Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Cancer Med ; 13(7): e7148, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558536

RESUMEN

BACKGROUND: Non-canonical WNT family (WNT5A pathway) signaling via WNT5A through ROR1 and its partner, ROR2, or Frizzled2 (FZD2) is linked to processes driving tumorigenesis and therapy resistance. We utilized a large dataset of urothelial carcinoma (UC) tumors to characterize non-canonical WNT signaling through WNT5A, ROR1, ROR2, or FZD2 expression. METHODS: NextGen Sequencing of DNA (592 genes or WES)/RNA (WTS) was performed for 4125 UC tumors submitted to Caris Life Sciences. High and low expression of WNT5A, ROR1, ROR2, and FZD2 was defined as ≥ top and

Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
2.
J Immunother Cancer ; 12(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609317

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy target receptor tyrosine kinase-like orphan receptor 1 (ROR1) is broadly expressed in hematologic and solid tumors, however clinically-characterized ROR1-CAR T cells with single chain variable fragment (scFv)-R12 targeting domain failed to induce durable remissions, in part due to the immunosuppressive tumor microenvironment (TME). Herein, we describe the development of an improved ROR1-CAR with a novel, fully human scFv9 targeting domain, and augmented with TGFßRIIDN armor protective against a major TME factor, transforming growth factor beta (TGFß). METHODS: CAR T cells were generated by lentiviral transduction of enriched CD4+ and CD8+ T cells, and the novel scFv9-based ROR1-CAR-1 was compared with the clinically-characterized ROR1-R12-scFv-based CAR-2 in vitro and in vivo. RESULTS: CAR-1 T cells exhibited greater CAR surface density than CAR-2 when normalized for %CAR+, and produced more interferon (IFN)-γ tumor necrosis factor (TNF)-α and interleukin (IL)-2 in response to hematologic (Jeko-1, RPMI-8226) and solid (OVCAR-3, Capan-2, NCI-H226) tumor cell lines in vitro. In vivo, CAR-1 and CAR-2 both cleared hematologic Jeko-1 lymphoma xenografts, however only CAR-1 fully rejected ovarian solid OVCAR-3 tumors, concordantly with greater expansion of CD8+ and CD4+CAR T cells, and enrichment for central and effector memory phenotype. When equipped with TGFß-protective armor TGFßRIIDN, CAR-1 T cells resisted TGFß-mediated pSmad2/3 phosphorylation, as compared with CAR-1 alone. When co-cultured with ROR-1+ AsPC-1 pancreatic cancer line in the presence of TGFß1, armored CAR-1 demonstrated improved recovery of killing function, IFN-γ, TNF-α and IL-2 secretion. In mouse AsPC-1 pancreatic tumor xenografts overexpressing TGFß1, armored CAR-1, in contrast to CAR-1 alone, achieved complete tumor remissions, and yielded accelerated expansion of CAR+ T cells, diminished circulating active TGFß1, and no apparent toxicity or weight loss. Unexpectedly, in AsPC-1 xenografts without TGFß overexpression, TGFß1 production was specifically induced by ROR-1-CAR T cells interaction with ROR-1 positive tumor cells, and the TGFßRIIDN armor conferred accelerated tumor clearance. CONCLUSIONS: The novel fully human TGFßRIIDN-armored ROR1-CAR-1 T cells are highly potent against ROR1-positive tumors, and withstand the inhibitory effects of TGFß in solid TME. Moreover, TGFß1 induction represents a novel, CAR-induced checkpoint in the solid TME, which can be circumvented by co-expressing the TGßRIIDN armor on T cells.


Asunto(s)
Neoplasias Ováricas , Neoplasias Pancreáticas , Humanos , Animales , Femenino , Ratones , Apoptosis , Linfocitos T CD8-positivos , Línea Celular Tumoral , Factor de Crecimiento Transformador beta , Microambiente Tumoral , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética
3.
Int Immunopharmacol ; 133: 112157, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678671

RESUMEN

In non-small cell lung cancer (NSCLC), identifying a component with certain molecular targets can aid research on cancer treatment. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin which induced the anti-cancer effects via the STAT3 signaling pathway, but the underlying molecular mechanism is still elusive. In this study, we first proved that DHA prohibits the growth of tumors both in vitro and in vivo. Data from transcriptomics showed that DHA reduced the expression level of the genes involved in cell cycle-promoting and anti-apoptosis, and most importantly, DHA restricted the expression level of receptor tyrosine kinase-like orphan receptor 1 (ROR1) which has been reported to have abnormal expression on tumor cells and had close interaction with STAT3 signaling. Then, we performed comprehensive experiments and found that DHA remarkably decreased the expression of ROR1 at both mRNA and protein levels and it also diminished the phosphorylation level of STAT3 in NSCLC cell lines. In addition, our data showed that exogenously introduced ROR1 could significantly enhance the phosphorylation of STAT3 while blocking ROR1 had the opposite effects indicating that ROR1 plays a critical role in promoting the activity of STAT3 signaling. Finally, we found that ROR1 overexpression could partially reverse the decreased activity of STAT3 induced by DHA which indicates that DHA-induced anti-growth signaling is conferred, at least in part, through blocking ROR1-mediated STAT3 activation. In summary, our study indicates that in NSCLC, ROR1 could be one of the critical molecular targets mediating DHA-induced STAT3 retardation.


Asunto(s)
Artemisininas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Factor de Transcripción STAT3 , Artemisininas/farmacología , Artemisininas/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Animales , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Apoptosis/efectos de los fármacos , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células A549 , Ratones Endogámicos BALB C
4.
In Vitro Cell Dev Biol Anim ; 60(5): 489-501, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38587578

RESUMEN

Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the ß-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.


Asunto(s)
Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Proteína Wnt-5a , Humanos , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Animales , Vía de Señalización Wnt , Transducción de Señal , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología
5.
Asian Pac J Cancer Prev ; 25(3): 725-733, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546054

RESUMEN

OBJECTIVE: Availability of multimodal treatment strategies, including targeted therapies and immunotherapies, have improved the survival of non-small cell lung carcinoma (NSCLC). However, some patients still progress or respond poorly due to inherent resistance, acquired resistance, or lack of druggable driver mutations. Sphingosine-1-phosphate (S1P) and receptor tyrosine kinase-like orphan receptor (ROR1/2) signaling pathways are activated during lung carcinogenesis. METHODS: In this study, we have evaluated the crosstalk of S1P and ROR1/2 signaling pathways in lung cancer cells. RESULTS: S1P treatment of lung cancer cells decreases ROR1 and ROR2 transcript levels. While treatment with PF-543, a pharmacological SphK1 inhibitor or genetic knockdown of SPHK1 by shRNA, raises ROR1 and ROR2. Furthermore, simultaneous inhibition of SphK1 along with ROR1 reduced the migration of lung cancer cells. CONCLUSION: These findings demonstrate the reciprocal regulation of both pathways, suggesting that both pathways have an inverse relation i.e, in the absence of one pathway, another pathway may take charge of the other pathway. Therefore, simultaneously targeting both pathways could serve as a potential therapeutic target for lung cancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Lisofosfolípidos , Esfingosina/análogos & derivados , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Transducción de Señal , Pulmón/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
6.
Mol Cancer Res ; 22(5): 495-507, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334461

RESUMEN

Adhesion to and clearance of the mesothelial monolayer are key early events in metastatic seeding of ovarian cancer. ROR2 is a receptor tyrosine kinase that interacts with Wnt5a ligand to activate noncanonical Wnt signaling and has been previously shown to be upregulated in ovarian cancer tissue. However, no prior study has evaluated the mechanistic role of ROR2 in ovarian cancer. Through a cellular high-throughput genetic screen, we independently identified ROR2 as a driver of ovarian tumor cell adhesion and invasion. ROR2 expression in ovarian tumor cells serves to drive directed cell migration preferentially toward areas of high Wnt5a ligand, such as the mesothelial lined omentum. In addition, ROR2 promotes ovarian tumor cell adhesion and clearance of a mesothelial monolayer. Depletion of ROR2, in tumor cells, reduces metastatic tumor burden in a syngeneic model of ovarian cancer. These findings support the role of ROR2 in ovarian tumor cells as a critical factor contributing to the early steps of metastasis. Therapeutic targeting of the ROR2/Wnt5a signaling axis could provide a means of improving treatment for patients with advanced ovarian cancer. IMPLICATIONS: This study demonstrates that ROR2 in ovarian cancer cells is important for directed migration to the metastatic niche and provides a potential signaling axis of interest for therapeutic targeting in ovarian cancer.


Asunto(s)
Movimiento Celular , Invasividad Neoplásica , Neoplasias Ováricas , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Proteína Wnt-5a , Femenino , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Humanos , Ratones , Animales , Línea Celular Tumoral , Vía de Señalización Wnt , Transducción de Señal
7.
Cytometry B Clin Cytom ; 106(1): 74-81, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38273649

RESUMEN

Immunophenotyping by flow cytometry is an integral part of the diagnosis and classification of leukemias/lymphomas. The expression of ROR1 associated with chronic B lymphocytic leukemia (CLL) is well described in the literature, both in its diagnosis and in the follow-up of minimal residual disease (MRD) research, however, there are few studies regarding the expression pattern of ROR1 in other subtypes of mature B lymphoid neoplasms. With the aim of evaluating the expression of ROR1 and associating it with the expression of other important markers for the differentiation of mature B lymphoid neoplasms (MBLN), 767 samples of cases that entered our laboratory for immunophenotyping with clinical suspicion of MBLN were studied. ROR1 expression is predominant in CD5+/CD10- neoplasms. Overall, positive ROR1 expression was observed in 461 (60.1%) cases. The CD5+/CD10- group had a significantly higher proportion of ROR1 positive samples (89.9%) and more brightly expressed ROR1 than the other groups. Our results highlight the importance of evaluating ROR1 expression in the diagnosis of MBLN to contribute to the differential diagnosis, and possibly therapy of mainly CLL, and indicate that this marker could be considered as a useful addition to immunophenotypic panels, particularly for more challenging cases.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Citometría de Flujo/métodos , Inmunofenotipificación , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética
8.
BMC Cancer ; 23(1): 912, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770853

RESUMEN

Long non-coding RNAs (lncRNAs) play important roles in many pathophysiological processes, including cancer progression. Namely, lncRNA Receptor-tyrosine-kinase-like orphan receptor-1 antisense 1 (ROR1-AS1) is crucial for cancer occurrence and progression in organs such as the liver or bladder. However, its expression and role in cholangiocarcinoma (CCA) have not been thoroughly explored.Firstly, we assessed cell viability, proliferation, invasion, and migration using three cell lines (HuCCT-1, QBC399, and RBE) to explore the biological characteristics of ROR1-AS1 in CCA. Secondly, to determine the in vivo effect of ROR1-AS1 on tumor growth, ROR1-AS1 knockdown (KD) HuCCT-1 cells were subcutaneously injected into nude mice to evaluate tumor growth. Finally, we conducted a bioinformatic analysis to confirm the role of ROR1-AS1 in the prognosis and immunity of CCA.In this study, we found that lncRNA ROR1-AS1 was increased in CCA samples and patients with higher ROR1-AS1 expression had a shorter overall survival period. siRNA-mediated KD of ROR1-AS1 significantly reduced cell proliferation and inhibited the migration of CCA cells. In addition, ROR1-AS1 KD HuCCT-1 cells injected into nude mice grew slower than normal CCA cells.In summary, our results show that ROR1-AS1 can promote CCA progression and might serve as a new target for diagnosis and treatment of CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , MicroARNs , ARN Largo no Codificante , Animales , Ratones , Humanos , Ratones Desnudos , Línea Celular Tumoral , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Movimiento Celular/genética , MicroARNs/genética , Procesos Neoplásicos , Colangiocarcinoma/patología , Proliferación Celular/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Regulación Neoplásica de la Expresión Génica , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo
9.
Cell Rep ; 42(8): 112937, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37552603

RESUMEN

Lineage plasticity is a form of therapy-induced drug resistance. In prostate cancer, androgen receptor (AR) pathway inhibitors potentially lead to the accretion of tumor relapse with loss of AR signaling and a shift from a luminal state to an alternate program. However, the molecular and signaling mechanisms orchestrating the development of lineage plasticity under the pressure of AR-targeted therapies are not fully understood. Here, a survey of receptor tyrosine kinases (RTKs) identifies ROR2 as the top upregulated RTK following AR pathway inhibition, which feeds into lineage plasticity by promoting stem-cell-like and neuronal networks. Mechanistically, ROR2 activates the ERK/CREB signaling pathway to modulate the expression of the lineage commitment transcription factor ASCL1. Collectively, our findings nominate ROR2 as a potential therapeutic target to reverse the ENZ-induced plastic phenotype and potentially re-sensitize tumors to AR pathway inhibitors.


Asunto(s)
Recurrencia Local de Neoplasia , Neoplasias de la Próstata , Humanos , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias de la Próstata/genética , Transducción de Señal , Factores de Transcripción , Antagonistas de Receptores Androgénicos/uso terapéutico , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética
10.
Int Immunopharmacol ; 121: 110402, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301125

RESUMEN

Colorectal cancer is globally ranked second in both incidence and mortality rate. It usually develops during the middle or late stages of diagnosis, and is characterized by easy metastasis, poor prognosis, and a significant decline in postoperative quality of life. ROR1 is an excellent oncoembryonic antigen in numerous immunotherapy treatments for tumors. Additionally, it is overexpressed in colorectal cancer. To fill the void in CRC treatment with ROR1 as a target of CAR-T immunotherapy, we designed and prepared antiROR1-CART. This third-generation CAR-T cell can effectively inhibit the growth of colorectal cancer in vitro and in vivo.


Asunto(s)
Neoplasias Colorrectales , Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T , Calidad de Vida , Línea Celular Tumoral , Neoplasias Colorrectales/terapia , Inmunoterapia Adoptiva , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética
11.
Medicina (Kaunas) ; 59(5)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37241228

RESUMEN

Background and Objectives: Receptor tyrosine kinase-like orphan receptor type 1 (ROR1) plays a critical role in embryogenesis and is overexpressed in many malignant cells. These characteristics allow ROR1 to be a potential new target for cancer treatment. The aim of this study was to investigate the role of ROR1 through in vitro experiments in endometrial cancer cell lines. Materials and Methods: ROR1 expression was identified in endometrial cancer cell lines using Western blot and RT-qPCR. The effects of ROR1 on cell proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) markers were analyzed in two endometrial cancer cell lines (HEC-1 and SNU-539) using either ROR1 silencing or overexpression. Additionally, chemoresistance was examined by identifying MDR1 expression and IC50 level of paclitaxel. Results: The ROR1 protein and mRNA were highly expressed in SNU-539 and HEC-1 cells. High ROR1 expression resulted in a significant increase in cell proliferation, migration, and invasion. It also resulted in a change of EMT markers expression, a decrease in E-cadherin expression, and an increase in Snail expression. Moreover, cells with ROR1 overexpression had a higher IC50 of paclitaxel and significantly increased MDR1 expression. Conclusions: These in vitro experiments showed that ROR1 is responsible for EMT and chemoresistance in endometrial cancer cell lines. Targeting ROR1 can inhibit cancer metastasis and may be a potential treatment method for patients with endometrial cancer who exhibit chemoresistance.


Asunto(s)
Neoplasias Endometriales , Transición Epitelial-Mesenquimal , Femenino , Humanos , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Proliferación Celular , Movimiento Celular , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo
12.
Breast Cancer Res Treat ; 199(2): 281-291, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37029329

RESUMEN

PURPOSE: ROR1 and ROR2 are Type 1 tyrosine kinase-like orphan receptors for Wnt5a that are associated with breast cancer progression. Experimental agents targeting ROR1 and ROR2 are in clinical trials. This study evaluated whether expression levels of ROR1 or ROR2 correlated with one another or with clinical outcomes. METHODS: We interrogated the clinical significance of high-level gene expression of ROR1 and/or ROR2 in the annotated transcriptome dataset from 989 patients with high-risk early breast cancer enrolled in one of nine completed/graduated/experimental and control arms in the neoadjuvant I-SPY2 clinical trial (NCT01042379). RESULTS: High ROR1 or high ROR2 was associated with breast cancer subtypes. High ROR1 was more prevalent among hormone receptor-negative and human epidermal growth factor receptor 2-negative (HR-HER2-) tumors and high ROR2 was less prevalent in this subtype. Although not associated with pathologic complete response, high ROR1 or high ROR2 each was associated with event-free survival (EFS) in distinct subtypes. High ROR1 associated with a worse EFS in HR + HER2- patients with high post-treatment residual cancer burden (RCB-II/III) (HR 1.41, 95% CI = 1.11-1.80) but not in patients with minimal post-treatment disease (RCB-0/I) (HR 1.85, 95% CI = 0.74-4.61). High ROR2 associated with an increased risk of relapse in patients with HER2 + disease and RCB-0/I (HR 3.46, 95% CI = 1.33-9.020) but not RCB-II/III (HR 1.07, 95% CI = 0.69-1.64). CONCLUSION: High ROR1 or high ROR2 distinctly identified subsets of breast cancer patients with adverse outcomes. Further studies are warranted to determine if high ROR1 or high ROR2 may identify high-risk populations for studies of targeted therapies.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Terapia Neoadyuvante , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Recurrencia Local de Neoplasia , Expresión Génica
13.
Immun Inflamm Dis ; 11(4): e803, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37102658

RESUMEN

BACKGROUND: We aimed to determine whether receptor tyrosine kinase-like orphan receptor 2 (ROR2) is involved in the occurrence of acute lung injury (ALI) by an animal study and explore the effect of ROR2 downregulation on lipopolysaccharide (LPS)-treated human lung carcinoma A549 cells by a cytological study. METHODS: Murine models of ALI were successfully constructed by intratracheal instillation of LPS. Meanwhile, A549 cell line stimulated with LPS was used for a cytological study. The expression of ROR2 and its effect on proliferation, cell cycle, apoptosis, and inflammation were detected. RESULTS: It was found that LPS administration markedly inhibited the cell proliferation, resulted in cell cycle arrest at G1 phage, elevated levels of pro-inflammatory cytokines and apoptosis rate of A549 cells. However, LPS-mediated adverse effects mentioned above were significantly ameliorated by downregulation of ROR2 in comparison with LPS treatment. In addition, administration of ROR2 siRNA notably decreased the phosphorylation level of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) in LPS-challenged A549 cells. CONCLUSIONS: Thus, the present data indicate that downregulation of ROR2 may decrease LPS-induced inflammatory responses and cell apoptosis through inhibiting JNK and ERK signaling pathway, which attenuates ALI.


Asunto(s)
Lesión Pulmonar Aguda , Quinasas MAP Reguladas por Señal Extracelular , Animales , Humanos , Ratones , Células A549 , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Lipopolisacáridos/toxicidad , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Transducción de Señal
14.
EMBO J ; 42(14): e112614, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37096681

RESUMEN

Tumor-initiating cells are major drivers of chemoresistance and attractive targets for cancer therapy, however, their identity in human pancreatic ductal adenocarcinoma (PDAC) and the key molecules underlying their traits remain poorly understood. Here, we show that a cellular subpopulation with partial epithelial-mesenchymal transition (EMT)-like signature marked by high expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) is the origin of heterogeneous tumor cells in PDAC. We demonstrate that ROR1 depletion suppresses tumor growth, recurrence after chemotherapy, and metastasis. Mechanistically, ROR1 induces the expression of Aurora kinase B (AURKB) by activating E2F through c-Myc to enhance PDAC proliferation. Furthermore, epigenomic analyses reveal that ROR1 is transcriptionally dependent on YAP/BRD4 binding at the enhancer region, and targeting this pathway reduces ROR1 expression and prevents PDAC growth. Collectively, our findings reveal a critical role for ROR1high cells as tumor-initiating cells and the functional importance of ROR1 in PDAC progression, thereby highlighting its therapeutic targetability.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Transición Epitelial-Mesenquimal , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Pancreáticas
15.
Curr Top Dev Biol ; 153: 195-227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967195

RESUMEN

Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator ß-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.


Asunto(s)
Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Proteínas Wnt , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Transducción de Señal/fisiología , Morfogénesis , Vía de Señalización Wnt
16.
Cell Signal ; 104: 110588, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36621728

RESUMEN

The receptor tyrosine kinase orphan receptor 1 (ROR1) is a receptor for WNT5A and related Wnt proteins, that play an important role during embryonic development by regulating cell migration, cell polarity, neural patterning, and organogenesis. ROR1 exerts these functions by transducing signals from the Wnt secreted glycoproteins to the intracellular Wnt/PCP and Wnt/Ca++ pathways. Investigations in adult human cells, particularly cancer cells, have demonstrated that besides these two pathways, the WNT5A/ROR1 axis can activate a number of signaling pathways, including the PI3K/AKT, MAPK, NF-κB, STAT3, and Hippo pathways. Moreover, ROR1 is aberrantly expressed in cancer and was associated with tumor progression and poor survival by promoting cell proliferation, survival, invasion, epithelial to mesenchymal transition, and metastasis. Consequently, numerous therapeutic tools to target ROR1 are currently being evaluated in cancer patients. In this review, we will provide a detailed description of the signaling pathways regulated by ROR1 in cancer and their impact in tumor progression.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Embarazo , Femenino , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Neoplasias/genética , Proteínas Wnt/metabolismo , Línea Celular Tumoral , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo
17.
Cancer Res ; 83(7): 1016-1030, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36622276

RESUMEN

Noncanonical Wnt signaling by WNT5a has oncogenic and tumor suppressive activities, but downstream pathways mediating these specific effects remain to be fully established. In a subset of prostate cancer organoid culture and xenograft models, inhibition of Wnt synthesis stimulated growth, whereas WNT5a or a WNT5a mimetic peptide (Foxy5) markedly suppressed tumor growth. WNT5a caused a ROR2-dependent decrease in YAP1 activity, which was associated with increased phosphorylation of MST1/2, LATS1, MOB1, and YAP1, indicating Hippo pathway activation. Deletion of MST1/2 abrogated the WNT5a response. WNT5a similarly activated Hippo in ROR2-expressing melanoma cells, whereas WNT5a in ROR2-negative cells suppressed Hippo. This suppression was associated with increased inhibitory phosphorylation of NF2/Merlin that was not observed in ROR2-expressing cells. WNT5a also increased mRNA encoding Hippo pathway components including MST1 and MST2 and was positively correlated with these components in prostate cancer clinical datasets. Conversely, ROR2 and WNT5a expression was stimulated by YAP1, and correlated with increased YAP1 activity in clinical datasets, revealing a WNT5a/ROR2 negative feedback loop to modulate YAP1 activity. Together these findings identify Hippo pathway activation as a mechanism that mediates the tumor suppressive effects of WNT5a and indicate that expression of ROR2 may be a predictive biomarker for responsiveness to WNT5a-mimetic drugs. SIGNIFICANCE: WNT5a signaling through ROR2 activates the Hippo pathway to downregulate YAP1/TAZ activity and suppress tumor growth, identifying ROR2 as a potential biomarker to identify patients that could benefit from WNT5a-related agents.


Asunto(s)
Vía de Señalización Hippo , Neoplasias de la Próstata , Masculino , Humanos , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Transducción de Señal/fisiología , Proteína Wnt-5a/metabolismo , Fosforilación
18.
Asian Pac J Cancer Prev ; 24(1): 239-248, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36708573

RESUMEN

OBJECTIVE: To asses miR-379-5p expression in endometrial cancer (EC) and its correlation with ROR1 expression and to investigate the relation between miR-379-5p and ROR1 expressions and the clinicopathological picture of EC. METHODS: Fifty female of EC were joined to this study. The gene expression of miR-379-5p (by quantitative real time-PCR) and ROR1 (by quantitative real time-PCR and immunohistochemistry) were studied in EC and normal nearby endometrial tissue. RESULTS: The gene expression of miR-379-5p was significantly downregulated while that of ROR1 was significantly upregulated in EC tissues compared to adjacent normal endometrial tissues. Furthermore, miR-379 and ROR1 expressions significantly associated with tumor stage (P< 0.045), grade (P< 0.001), myometrial invasion (P <0.001) and LN metastasis (P< 0.034). In addition, miR-3795p and ROR1 gene expression were negatively correlated (r = -0.746, P < 0.001). CONCLUSIONS: In EC, miR-379-5p can be used as a diagnostic marker, and ROR1 could be a potential target of miR-379-5p.


Asunto(s)
Neoplasias Endometriales , MicroARNs , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias Endometriales/patología , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética
19.
Hum Cell ; 36(1): 409-420, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36463543

RESUMEN

The present study investigated the expression and role of ROR2 in small cell lung cancer (SCLC). To examine the expression of ROR2, 27 surgically resected SCLC tissue samples were immunostained for ROR2. Sixteen tissue samples were positive and some showed intratumor heterogeneity in staining intensity. The heterogeneity of ROR2 expression was also observed in tumor tissues from a PDX model of SCLC, in which there were cells with high ROR2 expression (ROR2high cells) and without its expression (ROR2low cells). These cells were subjected to a RNA sequence analysis. GSEA was performed and the results obtained revealed the enrichment of molecules such as G2M checkpoint, mitotic spindle, and E2F targets in ROR2high cells. The rate of EdU incorporation was significantly higher in ROR2high cells than ROR2low cells from the PDX model and the SCLC cell lines. Cell proliferation was suppressed in ROR2 KO SBC3 cells in vitro and in vivo. Comparisons of down-regulated differentially expressed genes in ROR2 KO SBC3 cells with up-regulated DEG in ROR2high cells from the PDX model revealed 135 common genes. After a Metascape analysis of these genes, we focused on Aurora kinases. In SCLC cell lines, the knockdown of ROR2 suppressed Aurora kinases. Therefore, ROR2 appears to regulate the cell cycle through Aurora kinases. The present results reveal a role for ROR2 in SCLC and afford a candidate system (ROR2-Aurora kinase) accompanying tumor heterogeneity in SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética , Línea Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Aurora Quinasas
20.
Cell Oncol (Dordr) ; 46(2): 391-407, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36539575

RESUMEN

PURPOSE: Despite recent advances, approximately 50% of patient with metastatic melanoma eventually succumb to the disease. Patients with melanomas harboring a BRAF mutation (BRAFMut) have a worse prognosis than those with wildtype (BRAFWT) tumors. Unexpectedly, interim AVAST-M Phase III trial data reported benefit from adjuvant anti-VEGF bevacizumab only in the BRAFMut group. We sought to find mechanisms underpinning this sensitivity. METHODS: We investigated this finding in vitro and in vivo using melanoma cell lines and clones generated by BRAFV600E knock-in on a BRAFWT background. RESULTS: Compared with BRAFWT cells, isogenic BRAFV600E clones secreted more VEGF and exhibited accelerated growth rates as spheroids and xenografts, which were more vascular and proliferative. Recapitulating AVAST-M findings, bevacizumab affected only BRAFV600E xenografts, inducing significant tumor growth delay, reduced vascularity and increased necrosis. We identified 814 differentially expressed genes in isogenic BRAFV600E/BRAFWT clones. Of 61 genes concordantly deregulated in clinical melanomas ROR2 was one of the most upregulated by BRAFV600E. ROR2 was shown to be RAF-MEK regulated in BRAFV600E cells and its depletion suppressed VEGF secretion down to BRAFWT levels. The ROR2 ligand WNT5A was also overexpressed in BRAFMut melanomas, and in ROR2-overexpressing BRAFV600E cells MEK inhibition downregulated WNT5A and VEGF secretion. CONCLUSIONS: These data implicate WNT5A-ROR2 in VEGF secretion, vascularity, adverse outcomes and bevacizumab sensitivity of BRAFMut melanomas, suggesting that this axis has potential therapeutic relevance.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Proteína Wnt-5a , Humanos , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Línea Celular Tumoral , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA