Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Mol Model ; 30(6): 170, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753123

RESUMEN

CONTEXT: In the pursuit of novel therapeutic possibilities, repurposing existing drugs has gained prominence as an efficient strategy. The findings from our study highlight the potential of repurposed drugs as promising candidates against receptor for advanced glycation endproducts (RAGE) that offer therapeutic implications in cancer, neurodegenerative conditions and metabolic syndromes. Through careful analyses of binding affinities and interaction patterns, we identified a few promising candidates, ultimately focusing on sertindole and temoporfin. These candidates exhibited exceptional binding affinities, efficacy, and specificity within the RAGE binding pocket. Notably, they displayed a pronounced propensity to interact with the active site of RAGE. Our investigation further revealed that sertindole and temoporfin possess desirable pharmacological properties that highlighted them as attractive candidates for targeted drug development. Overall, our integrated computational approach provides a comprehensive understanding of the interactions between repurposed drugs, sertindole and temoporfin and RAGE that pave the way for future experimental validation and drug development endeavors. METHODS: We present an integrated approach utilizing molecular docking and extensive molecular dynamics (MD) simulations to evaluate the potential of FDA-approved drugs, sourced from DrugBank, against RAGE. To gain deeper insights into the binding mechanisms of the elucidated candidate repurposed drugs, sertindole and temoporfin with RAGE, we conducted extensive all-atom MD simulations, spanning 500 nanoseconds (ns). These simulations elucidated the conformational dynamics and stability of the RAGE-sertindole and RAGE-temoporfin complexes.


Asunto(s)
Reposicionamiento de Medicamentos , Imidazoles , Indoles , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor para Productos Finales de Glicación Avanzada , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/química , Humanos , Indoles/química , Indoles/farmacología , Imidazoles/química , Imidazoles/farmacología , Unión Proteica , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Sitios de Unión
2.
Protein J ; 43(2): 243-258, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431537

RESUMEN

S100A8 and S100A9 belong to the calcium-binding, damage associated molecular pattern (DAMP) proteins shown to aggravate the pathogenesis of rheumatoid arthritis (RA) through their interaction with the TLR4, RAGE and CD36 receptors. S100A8 and S100A9 proteins tend to exist in monomeric, homo and heterodimeric forms, which have been implicated in the pathogenesis of RA, via interacting with Pattern Recognition receptors (PRRs). The study aims to assess the influence of changes in the structure and biological assembly of S100A8 and S100A9 proteins as well as their interaction with significant receptors in RA through computational methods and surface plasmon resonance (SPR) analysis. Molecular docking analysis revealed that the S100A9 homodimer and S100A8/A9 heterodimer showed higher binding affinity towards the target receptors. Most S100 proteins showed good binding affinity towards TLR4 compared to other receptors. Based on the 50 ns MD simulations, TLR4, RAGE, and CD36 formed stable complexes with the monomeric and dimeric forms of S100A8 and S100A9 proteins. However, SPR analysis showed that the S100A8/A9 heterodimers formed stable complexes and exhibited high binding affinity towards the receptors. SPR data also indicated that TLR4 and its interactions with S100A8/A9 proteins may play a primary role in the pathogenesis of RA, with additional contributions from CD36 and RAGE interactions. Subsequent in vitro and in vivo investigations are warranted to corroborate the involvement of S100A8/A9 and the expression of TLR4, RAGE, and CD36 in the pathophysiology of RA.


Asunto(s)
Antígenos CD36 , Calgranulina A , Calgranulina B , Simulación del Acoplamiento Molecular , Receptor para Productos Finales de Glicación Avanzada , Receptor Toll-Like 4 , Calgranulina B/química , Calgranulina B/metabolismo , Receptor Toll-Like 4/química , Receptor Toll-Like 4/metabolismo , Calgranulina A/química , Calgranulina A/metabolismo , Calgranulina A/genética , Humanos , Antígenos CD36/química , Antígenos CD36/metabolismo , Antígenos CD36/genética , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Unión Proteica , Simulación de Dinámica Molecular , Resonancia por Plasmón de Superficie , Multimerización de Proteína , Artritis Reumatoide/metabolismo
3.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199060

RESUMEN

Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.


Asunto(s)
Descubrimiento de Drogas , Terapia Molecular Dirigida , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Susceptibilidad a Enfermedades , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Ligandos , Modelos Moleculares , Polimorfismo Genético , Isoformas de Proteínas , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/genética , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
4.
Proteins ; 89(11): 1399-1412, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34156100

RESUMEN

The Receptor for Advanced Glycation End products (RAGE) is a pattern recognition receptor that signals for inflammation via the NF-κB pathway. RAGE has been pursued as a potential target to suppress symptoms of diabetes and is of interest in a number of other diseases associated with chronic inflammation, such as inflammatory bowel disease and bronchopulmonary dysplasia. Screening and optimization have previously produced small molecules that inhibit the activity of RAGE in cell-based assays, but efforts to develop a therapeutically viable direct-binding RAGE inhibitor have yet to be successful. Here, we show that a fragment-based approach can be applied to discover fundamentally new types of RAGE inhibitors that specifically target the ligand-binding surface. A series of systematic assays of structural stability, solubility, and crystallization were performed to select constructs of the RAGE ligand-binding domain and optimize conditions for NMR-based screening and co-crystallization of RAGE with hit fragments. An NMR-based screen of a highly curated ~14 000-member fragment library produced 21 fragment leads. Of these, three were selected for elaboration based on structure-activity relationships generated through cycles of structural analysis by X-ray crystallography, structure-guided design principles, and synthetic chemistry. These results, combined with crystal structures of the first linked fragment compounds, demonstrate the applicability of the fragment-based approach to the discovery of RAGE inhibitors.


Asunto(s)
Benzamidas/química , Diseño de Fármacos/métodos , Imidazoles/química , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Benzamidas/metabolismo , Benzamidas/farmacología , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Imidazoles/metabolismo , Imidazoles/farmacología , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
5.
J Cell Physiol ; 236(9): 6496-6506, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33570767

RESUMEN

The receptor for advanced glycation end products (RAGE) is a signal receptor first shown to be activated by advanced glycation end products, but also by a variety of signal molecules, including pathological advanced oxidation protein products and ß-amyloid. However, most of the RAGE activators have multiple intracellular targets, making it difficult to unravel the exact pathway of RAGE activation. Here, we show that the cell-impermeable RAGE fragment sequence (60-76) of the V-domain of the receptor is able to activate RAGE present on the plasma membrane of neurons and, preferentially, astrocytes. This leads to the exocytosis of vesicular glutamate transporter vesicles and the release of glutamate from astrocytes, which stimulate NMDA and AMPA/kainate receptors, resulting in calcium signals predominantly in neurons. Thus, we show a specific mechanism of RAGE activation by the RAGE fragment and propose a mechanism by which RAGE activation can contribute to the neuronal-astrocytic communication in physiology and pathology.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Astrocitos/efectos de los fármacos , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Espacio Extracelular/metabolismo , Humanos , Neuronas/efectos de los fármacos , Péptidos/farmacología , Dominios Proteicos , Conejos , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada/química , Receptores AMPA/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Nat Commun ; 12(1): 308, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436632

RESUMEN

Accumulating evidence shows that RAGE has an important function in the pathogenesis of sepsis. However, the mechanisms by which RAGE transduces signals to downstream kinase cascades during septic shock are not clear. Here, we identify SLP76 as a binding partner for the cytosolic tail of RAGE both in vitro and in vivo and demonstrate that SLP76 binds RAGE through its sterile α motif (SAM) to mediate downstream signaling. Genetic deficiency of RAGE or SLP76 reduces AGE-induced phosphorylation of p38 MAPK, ERK1/2 and IKKα/ß, as well as cytokine release. Delivery of the SAM domain into macrophages via the TAT cell-penetrating peptide blocks proinflammatory cytokine production. Furthermore, administration of TAT-SAM attenuates inflammatory cytokine release and tissue damage in mice subjected to cecal ligation and puncture (CLP) and protects these mice from the lethality of sepsis. These findings reveal an important function for SLP76 in RAGE-mediated pro-inflammatory signaling and shed light on the development of SLP76-targeted therapeutics for sepsis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Terapia Molecular Dirigida , Fosfoproteínas/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Sepsis/tratamiento farmacológico , Animales , Bacteriófago T7/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Péptidos/metabolismo , Unión Proteica , Dominios Proteicos , Células RAW 264.7 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor para Productos Finales de Glicación Avanzada/química , Sepsis/patología , Transducción de Señal
7.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256110

RESUMEN

Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.


Asunto(s)
Melanoma/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Animales , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Melanoma/genética , Melanoma/patología , Mutación/genética , Receptor para Productos Finales de Glicación Avanzada/química , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
8.
Molecules ; 25(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182705

RESUMEN

We determined whether plasma concentrations of the receptor for advanced glycation end products (RAGE) and the soluble (s) form of RAGE (sRAGE) in healthy individuals and patients with type 2 diabetes (T2D) modulate vascular remodeling. Healthy individuals and patients with T2D were divided into two age groups: young = <35 years old or middle-aged (36-64 years old) and stratified based on normal glucose tolerance (NGT), impaired (IGT), and T2D. Plasma titers of sRAGE, the RAGE ligands, AGEs, S100B, S100A1, S100A6, and the apoptotic marker Fas ligand Fas(L) were measured by enzyme-linked immunosorbent assay (ELISA). The apoptotic potential of the above RAGE ligands and sRAGE were assessed in cultured adult rat aortic smooth muscle cells (ASMC). In NGT individuals, aging increased the circulating levels of AGEs and S100B and decreased sRAGE, S100A1 and S100A6. Middle-aged patients with T2D presented higher levels of circulating S100B, AGEs and FasL, but lower levels of sRAGE, S100A1 and S100A6 than individuals with NGT or IGT. Treatment of ASMC with either AGEs or S100B at concentrations detected in T2D patients increased markers of inflammation and apoptosis. Responses attenuated by concomitant administration of sRAGE. In middle-aged patients with T2D, lower circulating plasma levels of sRAGE may limit decoy and exogenous trapping of deleterious pro-apoptotic/pro-inflammatory RAGE ligands AGEs and S100B, increasing the risk for diabetic complications.


Asunto(s)
Apoptosis , Diabetes Mellitus Tipo 2/sangre , Ligandos , Receptor para Productos Finales de Glicación Avanzada/sangre , Receptor para Productos Finales de Glicación Avanzada/química , Adulto , Factores de Edad , Anciano , Animales , Antropometría , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Endotelio Vascular/metabolismo , Proteína Ligando Fas/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Inflamación , Masculino , Persona de Mediana Edad , Músculo Liso Vascular/citología , Miocitos del Músculo Liso , Ratas , Proteína A6 de Unión a Calcio de la Familia S100/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Proteínas S100/metabolismo , Transducción de Señal , Receptor fas/metabolismo
9.
Biochem Biophys Res Commun ; 533(3): 332-337, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32958253

RESUMEN

The Ca2+-mediated S100 family protein S100A6 has a crucial task in various intracellular and extracellular activities thereby demonstrating a possible involvement in the advancement and development of malignant tumors. S100A6 has been found to associate with receptor for advanced glycation end products, RAGE, through its extracellular extension. This extension is famously identified as a prominent receptor for many S100 family associates. Additionally, S100A6 binds to S100B protein and forms a heterodimer. Thus, we consider the S100B protein to be a prospective drug molecule to obstruct the interacting regions amongst S100A6 and RAGE V domain. We applied the NMR spectroscopy method to locate the binding area amid the S100A6m (mutant S100A6, cysteine at 3rd position of S100A6 is replaced with serine, C3S) and S100B proteins. The 1H-15N HSQC NMR titrations revealed the probable requisite dynamics of S100A6m and S100B interfaces. Utilizing data from the NMR titrations as input parameters, we ran the HADDOCK program and created a S100A6m-S100B heterodimer complex. The obtained complex was then superimposed with the reported complex of S100A6m-RAGE V domain. This superimposition displayed the possibility of S100B to be a potential antagonist that can block the interface area of the S100A6m and the RAGE V domain. Moreover, an in vitro cancer model using SW480 cells in water-soluble tetrazolium-1 assay (WST-1) showed a noticeable change in the cell proliferation as an effect of these proteins. Our study indicates the possibility to develop a S100B-like competitor that could play a key role in the treatment of S100- and RAGE-mediated human diseases.


Asunto(s)
Proteínas de Ciclo Celular/química , Regulación Neoplásica de la Expresión Génica , Receptor para Productos Finales de Glicación Avanzada/química , Proteína A6 de Unión a Calcio de la Familia S100/química , Subunidad beta de la Proteína de Unión al Calcio S100/química , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clonación Molecular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Escherichia coli/genética , Escherichia coli/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Proteína A6 de Unión a Calcio de la Familia S100/genética , Proteína A6 de Unión a Calcio de la Familia S100/metabolismo , Proteína A6 de Unión a Calcio de la Familia S100/farmacología , Subunidad beta de la Proteína de Unión al Calcio S100/genética , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/farmacología
10.
J Biol Chem ; 295(35): 12498-12511, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32665403

RESUMEN

The receptor for advanced glycation end products (RAGE) plays a key role in mammal physiology and in the etiology and progression of inflammatory and oxidative stress-based diseases. In adults, RAGE expression is normally high only in the lung where the protein concentrates in the basal membrane of alveolar Type I epithelial cells. In diseases, RAGE levels increase in the affected tissues and sustain chronic inflammation. RAGE exists as a membrane glycoprotein with an ectodomain, a transmembrane helix, and a short carboxyl-terminal tail, or as a soluble ectodomain that acts as a decoy receptor (sRAGE). VC1 domain is responsible for binding to the majority of RAGE ligands including advanced glycation end products (AGEs), S100 proteins, and HMGB1. To ascertain whether other ligands exist, we analyzed by MS the material pulled down by VC1 from human plasma. Twenty of 295 identified proteins were selected and associated to coagulation and complement processes and to extracellular matrix. Four of them contained a γ-carboxyl glutamic acid (Gla) domain, a calcium-binding module, and prothrombin (PT) was the most abundant. Using MicroScale thermophoresis, we quantified the interaction of PT with VC1 and sRAGE in the absence or presence of calcium that acted as a competitor. PT devoid of the Gla domain (PT des-Gla) did not bind to sRAGE, providing further evidence that the Gla domain is critical for the interaction. Finally, the presence of VC1 delayed plasma clotting in a dose-dependent manner. We propose that RAGE is involved in modulating blood coagulation presumably in conditions of lung injury.


Asunto(s)
Protrombina/química , Receptor para Productos Finales de Glicación Avanzada/química , Coagulación Sanguínea , Humanos , Lesión Pulmonar/sangre , Unión Proteica , Dominios Proteicos , Protrombina/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo
11.
Biosci Rep ; 40(1)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31912881

RESUMEN

The receptor for advanced glycation end products (RAGE) recognizes damage-associated molecular patterns (DAMPs) and plays a critical role for the innate immune response and sterile tissue inflammation. RAGE overexpression is associated with diabetic complications, neurodegenerative diseases and certain cancers. Yet, the molecular mechanism of ligand recognition by RAGE is insufficiently understood to rationalize the binding of diverse ligands. The N-terminal V-type Ig-domain of RAGE contains a triad of tryptophan residue; Trp51, Trp61 and Trp72. The role of these three Trp residues for domain folding, stability and binding of the RAGE ligand S100B was investigated through site-directed mutagenesis, UV/VIS, CD and fluorescence spectrometry, protein-protein interaction studies, and X-ray crystallography. The data show that the Trp triad stabilizes the folded V-domain by maintaining a short helix in the structure. Mutation of any Trp residue increases the structural plasticity of the domain. Residues Trp61 and Trp72 are involved in the binding of S100B, yet they are not strictly required for S100B binding. The crystal structure of the RAGE-derived peptide W72 in complex with S100B showed that Trp72 is deeply buried in a hydrophobic depression on the S100B surface. The studies suggest that multiple binding modes between RAGE and S100B exist and point toward a not previously recognized role of the Trp residues for RAGE-ligand binding. The Trp triad of the V-domain appears to be a suitable target for novel RAGE inhibitors, either in the form of monoclonal antibodies targeting this epitope, or small organic molecules.


Asunto(s)
Receptor para Productos Finales de Glicación Avanzada/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Mutación , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/genética , Subunidad beta de la Proteína de Unión al Calcio S100/química , Relación Estructura-Actividad , Triptófano
12.
Biochemistry ; 58(17): 2269-2281, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30957488

RESUMEN

S100A12 is a member of the Ca2+ binding S100 family of proteins that functions within the human innate immune system. Zinc sequestration by S100A12 confers antimicrobial activity when the protein is secreted by neutrophils. Here, we demonstrate that Ca2+ binding to S100A12's EF-hand motifs and Zn2+ binding to its dimeric interface cooperate to induce reversible self-assembly of the protein. Solution and magic angle spinning nuclear magnetic resonance spectroscopy on apo-, Ca2+-, Zn2+-, and Ca2+,Zn2+-S100A12 shows that significant metal binding-induced chemical shift perturbations, indicative of conformational changes, occur throughout the polypeptide chain. These perturbations do not originate from changes in the secondary structure of the protein, which remains largely preserved. While the overall structure of S100A12 is dominated by Ca2+ binding, Zn2+ binding to Ca2+-S100A12 introduces additional structural changes to helix II and the hinge domain (residues 38-53). The hinge domain of S100A12 is involved in the molecular interactions that promote chemotaxis for human monocyte, acute inflammatory responses and generates edema. In Ca2+-S100A12, helix II and the hinge domain participate in binding with the C-type immunoglobulin domain of the receptor for advanced glycation products (RAGE). We discuss how the additional conformational changes introduced to these domains upon Zn2+ binding may also impact the interaction of S100A12 and target proteins such as RAGE.


Asunto(s)
Calcio/química , Conformación Proteica , Proteína S100A12/química , Zinc/química , Secuencia de Aminoácidos , Calcio/metabolismo , Quimiotaxis , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Monocitos/metabolismo , Unión Proteica , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteína S100A12/genética , Proteína S100A12/metabolismo , Zinc/metabolismo
13.
Biosci Biotechnol Biochem ; 83(6): 1136-1145, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30822216

RESUMEN

Advanced glycation end products (AGEs) are implicated in the development of diabetic complications via the receptor for AGEs (RAGE). We have reported that the 3-hydroxypyridinium (3HP)-containing AGEs derived from α-hydroxyaldehydes physically interact with RAGE and show cytotoxicity. Lactaldehyde (LA) is formed from a reaction between threonine and myeloperoxidase, but no LA-derived AGEs have been characterized. Here, we identify the structure and physiological effects of an AGE derived from LA. We isolated a novel 3HP derivative, 2-acetamido-6-(3-hydroxy-5-methyl-pyridin-1-ium-1-yl)hexanoate, named as N-acetyl-LAPL (lactaldehyde-derived pyridinium-type lysine adduct), from a mixture of LA with Nα-acetyl-L-lysine. LAPL was also detected in the LA-modified protein. LAPL elicited toxicity in PC12 neuronal cells, but the effect was suppressed by the soluble form of RAGE as a decoy receptor. Moreover, surface plasmon resonance-based analysis revealed that LAPL specifically binds to recombinant RAGE. These results indicate that LA generates an AGE containing the 3HP moiety and contributes to RAGE-dependent cytotoxicity. Abbreviations: AGEs: advanced glycation end products; RAGE: receptor for advanced glycation end products; 3HP: 3-hydroxypyridinium; LA: lactaldehyde; LAPL: lactaldehyde-derived pyridinium-type lysine adduct; BSA: bovine serum albumin; GLAP: glyceraldehyde-derived pyridinium; MPO: myeloperoxidase; HFBA: heptafluorobutyric acid; TFA: trifluoroacetic acid; HPLC: high performance liquid chromatography; LC-ESI-QTOF-MS: liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry; NMR: nuclear magnetic resonance; LA-BSA: lactaldehyde-modified bovine serum albumin; PBS: phosphate buffered saline, GST, glutathione S-transferase; SPR: surface plasmon resonance; OP-lysine: 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate; GLO1: glyoxalase 1; MG, methylglyoxal.


Asunto(s)
Aldehídos/química , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/fisiología , Aldehídos/toxicidad , Animales , Lisina/análogos & derivados , Lisina/química , Estructura Molecular , Neuronas/efectos de los fármacos , Células PC12 , Compuestos de Piridinio/química , Ratas , Receptor para Productos Finales de Glicación Avanzada/química , Albúmina Sérica Bovina/química , Propiedades de Superficie
14.
Sci Rep ; 9(1): 20332, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31889156

RESUMEN

The pattern recognition receptor RAGE (receptor for advanced glycation end-products) transmits proinflammatory signals in several inflammation-related pathological states, including vascular diseases, cancer, neurodegeneration and diabetes. Its oligomerization is believed to be important in signal transduction, but RAGE oligomeric structures and stoichiometries remain unclear. Different oligomerization modes have been proposed in studies involving different truncated versions of the extracellular parts of RAGE. Here, we provide basic characterization of the oligomerization patterns of full-length RAGE (including the transmembrane (TM) and cytosolic regions) and compare the results with oligomerization modes of its four truncated fragments. For this purpose, we used native mass spectrometry, analytical ultracentrifugation, and size-exclusion chromatography coupled with multi-angle light scattering. Our results confirm known oligomerization tendencies of separate domains and highlight the enhanced oligomerization properties of full-length RAGE. Mutational analyses within the GxxxG motif of the TM region show sensitivity of oligomeric distributions to the TM sequence. Using hydrogen-deuterium exchange, we mapped regions involved in TM-dependent RAGE oligomerization. Our data provide experimental evidence for the major role of the C2 and TM domains in oligomerization, underscoring synergy among different oligomerization contact regions along the RAGE sequence. These results also explain the variability of obtained oligomerization modes in RAGE fragments.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Receptor para Productos Finales de Glicación Avanzada/química , Espectrometría de Masas , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Relación Estructura-Actividad
15.
Int J Cancer ; 144(12): 3138-3145, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30365872

RESUMEN

Within the "seed and soil" theory of organ tropic cancer metastasis is a growing compilation of evidence that S100A8/A9 functions as a soil signal that attracts cancer cells to certain organs, which prove beneficial to their growth. S100A8/A9-sensing receptors including Toll-like receptor 4 (TLR4), advanced glycation end products (RAGE), and also important receptors we recently succeeded in identifying (EMMPRIN, NPTNß, MCAM, and ALCAM) have the potential to become promising therapeutic targets. In our study, we prepared extracellular regions of these novel molecules and fused them to human IgG2-Fc to extend half-life expectancy, and we evaluated the anti-metastatic effects of the purified decoy proteins on metastatic cancer cells. The purified proteins markedly suppressed S100A8/A9-mediated lung tropic cancer metastasis. We hence expect that our novel biologics may become a prominent medicine to prevent cancer metastasis in clinical settings through cutting the linkage between "seed and soil".


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Melanoma Experimental/prevención & control , Melanoma Experimental/secundario , Proteínas Recombinantes de Fusión/farmacología , Animales , Basigina/química , Basigina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/farmacología , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/farmacología , Inmunoglobulina G/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Dominios Proteicos , Receptor para Productos Finales de Glicación Avanzada/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
16.
J Cachexia Sarcopenia Muscle ; 9(7): 1213-1234, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30334619

RESUMEN

Emerging evidence suggests that the signalling of the Receptor for Advanced Glycation End products (RAGE) is critical for skeletal muscle physiology controlling both the activity of muscle precursors during skeletal muscle development and the correct time of muscle regeneration after acute injury. On the other hand, the aberrant re-expression/activity of RAGE in adult skeletal muscle is a hallmark of muscle wasting that occurs in response to ageing, genetic disorders, inflammatory conditions, cancer, and metabolic alterations. In this review, we discuss the mechanisms of action and the ligands of RAGE involved in myoblast differentiation, muscle regeneration, and muscle pathological conditions. We highlight potential therapeutic strategies for targeting RAGE to improve skeletal muscle function.


Asunto(s)
Músculo Esquelético/metabolismo , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Ligandos , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Enfermedades Musculares/patología , Isoformas de Proteínas , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/genética , Rabdomiosarcoma/etiología , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Transducción de Señal
17.
Biochimie ; 154: 55-61, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30076903

RESUMEN

Receptor for Advanced Glycation End product (RAGE) is a multiligand receptor implicated in diverse pathological conditions such as diabetes, atherosclerosis, cancer and neural diseases. Extracellular, RAGE consists of V, C1 and C2 domains. Here, we show RAGE exists as a monomer in equilibrium with a fraction of a covalently linked dimer of monomers via its V domain through cysteine. In order to understand the functional implication of this dimer, we examined the binding capacity and functional potential of RAGE dimer via advanced glycation end products (AGEs) which shows enhanced binding capacity towards V domain, ERK phosphorylation, cytokine release and actin polymerization ability of the dimeric form for AGEs compared with the reduced monomeric form. Our data, suggests that the dimeric state of RAGE controls its function and ligand mediated signaling which may play important role in RAGE mediated various diseases.


Asunto(s)
Cisteína/metabolismo , Disulfuros/metabolismo , Multimerización de Proteína , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Células A549 , Animales , Cisteína/química , Cisteína/genética , Disulfuros/química , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Ratones , Dominios Proteicos , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/genética
18.
Exp Clin Endocrinol Diabetes ; 126(3): 141-147, 2018 03.
Artículo en Alemán | MEDLINE | ID: mdl-28926869

RESUMEN

The receptor for advanced glycation end-products (RAGE) is a multi-ligand receptor which belongs to the pattern recognition receptor family and can bind to various ligands such as advanced glycation end-products (AGEs), members of the S100 protein family, glycosaminoglycans, amyloid ß peptides, high-mobility group box-1 (HMGB1) and nucleic acids through its extracellular domain. The RAGE-ligand interaction leads to the activation of MAP kinase and NF-kB signaling pathways. Further ligand-induced up-regulation of RAGE is involved in various patho-physiological situations including late diabetic complications, Alzheimer disease and several other neurodegenerative diseases. A secreted soluble isoform of RAGE (sRAGE), corresponding to the extracellular domain only, has the ability to block RAGE-associated cellular activation and signaling. Further application of recombinant sRAGE has been shown to block RAGE-mediated pathophysiological conditions in various models of cancer or multiple sclerosis. These finding demonstrates sRAGE as a therapeutic tool to block RAGE-associated inflammatory signaling. In this manuscript, we describe a two-step simple, novel and convenient method for expressing and purifying scalable quantities of biologically active murine form of sRAGE by using E.coli as an expression host. The method we propose has several advantages over the current available methods particularly in terms of yield and quality of preparation. The sRAGE produced by this expression system retains all the secondary structural properties as analyzed by the ligand binding affinities. The produced protein also retains all the DNA-RAGE binding functional properties and thus can be a valuable tool for studying dynamics of this novel RAGE ligand. Moreover this method can be utilized by researchers to generate biologically active endotoxin-free sRAGE for in vivo applications to study and treat RAGE-associated pathologies.


Asunto(s)
Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/aislamiento & purificación , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Ratones
19.
J Med Chem ; 60(17): 7213-7232, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28482155

RESUMEN

The receptor for advanced glycation endproducts (RAGE) is an ubiquitous, transmembrane, immunoglobulin-like receptor that exists in multiple isoforms and binds to a diverse range of endogenous extracellular ligands and intracellular effectors. Ligand binding at the extracellular domain of RAGE initiates a complex intracellular signaling cascade, resulting in the production of reactive oxygen species (ROS), immunoinflammatory effects, cellular proliferation, or apoptosis with concomitant upregulation of RAGE itself. To date, research has mainly focused on the correlation between RAGE activity and pathological conditions, such as cancer, diabetes, cardiovascular diseases, and neurodegeneration. Because RAGE plays a role in many pathological disorders, it has become an attractive target for the development of inhibitors at the extracellular and intracellular domains. This review describes the role of endogenous RAGE ligands/effectors in normo- and pathophysiological processes, summarizes the current status of exogenous small-molecule inhibitors of RAGE and concludes by identifying key strategies for future therapeutic intervention.


Asunto(s)
Descubrimiento de Drogas/métodos , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Dominios Proteicos/efectos de los fármacos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor para Productos Finales de Glicación Avanzada/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico
20.
Structure ; 24(12): 2043-2052, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27818100

RESUMEN

S100 proteins are calcium-dependent regulators of homeostatic processes. Upon cellular response to stress, and notably during tumorigenesis, they relocalize to the extracellular environment where they induce pro-inflammatory signals by activating the receptor for advanced glycation end products (RAGE), thereby facilitating tumor growth and metastasis. Despite its importance in sustaining inflammation, the structural basis for RAGE-S100 crosstalk is still unknown. Here we report two crystal structures of the RAGE:S100A6 complex encompassing a full-length RAGE ectodomain. The structures, in combination with a comprehensive interaction analysis, suggest that the primary S100A6 binding site is formed by the RAGE C1 domain. Complex formation with S100A6 induces a unique dimeric conformation of RAGE that appears suited for signal transduction and intracellular effector recruitment. Intriguingly, S100A6 adopts a dimeric conformation radically different from all known S100 dimers. We discuss the physiological relevance of this non-canonical homodimeric form in vivo.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Humanos , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteína A6 de Unión a Calcio de la Familia S100 , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA