Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.724
Filtrar
Más filtros











Intervalo de año de publicación
1.
Behav Pharmacol ; 35(5): 253-262, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869040

RESUMEN

INTRODUCTION: Acute stress, as a protective mechanism to respond to an aversive stimulus, can often be accompanied by suppressing pain perception via promoting consistent burst firing of dopamine neurons. Besides, sensitive and advanced research techniques led to the recognition of the mesohippocampal dopaminergic terminals, particularly in the hippocampal dentate gyrus (DG). Moreover, previous studies have shown that dopamine receptors within the hippocampal DG play a critical role in induced antinociceptive responses by forced swim stress (FSS) in the presence of inflammatory pain. Since different pain states can trigger various mechanisms and transmitter systems, the present experiments aimed to investigate whether dopaminergic receptors within the DG have the same role in the presence of acute thermal pain. METHODS: Ninety-seven adult male albino Wistar rats underwent stereotaxic surgery, and a stainless steel guide cannula was unilaterally implanted 1 mm above the DG. Different doses of SCH23390 or sulpiride as D1- and D2-like dopamine receptor antagonists were microinjected into the DG 5-10 min before exposure to FSS, and 5 min after FSS exposure, the tail-flick test evaluated the effect of stress on the nociceptive response at the time-set intervals. RESULTS: The results demonstrated that exposure to FSS could significantly increase the acute pain perception threshold, while intra-DG administration of SCH23390 and sulpiride reduced the antinociceptive effect of FSS in the tail-flick test. DISCUSSION: Additionally, it seems the D2-like dopamine receptor within the DG plays a more prominent role in FSS-induced analgesia in the acute pain model.


Asunto(s)
Benzazepinas , Giro Dentado , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Estrés Psicológico , Sulpirida , Animales , Masculino , Ratas , Analgesia/métodos , Benzazepinas/farmacología , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Antagonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2/farmacología , Dolor/metabolismo , Dolor/tratamiento farmacológico , Dolor/fisiopatología , Dimensión del Dolor/métodos , Dimensión del Dolor/efectos de los fármacos , Ratas Wistar , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Sulpirida/farmacología
2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928253

RESUMEN

This study aimed to assess the expression profile of messenger RNA (mRNA) and microRNA (miRNA) related to the dopaminergic system in five types of breast cancer in Polish women. Patients with five breast cancer subtypes were included in the study: luminal A (n = 130), luminal B (n = 196, including HER2-, n = 100; HER2+, n = 96), HER2+ (n = 36), and TNBC (n = 43); they underwent surgery, during which tumor tissue was removed along with a margin of healthy tissue (control material). The molecular analysis included a microarray profile of mRNAs and miRNAs associated with the dopaminergic system, a real-time polymerase chain reaction preceded by reverse transcription for selected genes, and determinations of their concentration using enzyme-linked immunosorbent assay (ELISA). The conducted statistical analysis showed that five mRNAs statistically significantly differentiated breast cancer sections regardless of subtype compared to control samples; these were dopamine receptor 2 (DRD2), dopamine receptor 3 (DRD3), dopamine receptor 25 (DRD5), transforming growth factor beta 2 (TGF-ß-2), and caveolin 2 (CAV2). The predicted analysis showed that hsa-miR-141-3p can regulate the expression of DRD2 and TGF-ß-2, whereas hsa-miR-4441 is potentially engaged in the expression regulation of DRD3 and DRD5. In addition, the expression pattern of DRD5 mRNA can also be regulated by has-miR-16-5p. The overexpression of DRD2 and DRD3, with concomitant silencing of DRD5 expression, confirms the presence of dopaminergic abnormalities in breast cancer patients. Moreover, these abnormalities may be the result of miR-141-3P, miR-16-5p, and miR-4441 activity, regulating proliferation or metastasis.


Asunto(s)
Neoplasias de la Mama , Dopamina , Regulación Neoplásica de la Expresión Génica , MicroARNs , Humanos , Femenino , MicroARNs/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Persona de Mediana Edad , Dopamina/metabolismo , Adulto , Perfilación de la Expresión Génica/métodos , Anciano , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo
3.
Addict Biol ; 29(6): e13424, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38899357

RESUMEN

BACKGROUND: The association of impaired dopaminergic neurotransmission with the development and maintenance of alcohol use disorder is well known. More specifically, reduced dopamine D2/3 receptors in the striatum of subjects with alcohol dependence (AD) compared to healthy controls have been found in previous studies. Furthermore, alterations of gamma-aminobutyric acid (GABA) and glutamate (Glu) levels in the anterior cingulate cortex (ACC) of AD subjects have been documented in several studies. However, the interaction between cortical Glu levels and striatal dopamine D2/3 receptors has not been investigated in AD thus far. METHODS: This study investigated dopamine D2/3 receptor availability via 18F-fallypride positron emission tomography (PET) and GABA as well as Glu levels via magnetic resonance spectroscopy (MRS) in 19 detoxified AD subjects, 18 healthy controls (low risk, LR) controls and 19 individuals at high risk (HR) for developing AD, carefully matched for sex, age and smoking status. RESULTS: We found a significant negative correlation between GABA levels in the ACC and dopamine D2/3 receptor availability in the associative striatum of LR but not in AD or HR individuals. Contrary to our expectations, we did not observe a correlation between Glu concentrations in the ACC and striatal D2/3 receptor availability. CONCLUSIONS: The results may reflect potential regulatory cortical mechanisms on mesolimbic dopamine receptors and their disruption in AD and individuals at high risk, mirroring complex neurotransmitter interactions associated with the pathogenesis of addiction. This is the first study combining 18F-fallypride PET and MRS in AD subjects and individuals at high risk.


Asunto(s)
Alcoholismo , Giro del Cíngulo , Espectroscopía de Resonancia Magnética , Tomografía de Emisión de Positrones , Receptores de Dopamina D2 , Receptores de Dopamina D3 , Ácido gamma-Aminobutírico , Humanos , Giro del Cíngulo/metabolismo , Giro del Cíngulo/diagnóstico por imagen , Masculino , Alcoholismo/metabolismo , Alcoholismo/diagnóstico por imagen , Receptores de Dopamina D2/metabolismo , Adulto , Femenino , Receptores de Dopamina D3/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Persona de Mediana Edad , Cuerpo Estriado/metabolismo , Cuerpo Estriado/diagnóstico por imagen , Estudios de Casos y Controles , Ácido Glutámico/metabolismo , Benzamidas
4.
Zhongguo Zhong Yao Za Zhi ; 49(8): 1996-2005, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812216

RESUMEN

Transcriptomics was used to investigate the mechanism of action of Bushen Culuan Formula in the treatment of infertility caused by hyperprolactinemia(HPRL), and animal experiments were carried out to verify the results. After establishing an animal model of HPRL-induced infertility, the mice were divided into normal group, model group, Bushen Culuan Formula groups with high-, medium-, and low-doses, and bromocriptine group, and they were observed in terms of the estrous cycle, gonadal index, serum sex hormones, morphology of ovary and mammary gland, follicle count, and fertility. The results showed that the Bushen Culuan Formula could effectively restore the estrous cycle, down-regulate the levels of prolactin(PRL), follicle-stimulating hormone(FSH), and luteinizing hormone(LH), up-regulate the level of estradiol(E_2), increase the number of primordial follicles and sinus follicles, and improve the ovulation rate and fertility of mice. Through RNA sequencing combined with biosignature analysis, Bushen Culuan Formula may regulate the metabolism of lipids, antioxidant enzymes, and other substances in the cells of the ovary and pituitary gland through the signaling pathways of cAMP-PKA, Kiss-1/GPR54, and Hippo and exert therapeutic effects. The results of animal experiments showed that Bushen Culuan Formula could up-regulate serum dopamine(DA) level and pituitary DRD2 expression, down-regulate hypothalamus and ovary cAMP levels, as well as protein expressions of the pituitary gland and ovary PKA, CREB, and p-CREB, and treat HPRL-induced infertility by regulating the cAMP-PKA signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Hormonas Esteroides Gonadales , Hiperprolactinemia , Ovulación , Animales , Femenino , Ratones , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Hiperprolactinemia/tratamiento farmacológico , Ovulación/efectos de los fármacos , Humanos , Hormona Folículo Estimulante/sangre , Hormona Luteinizante/sangre , Ovario/efectos de los fármacos , Ovario/metabolismo , Ciclo Estral/efectos de los fármacos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética
5.
Neuropharmacology ; 256: 110018, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38810925

RESUMEN

Diets high in sucrose and fat are becoming more prevalent the world over, accompanied by a raised prevalence of cardiovascular diseases, cancers, diabetes, obesity, and metabolic syndrome. Clinical studies link unhealthy diets with the development of mental health disorders, particularly depression. Here, we investigate the effects of 12 days of sucrose consumption administered as 2 L of 25% sucrose solution daily for 12 days in Göttingen minipigs on the function of brain receptors involved in reward and motivation, regulating feeding, and pre- and post-synaptic mechanisms. Through quantitative autoradiography of cryostat sections containing limbic brain regions, we investigated the effects of sucrose restricted to a 1-h period each morning, on the specific binding of [3H]raclopride on dopamine D2/3 receptors, [3H]UCB-J at synaptic vesicle glycoprotein 2A (SV2A), [3H]MPEPγ at metabotropic glutamate receptor subtype 5 (mGluR5) and [3H]SR141716A at the cannabinoid receptor 1 (CB1). Compared to control diet animals, the sucrose group showed significantly lower [3H]UCB-J and [3H]MPEPγ binding in the prefrontal cortex. The sucrose-consuming minipigs showed higher hippocampal CB1 binding, but unaltered dopamine D2/3 binding compared to the control group. We found that the sucrose diet reduced the synaptic density marker while increasing CB1 binding in limbic brain structures, which may subserve maladaptive changes in appetite regulation and feeding. Further studies of the effects of diets and lifestyle habits on brain neuroreceptor and synaptic density markers are warranted.


Asunto(s)
Sacarosa , Porcinos Enanos , Animales , Porcinos , Sacarosa/administración & dosificación , Masculino , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Cannabinoides/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Receptores de Dopamina D2/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Femenino , Receptores de Dopamina D3/metabolismo
6.
Exp Cell Res ; 439(1): 114090, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38740167

RESUMEN

Dopamine D2 receptors (D2Rs) play crucial roles in regulating diverse physiological functions of the central nervous system and peripheral organs. D2Rs are also expressed in mammary glands. However, which cell types express D2Rs and whether they are involved in milk production remains unclear. The present findings revealed that D2Rs are expressed in the apical regions of the lateral membranes of mammary epithelial cells (MECs) in lactating mice. We also investigated the effects of the D2R agonist bromocriptine and/or antagonist domperidone on intracellular cAMP levels, milk protein production, and apoptosis in a lactation culture model of MECs that produce major milk components like lactating MECs in vivo. We found that bromocriptine decreased intracellular cAMP levels, whereas domperidone dose-dependently neutralized this effect. Bromocriptine also inhibited casein and lactoferrin production and suppressed activities of STAT5 and glucocorticoid receptors (GRs). Domperidone neutralized the inhibition of casein production as well as STAT5 and GR inactivation induced by bromocriptine. Furthermore, D2R activation by bromocriptine induced apoptosis and inactivated ERK, a signaling molecule responsible for promoting cell proliferation and survival. Domperidone attenuated ERK inactivation and apoptosis induced by bromocriptine. These findings suggest that D2Rs play regulatory roles in milk protein production and apoptosis in MECs.


Asunto(s)
Apoptosis , Bromocriptina , Domperidona , Células Epiteliales , Lactancia , Glándulas Mamarias Animales , Proteínas de la Leche , Receptores de Dopamina D2 , Animales , Femenino , Ratones , Apoptosis/efectos de los fármacos , Bromocriptina/farmacología , Células Cultivadas , AMP Cíclico/metabolismo , Domperidona/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Lactancia/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Proteínas de la Leche/metabolismo , Proteínas de la Leche/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Factor de Transcripción STAT5/metabolismo
7.
Int J Eat Disord ; 57(7): 1433-1446, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38650547

RESUMEN

OBJECTIVE: Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD: Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS: The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION: The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE: Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.


Asunto(s)
Trastorno por Atracón , Bulimia , Receptor de Adenosina A2A , Receptores de Dopamina D2 , Recompensa , Animales , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Femenino , Ratas , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Bulimia/metabolismo , Bulimia/genética , Trastorno por Atracón/genética , Trastorno por Atracón/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Metilación de ADN , Área Tegmental Ventral/metabolismo , Conducta Alimentaria , Núcleo Accumbens/metabolismo , Ratas Sprague-Dawley
8.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616770

RESUMEN

Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.


Asunto(s)
Cuerpo Estriado , Modelos Animales de Enfermedad , Distonía , Interneuronas , Parvalbúminas , Proteínas Proto-Oncogénicas c-fos , Receptores de Dopamina D2 , Animales , Interneuronas/metabolismo , Interneuronas/efectos de los fármacos , Parvalbúminas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distonía/patología , Distonía/metabolismo , Distonía/fisiopatología , Cuerpo Estriado/patología , Cuerpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/metabolismo , Cerebelo/patología , Cerebelo/metabolismo , Ouabaína/farmacología , Ratones Endogámicos C57BL , Ratones , Masculino
9.
J Control Release ; 369: 722-733, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583575

RESUMEN

The existence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) greatly limits the application of chemotherapy in glioma. To address this challenge, an optimal drug delivery system must efficiently cross the BBB/BBTB and specifically deliver therapeutic drugs into glioma cells while minimizing systemic toxicity. Here we demonstrated that glucose-regulated protein 78 (GRP78) and dopamine receptor D2 were highly expressed in patient-derived glioma tissues, and dopamine receptors were highly expressed on the BBB. Subsequently, we synthesized a novel "Y"-shaped peptide and compared the effects of different linkers on the receptor affinity and targeting ability of the peptide. A peptide-drug conjugate (pHA-AOHX-VAP-doxorubicin conjugate, pHA-AOHX-VAP-DOX) with a better affinity for glioma cells and higher solubility was derived for glioma treatment. pHA-AOHX-VAP-DOX could cross both BBB and BBTB via dopamine receptor and GRP78 receptor, and finally target glioma cells, significantly prolonging the survival time of nude mice bearing intracranial glioma. Furthermore, pHA-AOHX-VAP-DOX significantly reduced the toxicity of DOX and increased the maximum tolerated dose (MTD). Collectively, this work paves a new avenue for overcoming multiple barriers and effectively delivering chemotherapeutic agents to glioma cells while providing key evidence to identify potential receptors for glioma-targeted drug delivery.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Doxorrubicina , Sistemas de Liberación de Medicamentos , Chaperón BiP del Retículo Endoplásmico , Glioma , Ratones Desnudos , Péptidos , Animales , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/farmacocinética , Humanos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Péptidos/química , Péptidos/administración & dosificación , Barrera Hematoencefálica/metabolismo , Proteínas de Choque Térmico/metabolismo , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapéutico , Ratones Endogámicos BALB C , Receptores de Dopamina D2/metabolismo , Ratones , Masculino
10.
Nicotine Tob Res ; 26(8): 1038-1044, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38367211

RESUMEN

INTRODUCTION: In the dopamine system, the mesolimbic pathway, including the dorsal striatum, underlies the reinforcing properties of tobacco smoking, and the mesocortical pathway, including the dorsolateral prefrontal cortex (dlPFC), is critical for cognitive functioning. Dysregulated dopamine signaling has been linked to drug-seeking behaviors and cognitive deficits. The dorsal striatum and dlPFC are structurally and functionally connected and are key regions for cognitive functioning. We recently showed that people who smoke have lower dlPFC dopamine (D2/3R) receptor availability than people who do not, which is related to poorer cognitive function. AIMS AND METHODS: The goal of this study was to examine the same brain-behavior relationship in the dorsal striatum. Twenty-nine (18 males) recently abstinent people who smoke and 29 sex-matched healthy controls participated in 2 same-day [11C]-(+)-PHNO positron emission tomography scans before and after amphetamine administration to provoke dopamine release. D2/3R availability (binding potential; BPND) and amphetamine-induced dopamine release (%ΔBPND) were calculated. Cognition (verbal learning and memory) was assessed with the CogState computerized battery. RESULTS: There were no group differences in baseline BPND. People who smoke have a smaller magnitude %ΔBPND in dorsal putamen than healthy controls (p = .022). People who smoke perform worse on immediate (p = .035) and delayed (p = .011) recall than healthy controls. In all people, lower dorsal putamen BPND was associated with worse immediate (p = .006) and delayed recall (p = .049), and lower %ΔBPND was related to worse delayed recall (p = .022). CONCLUSIONS: Lower dorsal putamen D2/3R availability and function are associated with disruptions in cognitive function that may underlie difficulty with resisting smoking. IMPLICATIONS: This study directly relates dopamine imaging outcomes in the dorsal striatum to cognitive function in recently abstinent people who smoke cigarettes and healthy controls. The current work included a well-characterized subject sample in terms of demographics, smoking characteristics, and a validated neurocognitive test of verbal learning and memory. The findings of this study extend previous literature relating dopamine imaging outcomes to cognition in recently abstinent people who smoke and people who do not smoke, expanding our understanding of brain-behavior relationships.


Asunto(s)
Anfetamina , Cognición , Dopamina , Tomografía de Emisión de Positrones , Putamen , Receptores de Dopamina D2 , Receptores de Dopamina D3 , Humanos , Masculino , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Adulto , Femenino , Cognición/efectos de los fármacos , Dopamina/metabolismo , Putamen/metabolismo , Putamen/diagnóstico por imagen , Putamen/efectos de los fármacos , Anfetamina/farmacología , Anfetamina/administración & dosificación , Estudios de Casos y Controles , Adulto Joven , Persona de Mediana Edad , Fumar/metabolismo , Fumar/psicología , Cese del Hábito de Fumar/psicología
11.
Chem Asian J ; 19(8): e202400067, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38334332

RESUMEN

The inhibitory effects of veralipride, a benzamide-class antipsychotic acting as dopamine D2 receptors antagonist incorporates a primary sulfonamide moiety and was investigated for its interactions with carbonic anhydrase (CA) isoforms. In vitro profiling using the stopped-flow technique revealed that veralipride exhibited potent inhibitory activity across all tested hCA isoforms, with exception of hCA III. Comparative analysis with standard inhibitors, acetazolamide (AAZ), and sulpiride, provided insights for understanding the relative efficacy of veralipride as CA inhibitor. The study reports the X-ray crystal structure analysis of the veralipride adduct with three human (h) isoforms, hCA I, II, and CA XII mimic, allowing the understanding of the molecular interactions rationalizing its inhibitory effects against each isoform. These findings contribute to our understanding of veralipride pharmacological properties and for the design of structural analogs endowed with polypharmacological properties.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Humanos , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Cristalografía por Rayos X , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/química , Antagonistas de los Receptores de Dopamina D2/farmacología , Antagonistas de los Receptores de Dopamina D2/química , Antagonistas de los Receptores de Dopamina D2/síntesis química , Benzamidas/química , Benzamidas/farmacología , Benzamidas/síntesis química , Receptores de Dopamina D2/metabolismo , Estructura Molecular , Modelos Moleculares , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Relación Estructura-Actividad
12.
Neuro Oncol ; 26(Supplement_2): S165-S172, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38386699

RESUMEN

BACKGROUND: Diffuse midline glioma, H3 K27-altered (H3 K27M-altered DMG) are invariably lethal, disproportionately affecting the young and without effective treatment besides radiotherapy. The 2016 World Health Organization (WHO) Central Nervous System (CNS) Tumors Classification defined H3 K27M mutations as pathognomonic but restricted diagnosis to diffuse gliomas involving midline structures by 2018. Dordaviprone (ONC201) is an oral investigational small molecule, DRD2 antagonist, and ClpP agonist associated with durable responses in recurrent H3 K27M-mutant DMG. Activity of ONC201 in non-midline H3 K27M-mutant diffuse gliomas has not been reported. METHODS: Patients with recurrent non-midline H3 K27M-mutant diffuse gliomas treated with ONC201 were enrolled in 5 trials. Eligibility included measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma, Karnofsky/Lansky performance score ≥60, and ≥90 days from radiation. The primary endpoint was overall response rate (ORR). RESULTS: Five patients with cerebral gliomas (3 frontal, 1 temporal, and 1 parietal) met inclusion. One complete and one partial response were reported by investigators. Blinded independent central review confirmed ORR by RANO criteria for 2, however, 1 deemed nonmeasurable and another stable. A responding patient also noted improved mobility and alertness. CONCLUSIONS: H3 K27M-mutant diffuse gliomas occasionally occur in non-midline cerebrum. ONC201 exhibits activity in H3 K27M-mutant gliomas irrespective of CNS location.


Asunto(s)
Neoplasias Encefálicas , Glioma , Imidazoles , Mutación , Recurrencia Local de Neoplasia , Receptores de Dopamina D2 , Humanos , Glioma/genética , Glioma/tratamiento farmacológico , Glioma/patología , Masculino , Femenino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Receptores de Dopamina D2/genética , Adulto , Persona de Mediana Edad , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/genética , Antagonistas de los Receptores de Dopamina D2/uso terapéutico , Antagonistas de los Receptores de Dopamina D2/farmacología , Pirimidinas/uso terapéutico , Pronóstico , Adulto Joven , Estudios de Seguimiento , Estudios de Cohortes , Agonistas de Dopamina/uso terapéutico , Piridinas/uso terapéutico , Piridinas/farmacología
13.
Genes (Basel) ; 15(2)2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38397159

RESUMEN

BACKGROUND: Internet addiction disorder (IAD) is characterized by an excess of uncontrolled preoccupations, urges, or behaviors related to computer use and Internet access that culminate in negative outcomes or individual distress. PIU includes excessive online activities (such as video gaming, social media use, streaming, pornography viewing, and shopping). The aim of this study was to analyze the association of gene polymorphisms that may influence the severity of risky behaviors in young men with the frequency of Internet use. We speculate that there are individual differences in the mechanisms of Internet addiction and that gene-hormone associations may represent useful biomarkers for subgroups of individuals. MATERIALS AND METHODS: The study was conducted in a sample of 407 adult males. Subjects were asked to complete the Problematic Internet Use Test (PIUT). Serum was analyzed to determine concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (TT), sex hormone binding protein (SHBG), dehydroepiandrosterone sulfate (DHEA-S), estradiol (E2), prolactin (PRL), insulin (I), serotonin (5-HT), and dopamine (DA), as well as DRD2, ANKK1, and NTRK3 gene polymorphisms. RESULTS: In the analysis of the ANKK1 gene, there was a specific association between ANKK1 polymorphisms and PRL and 5-HT blood concentrations. There was also an association between the ANKK1 polymorphisms and LH and DA concentrations. When analyzing the DRD2 gene polymorphism, we found that in the group with a moderate level of Internet dependence, there was an association between both the G/GG and GG/GG polymorphisms and FSH concentration. CONCLUSIONS: Our study found that there may be an association between the NTRK3 gene polymorphism and PIU. The polymorphisms of ANKK1 and DRD2 genes may be factors that influence the concentrations of hormones (PRL, 5-HT, DA) that are associated with the results obtained in PIU.


Asunto(s)
Uso de Internet , Serotonina , Masculino , Adulto , Humanos , Genotipo , Polimorfismo de Nucleótido Simple , Receptores de Dopamina D2/genética , Proteínas Serina-Treonina Quinasas/genética , Hormona Folículo Estimulante/genética
14.
Eur J Neurosci ; 59(7): 1558-1566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308520

RESUMEN

The excitation-inhibition imbalance manifesting as epileptic activities in Alzheimer's disease is gaining more and more attention, and several potentially involved cellular and molecular pathways are currently under investigation. Based on in vitro studies, dopamine D1-type receptors in the anterior cingulate cortex and the hippocampus have been proposed to participate in this peculiar co-morbidity in mouse models of amyloidosis. Here, we tested the implication of dopaminergic transmission in vivo in the Tg2576 mouse model of Alzheimer's disease by monitoring epileptic activities via intracranial EEG before and after treatment with dopamine antagonists. Our results show that neither the D1-like dopamine receptor antagonist SCH23390 nor the D2-like dopamine receptor antagonist haloperidol reduces the frequency of epileptic activities. While requiring further investigation, our results indicate that on a systemic level, dopamine receptors are not significantly contributing to epilepsy observed in vivo in this mouse model of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Epilepsia , Ratones , Animales , Antagonistas de Dopamina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Receptores de Dopamina D2/metabolismo , Benzazepinas/farmacología , Benzazepinas/uso terapéutico , Receptores de Dopamina D1/metabolismo , Epilepsia/tratamiento farmacológico , Modelos Animales de Enfermedad , Amiloidosis/tratamiento farmacológico
15.
Purinergic Signal ; 20(1): 29-34, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36918462

RESUMEN

Fatigue is a non-motor symptom of Parkinson's disease (PD). Adenosine 2A receptor (A2AR) and compromised dopamine neurotransmission are linked to fatigue. Studies demonstrate that A2AR antagonism potentiates dopamine transmission via dopamine receptor D2 (D2R). However, the heterodimer form of A2AR-D2R in the striatum prompted questions about the therapeutic targets for PD patients. This study investigates the effects of caffeine (A2AR non-selective antagonist) plus haloperidol (D2R selective antagonist) treatment in the fatigue induced by the reserpine model of PD. Reserpinized mice showed impaired motor control in the open field test (p < 0.05) and fatigue in the grip strength meter test (p < 0.05). L-DOPA and caffeine plus haloperidol similarly increased motor control (p < 0.05) and mitigated fatigue (p < 0.05). Our results support the A2AR-D2R heterodimer participation in the central fatigue of PD, and highlight the potential of A2AR-D2R antagonism in the management of PD.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Cafeína/farmacología , Haloperidol/farmacología , Receptores de Dopamina D2 , Estudios Prospectivos , Modelos Teóricos , Receptor de Adenosina A2A
16.
Br J Pharmacol ; 181(3): 413-428, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37614042

RESUMEN

BACKGROUND AND PURPOSE: Glial cell-derived neurotrophic factor (GDNF) maintains gut homeostasis. Dopamine promotes GDNF release in astrocytes. We investigated the regulation by dopamine of colonic GDNF secretion. EXPERIMENTAL APPROACH: D1 receptor knockout (D1 R-/- ) mice, adeno-associated viral 9-short hairpin RNA carrying D2 receptor (AAV9-shD2 R)-treated mice, 6-hydroxydopamine treated (6-OHDA) rats and primary enteric glial cells (EGCs) culture were used. Incubation fluid from colonic submucosal plexus and longitudinal muscle myenteric plexus were collected for GDNF and ACh measurements. KEY RESULTS: D2 receptor-immunoreactivity (IR), but not D1 receptor-IR, was observed on EGCs. Both D1 receptor-IR and D2 receptor-IR were co-localized on cholinergic neurons. Low concentrations of dopamine induced colonic GDNF secretion in a concentration-dependent manner, which was mimicked by the D1 receptor agonist SKF38393, inhibited by TTX and atropine and eliminated in D1 R-/- mice. SKF38393-induced colonic ACh release was absent in D1 R-/- mice. High concentrations of dopamine suppressed colonic GDNF secretion, which was mimicked by the D2 receptor agonist quinpirole, and absent in AAV-shD2 R-treated mice. Quinpirole decreased GDNF secretion by reducing intracellular Ca2+ levels in primary cultured EGCs. Carbachol ( ACh analogue) promoted the release of GDNF. Quinpirole inhibited colonic ACh release, which was eliminated in the AAV9-shD2 R-treated mice. 6-OHDA treated rats with low ACh and high dopamine content showed decreased GDNF content and increased mucosal permeability in the colon. CONCLUSION AND IMPLICATIONS: Low concentrations of dopamine promote colonic GDNF secretion via D1 receptors on cholinergic neurons, whereas high concentrations of dopamine inhibit GDNF secretion via D2 receptors on EGCs and/or cholinergic neurons.


Asunto(s)
Dopamina , Factor Neurotrófico Derivado de la Línea Celular Glial , Ratas , Ratones , Animales , Dopamina/metabolismo , Quinpirol , Oxidopamina , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Receptores de Dopamina D1 , Receptores de Dopamina D2/agonistas , Colinérgicos
17.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 433-443, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37400684

RESUMEN

BACKGROUND: Dopamine receptor D2 (DRD2) TaqIA polymorphism has an influence on addiction treatment response and prognosis by mediating brain dopaminergic system efficacy. Insula is crucial for conscious urges to take drugs and maintain drug use. However, it remains unclear about the contribution of DRD2 TaqIA polymorphism to the regulation of insular on addiction behavioral and its relation with the therapeutic effect of methadone maintenance treatment (MMT). METHODS: 57 male former heroin dependents receiving stable MMT and 49 matched male healthy controls (HC) were enrolled. Salivary genotyping for DRD2 TaqA1 and A2 alleles, brain resting-state functional MRI scan and a 24-month follow-up for collecting illegal-drug-use information was conducted and followed by clustering of functional connectivity (FC) patterns of HC insula, insula subregion parcellation of MMT patients, comparing the whole brain FC maps between the A1 carriers and non-carriers and analyzing the correlation between the genotype-related FC of insula sub-regions with the retention time in MMT patients by Cox regression. RESULTS: Two insula subregions were identified: the anterior insula (AI) and the posterior insula (PI) subregion. The A1 carriers had a reduced FC between the left AI and the right dorsolateral prefrontal cortex (dlPFC) relative to no carriers. And this reduced FC was a poor prognostic factor for the retention time in MMT patients. CONCLUSION: DRD2 TaqIA polymorphism affects the retention time in heroin-dependent individuals under MMT by mediating the functional connectivity strength between left AI and right dlPFC, and the two brain regions are promising therapeutic targets for individualized treatment.


Asunto(s)
Dependencia de Heroína , Heroína , Humanos , Masculino , Heroína/uso terapéutico , Corteza Prefontal Dorsolateral , Polimorfismo Genético/genética , Dependencia de Heroína/diagnóstico por imagen , Dependencia de Heroína/tratamiento farmacológico , Dependencia de Heroína/genética , Metadona/uso terapéutico , Imagen por Resonancia Magnética , Receptores de Dopamina D2/genética
18.
Neurochem Res ; 49(1): 143-156, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37642894

RESUMEN

Several preclinical and clinical studies indicate that exposure to acute stress may decrease pain perception and increases pain tolerance. This phenomenon is called stress-induced analgesia (SIA). A variety of neurotransmitters, including dopamine, is involved in the SIA. Dopaminergic neurons in the mesolimbic circuits, originating from the ventral tegmental area (VTA), play a crucial role in various motivational, rewarding, and pain events. The present study aimed to investigate the modulatory role of VTA dopaminergic receptors in the antinociceptive responses evoked by forced swim stress (FSS) in a model of acute pain. One hundred-five adult male albino Wistar rats were subjected to stereotaxic surgery for implanting a unilateral cannula into the VTA. After one week of recovery, separate groups of animals were given different doses of SCH23390 and Sulpiride (0.25, 1, and 4 µg/0.3 µl) as D1- and D2-like receptor antagonists into the VTA, respectively. Then, the animals were exposed to FSS for a 6-min period, and the pain threshold was measured using the tail-flick test over a 60-min time set intervals. Results indicated that exposure to FSS produces a prominent antinociceptive response, diminishing by blocking both dopamine receptors in the VTA. Nonetheless, the effect of a D1-like dopamine receptor antagonist on FSS-induced analgesia was more prominent than that of a D2-like dopamine receptor antagonist. The results demonstrated that VTA dopaminergic receptors contribute to the pain process in stressful situations, and it might be provided a practical approach to designing new therapeutic agents for pain management.


Asunto(s)
Núcleo Accumbens , Área Tegmental Ventral , Ratas , Masculino , Animales , Área Tegmental Ventral/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/metabolismo , Antagonistas de Dopamina/farmacología , Ratas Wistar , Dolor/tratamiento farmacológico , Analgésicos/farmacología
19.
Cancer Genet ; 278-279: 71-78, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37729778

RESUMEN

We investigated the effect of stem cell marker dopamine receptor D2 (DRD2) on the proliferation of hormone-receptor-negative breast cancer cells. High-throughput DNA methylation sequencing on an 850 K chip was used to pre-screen breast cancer tissues with significant methylation differences. The expression of DRD2 in breast cancer and normal breast tissues, and clinical risk factors, were detected by pyrophosphoric acid validation and immunohistochemistry. In vitro and in vivo experiments verified the possible molecular signaling pathways. DRD2 promoter region was hypomethylated in hormone-receptor-negative breast cancer or with high-risk factors compared to the normal tissues. The proliferation of breast cancer cells was enhanced after DRD2 was upregulated and decreased after DRD2 was downregulated. In vivo experiments found that tumor growth and the expression of antigen KI-67 (Ki67) and the cluster of differentiation 31 (CD31) were improved by the overexpression of DRD2 and inhibited by the down expression of DRD2. In vivo and in vitro experiments demonstrated the phosphorylation of filamin A and extracellular signal-regulated kinase (FLNA-ERK) was influenced by the expression of DRD2, suggesting DRD2 plays a role in the FLNA-ERK signaling pathway. Methylation inhibitors (5-aza-2-deoxycytidine, 5-azadc) partially reversed the inhibitory effect of DRD2 down expression on cell proliferation, migration, and tumor growth in animal models, indicating that inhibition of DRD2 methylation promotes cancer development. This study demonstrated the DRD2 promoter region is hypomethylated in hormone-receptor-negative breast cancer or with high-risk factors. The methylation status of the DRD2 promoter and FLNA-ERK signaling pathway and the DRD2 expression in breast cancer treatment need to be considered.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Filaminas/genética , Filaminas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Metilación de ADN/genética , Hormonas , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
20.
J Ovarian Res ; 16(1): 158, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563671

RESUMEN

Polycystic ovarian syndrome (PCOS) is a disorder with a foundation of neuroendocrine dysfunction, characterized by increased gonadotropin-releasing hormone (GnRH) pulsatility, which is antagonized by dopamine. The dopamine receptor 2 (DRD2), encoded by the DRD2 gene, has been shown to mediate dopamine's inhibition of GnRH neuron excitability through pre- and post-synaptic interactions in murine models. Further, DRD2 is known to mediate prolactin (PRL) inhibition by dopamine, and high blood level of PRL have been found in more than one third of women with PCOS. We recently identified PRL as a gene contributing to PCOS risk and reported DRD2 conferring risk for type 2 diabetes and depression, which can both coexist with PCOS. Given DRD2 mediating dopamine's action on neuroendocrine profiles and association with metabolic-mental states related to PCOS, polymorphisms in DRD2 may predispose to development of PCOS. Therefore, we aimed to investigate whether DRD2 variants are in linkage to and/or linkage disequilibrium (i.e., linkage and association) with PCOS in Italian families. In 212 Italian families, we tested 22 variants within the DRD2 gene for linkage and linkage disequilibrium with PCOS. We identified five novel variants significantly linked to the risk of PCOS. This is the first study to identify DRD2 as a risk gene in PCOS, however, functional studies are needed to confirm these results.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome del Ovario Poliquístico , Receptores de Dopamina D2 , Femenino , Humanos , Dopamina/fisiología , Hormona Liberadora de Gonadotropina , Síndrome del Ovario Poliquístico/genética , Receptores de Dopamina D2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA