophysiological processes. Cellular responses to IL-6 are mediated by membrane-bound or soluble forms of the IL-6 receptor (IL-6R) complexed with the signal-transducing subunit gp130. While expression of the membrane-bound IL-6R is restricted to selected cell types, soluble IL-6R (sIL-6R) enables gp130 engagement on all cells, a process termed IL-6 trans-signalling and considered to be pro-inflammatory. sIL-6R is predominantly generated through proteolytic processing by the metalloproteinase ADAM17. ADAM17 also liberates ligands of the epidermal growth factor receptor (EGFR), which is a prerequisite for EGFR activation and results in stimulation of proliferative signals. Hyperactivation of EGFR mostly due to activating mutations drives cancer development. Here, we reveal an important link between overshooting EGFR signalling and the IL-6 trans-signalling pathway. In epithelial cells, EGFR activity induces not only IL-6 expression but also the proteolytic release of sIL-6R from the cell membrane by increasing ADAM17 surface activity. We find that this derives from the transcriptional upregulation of iRhom2, a crucial regulator of ADAM17 trafficking and activation, upon EGFR engagement, which results in increased surface localization of ADAM17. Also, phosphorylation of the EGFR-downstream mediator ERK mediates ADAM17 activity via interaction with iRhom2. In sum, our study reveals an unforeseen interplay between EGFR activation and IL-6 trans-signalling, which has been shown to be fundamental in inflammation and cancer.


Asunto(s)
Proteína ADAM17 , Interleucina-6 , Transducción de Señal , Receptor gp130 de Citocinas/genética , Células Epiteliales/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Transducción de Señal/genética , Humanos
16.
Viruses ; 15(5)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37243282

RESUMEN

Interleukin-6 has been recognized as a major role player in COVID-19 severity, being an important regulator of the cytokine storm. Hence, the evaluation of the influence of polymorphisms in key genes of the IL-6 pathway, namely IL6, IL6R, and IL6ST, may provide valuable prognostic/predictive markers for COVID-19. The present cross-sectional study genotyped three SNPs (rs1800795, rs2228145, and rs7730934) at IL6. IL6R and IL6ST genes, respectively, in 227 COVID-19 patients (132 hospitalized and 95 non-hospitalized). Genotype frequencies were compared between these groups. As a control group, published data on gene and genotype frequencies were gathered from published studies before the pandemic started. Our major results point to an association of the IL6 C allele with COVID-19 severity. Moreover, IL-6 plasmatic levels were higher among IL6 CC genotype carriers. Additionally, the frequency of symptoms was higher at IL6 CC and IL6R CC genotypes. In conclusion, the data suggest an important role of IL6 C allele and IL6R CC genotype on COVID-19 severity, in agreement with indirect evidence from the literature about the association of these genotypes with mortality rates, pneumonia, and heightening of protein plasmatic levels pro-inflammatory driven effects.


Asunto(s)
COVID-19 , Interleucina-6 , Humanos , Interleucina-6/genética , Estudios Transversales , Receptores de Interleucina-6/genética , COVID-19/genética , Genotipo , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Receptor gp130 de Citocinas/genética
17.
Commun Biol ; 6(1): 418, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061565

RESUMEN

All except one cytokine of the Interleukin (IL-)6 family share glycoprotein (gp) 130 as the common ß receptor chain. Whereas Interleukin (IL-)11 signal via the non-signaling IL-11 receptor (IL-11R) and gp130 homodimers, leukemia inhibitory factor (LIF) recruits gp130:LIF receptor (LIFR) heterodimers. Using IL-11 as a framework, we exchange the gp130-binding site III of IL-11 with the LIFR binding site III of LIF. The resulting synthetic cytokimera GIL-11 efficiently recruits the non-natural receptor signaling complex consisting of gp130, IL-11R and LIFR resulting in signal transduction and proliferation of factor-depending Ba/F3 cells. Besides LIF and IL-11, GIL-11 does not activate receptor complexes consisting of gp130:LIFR or gp130:IL-11R, respectively. Human GIL-11 shows cross-reactivity to mouse and rescued IL-6R-/- mice following partial hepatectomy, demonstrating gp130:IL-11R:LIFR signaling efficiently induced liver regeneration. With the development of the cytokimera GIL-11, we devise the functional assembly of the non-natural cytokine receptor complex of gp130:IL-11R:LIFR.


Asunto(s)
Hepatectomía , Interleucina-11 , Ratones , Animales , Humanos , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Interleucina-11/genética , Receptores de Interleucina-11 , Antígenos CD/metabolismo , Interleucina-6/metabolismo , Transducción de Señal , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia
18.
Sci Rep ; 13(1): 854, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646738

RESUMEN

Leukemia inhibitory factor (LIF) receptor, an interleukin 6 cytokine family signal transducer (Il6st, also known as Gp130) that is expressed in the uterine epithelium and stroma, has been recognized to play an essential role in embryo implantation. However, the molecular mechanism underlying Gp130-mediated LIF signaling in the uterine epithelium during embryo implantation has not been elucidated. In this study, we generated mice with uterine epithelium specific deletion of Gp130 (Gp130 ecKO). Gp130 ecKO females were infertile due to the failure of embryo attachment and decidualization. Histomorphological observation revealed that the endometrial shape and embryo position from Gp130 ecKO were comparable to those of the control, and uterine epithelial cell proliferation, whose attenuation is essential for embryo implantation, was controlled in Gp130 ecKO. Comprehensive gene expression analysis using RNA-seq indicates that epithelial Gp130 regulates the expression of estrogen- and progesterone-responsive genes in conjunction with immune response during embryo implantation. We also found that an epithelial remodeling factor, snail family transcriptional repressor 1 (Snai1), was markedly reduced in the pre-implantation uterus from Gp130 ecKO. These results suggest that not only the suppression of uterine epithelial cell proliferation, but also Gp130-mediated epithelial remodeling is required for successful implantation in mice.


Asunto(s)
Implantación del Embrión , Útero , Femenino , Ratones , Animales , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Útero/metabolismo , Implantación del Embrión/fisiología , Estrógenos/metabolismo , Progesterona/metabolismo , Receptores OSM-LIF , Factor Inhibidor de Leucemia/metabolismo
19.
Br J Anaesth ; 129(6): 923-936, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36253222

RESUMEN

BACKGROUND: Interleukin-6 (IL-6), a pleiotropic cytokine with both degenerative and regenerative properties, is necessary and sufficient to provoke perioperative neurocognitive disorders after aseptic trauma in mice. IL-6 initiates its actions after binding to either membrane-bound IL-6 receptor α (mIL-6Rα) through classical signalling, or soluble IL-6 receptor (IL-6R) through trans-signalling; both signalling pathways require the transducer gp130. We investigated the site and type of IL-6 signalling that pertains in a tibial fracture aseptic trauma model of perioperative neurocognitive disorder. METHODS: Wild-type or genetically altered adult mice that lacked molecules unique to either classical or trans-IL-6 signalling underwent tibial fracture under isoflurane anaesthesia. In separate cohorts, we assessed postoperative memory using a trace fear conditioning paradigm (72 h postoperatively), and post-receptor IL-6 signalling (24 h postoperatively) using phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) in CA1 hippocampal neurones. Fracture healing was assessed at postoperative day 15 after inhibiting either both forms of IL-6 signalling with BE0047 or only trans-signalling with sgp130Fc. RESULTS: The surgical phenotype of memory decline (decrease in freezing in trace fear conditioning) and upregulated IL-6 signalling (pSTAT3) did not occur after pretreatment before surgery with either BE0047 or sgp130Fc, or after depleting gp130 from CA1 neurones. The surgical phenotype still occurred when IL-6Rα was depleted in either CA1 hippocampal neurones (freezing time, 38.9% [11.5%] vs 58.4% [12.3%]; pSTAT+ CA1 neurones, 31.7 [4.9] vs 7.0 [3.1]) or microglia (freezing time, 40.1% [13.9%] vs 65.2% [12.6%]; pSTAT+ CA1 neurones, 30.1 [5.5] vs 7.9 [3.2]). In global IL-6Rα-/- mice, hyper-IL-6, the trans-signalling agonist, produced the surgical phenotype when administered i.c.v. (freezing time, 42.4% [8.8%] vs 59.7% [10.4%]; pSTAT+ cells, 29.3 [4.3] vs 10.0 [4.4]). Bone-fracture healing (% of fracture callus comprised of new collagen) was significantly greater with sgp130Fc than with BE0047 (52.2% [8.3%] vs 39.7% [7.9%]). CONCLUSIONS: After orthopaedic trauma, IL-6 produces perioperative neurocognitive disorders through IL-6 trans-signalling in mouse CA1 neurones. Druggable targets of the trans-signalling pathway should be sought to reduce perioperative neurocognitive disorders while allowing the healing properties of classical IL-6 signalling.


Asunto(s)
Interleucina-6 , Fracturas de la Tibia , Ratones , Animales , Interleucina-6/farmacología , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Fracturas de la Tibia/cirugía , Receptores de Interleucina-6/metabolismo , Hipocampo/metabolismo , Trastornos Neurocognitivos/etiología
20.
Nat Commun ; 13(1): 6219, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266314

RESUMEN

Prominin-1, a lipid raft protein, is required for maintaining cancer stem cell properties in hepatocarcinoma cell lines, but its physiological roles in the liver have not been well studied. Here, we investigate the role of Prominin-1 in lipid rafts during liver regeneration and show that expression of Prominin-1 increases after 2/3 partial hepatectomy or CCl4 injection. Hepatocyte proliferation and liver regeneration are attenuated in liver-specific Prominin-1 knockout mice compared to wild-type mice. Detailed mechanistic studies reveal that Prominin-1 interacts with the interleukin-6 signal transducer glycoprotein 130, confining it to lipid rafts so that STAT3 signaling by IL-6 is effectively activated. The overexpression of the glycosylphosphatidylinsositol-anchored first extracellular domain of Prominin-1, which is the domain that binds to GP130, rescued the proliferation of hepatocytes and liver regeneration in liver-specific Prominin-1 knockout mice. In summary, Prominin-1 is upregulated in hepatocytes during liver regeneration where it recruits GP130 into lipid rafts and activates the IL6-GP130-STAT3 axis, suggesting that Prominin-1 might be a promising target for therapeutic applications in liver transplantation.


Asunto(s)
Interleucina-6 , Regeneración Hepática , Ratones , Animales , Regeneración Hepática/fisiología , Interleucina-6/metabolismo , Antígeno AC133/genética , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Ratones Noqueados , Microdominios de Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA