Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 585
Filtrar
1.
Pharmacol Res Perspect ; 12(4): e1226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886975

RESUMEN

Although classically recognized as a neurotransmitter, gamma aminobutyric acid (GABA) has also been identified in colonic tumors. Moreover, the gut microbiome represents another potential source of GABA. Both GABAA and GABAB receptors have been implicated in contributing to the effects of GABA in colorectal cancer, with both pro- and anti-tumorigenic functions identified. However, their subunit composition is often overlooked. Studies to date have not addressed whether the GABA-producing potential of the microbiome changes over the course of colon tumor development or whether receptor subunit expression patterns are altered in colon cancer. Therefore, we investigated the clusters of orthologous group frequencies of glutamate decarboxylase (GAD) in feces from two murine models of colon cancer and found that the frequency of microbial GAD was significantly decreased early in the tumorigenic process. We also determined that microbial-derived GABA inhibited proliferation of colon cancer cells in vitro and that this effect of GABA on SW480 cells involved both GABAA and GABAB receptors. GABA also inhibited prostaglandin E2 (PGE2)-induced proliferation and interleukin-6 (IL-6) expression in these cells. Gene expression correlations were assessed using the "Cancer Exploration" suite of the TIMER2.0 web tool and identified that GABA receptor subunits were differentially expressed in human colon cancer. Moreover, GABAA receptor subunits were predominantly positively associated with PGE2 synthase, cyclooxygenase-2 and IL-6. Collectively, these data demonstrate decreased potential of the microbiome to produce GABA during tumorigenesis, a novel anti-tumorigenic pathway for GABA, and that GABA receptor subunit expression adds a further layer of complexity to GABAergic signaling in colon cancer.


Asunto(s)
Proliferación Celular , Neoplasias del Colon , Microbioma Gastrointestinal , Receptores de GABA-A , Receptores de GABA-B , Transducción de Señal , Ácido gamma-Aminobutírico , Animales , Neoplasias del Colon/metabolismo , Neoplasias del Colon/microbiología , Neoplasias del Colon/patología , Ácido gamma-Aminobutírico/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-B/metabolismo , Dinoprostona/metabolismo , Glutamato Descarboxilasa/metabolismo , Interleucina-6/metabolismo , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Carcinogénesis , Heces/microbiología , Receptores de GABA/metabolismo , Receptores de GABA/genética , Masculino , Ratones Endogámicos C57BL , Femenino
2.
Cell Cycle ; 23(4): 448-465, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38623967

RESUMEN

Triple negative breast cancer (TNBC) is known for its heterogeneous nature and aggressive onset. The unresponsiveness to hormone therapies and immunotherapy and the toxicity of chemotherapeutics account for the limited treatment options for TNBC. Ion channels have emerged as possible therapeutic candidates for cancer therapy, but little is known about how ligand gated ion channels, specifically, GABA type A ligand-gated ion channel receptors (GABAAR), affect cancer pathogenesis. Our results show that the GABAA ß3 subunit is expressed at higher levels in TNBC cell lines than non-tumorigenic cells, therefore contributing to the idea that limiting the GABAAR via knockdown of the GABAA ß3 subunit is a potential strategy for decreasing the proliferation and migration of TNBC cells. We employed pharmacological and genetic approaches to investigate the role of the GABAA ß3 subunit in TNBC proliferation, migration, and cell cycle progression. The results suggest that pharmacological antagonism or genetic knockdown of GABAA ß3 subunit decreases TNBC proliferation and migration. In addition, GABAA ß3 subunit knockdown causes cell cycle arrest in TNBC cell lines via decreased cyclin D1 and increased p21 expression. Our findings suggest that membrane bound GABAA receptors containing the ß3 subunit can be further developed as a potential novel target for the treatment of TNBC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Receptores de GABA-A , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Proliferación Celular/genética , Movimiento Celular/genética , Línea Celular Tumoral , Femenino , Ciclo Celular/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética
3.
J Steroid Biochem Mol Biol ; 241: 106525, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636682

RESUMEN

Gamma-aminobutyric acid A (GABA-A) receptors in the cells of the immune system enhance anti-inflammatory responses by regulating cytokine secretion, cytotoxic responses, and cell activation. In the CNS, the formation of GABA-A subunits into a pentameric structure has been extensively studied; however, no such study has been conducted in the immune system. The objective of the present study was to examine associations between the levels of steroid hormones and GABA-A receptor δ subunit expression in the immune system. We focused on this subunit because GABA-A receptors that contain it become significantly more sensitive to steroid hormones. We collected 80 blood samples from reproductive age women for the purpose of analyzing dehydroepiandrosterone (DHEA), 17ß-estradiol, progesterone, and allopregnanolone using liquid chromatography-mass spectrometry (LC-MS). Furthermore, we extracted peripheral blood mononuclear cells (PBMCs) for determining mRNA expression levels of GABA-A receptor genes encoding the δ and ε subunits. We constructed linear mixed effect models for each GABA-A receptor subunit with all 4 steroid hormones, age, and age of menarche as predictors. Whereas DHEA was significantly associated with δ subunit expression (t-value = 2.981; p = 0.003), in line with our hypothesis, none of the steroid hormones were significantly associated with the expression of the ε subunit. Results of this study indicate that significant interactions between hormones from the steroid hormone biosynthesis pathway and GABAergic machinery from the immune cells may be utilized to expand models examining the molecular basis of inflammatory conditions.


Asunto(s)
Deshidroepiandrosterona , Receptores de GABA-A , Humanos , Femenino , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Adulto , Progesterona/sangre , Adulto Joven , Estradiol/sangre , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Pregnanolona/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Expresión Génica/efectos de los fármacos
4.
J Cell Mol Med ; 28(9): e18352, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685685

RESUMEN

Gliomas, the most lethal tumours in brain, have a poor prognosis despite accepting standard treatment. Limited benefits from current therapies can be attributed to genetic, epigenetic and microenvironmental cues that affect cell programming and drive tumour heterogeneity. Through the analysis of Hi-C data, we identified a potassium-chloride co-transporter SLC12A5 associated with disrupted topologically associating domain which was downregulated in tumour tissues. Multiple independent glioma cohorts were included to analyse the characterization of SLC12A5 and found it was significantly associated with pathological features, prognostic value, genomic alterations, transcriptional landscape and drug response. We constructed two SLC12A5 overexpression cell lines to verify the function of SLC12A5 that suppressed tumour cell proliferation and migration in vitro. In addition, SLC12A5 was also positively associated with GABAA receptor activity and negatively associated with pro-tumour immune signatures and immunotherapy response. Collectively, our study provides a comprehensive characterization of SLC12A5 in glioma and supports SLC12A5 as a potential suppressor of disease progression.


Asunto(s)
Neoplasias Encefálicas , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioma , Cotransportadores de K Cl , Simportadores , Humanos , Glioma/genética , Glioma/patología , Glioma/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Simportadores/genética , Simportadores/metabolismo , Movimiento Celular/genética , Pronóstico , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética
5.
Virus Res ; 344: 199366, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38548137

RESUMEN

Gamma-aminobutyric acid (GABA) signals in various non-neuronal cells including hepatocytes and some immune cells. Studies, including ours, show that type A GABA receptors (GABAARs)-mediated signaling occurs in macrophages regulating tissue-specific functions. Our recent study reveals that activation of GABAARs in liver macrophages promotes their M2-like polarization and increases HBV replication in mice. This short article briefly summarizes the GABA signaling system in macrophages and discusses potential mechanisms by which GABA signaling promotes HBV replication.


Asunto(s)
Hepatitis B , Macrófagos , Receptores de GABA-A , Transducción de Señal , Replicación Viral , Ácido gamma-Aminobutírico , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Ácido gamma-Aminobutírico/metabolismo , Hepatitis B/virología , Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/genética , Hígado/virología , Hígado/metabolismo , Macrófagos/virología , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética
6.
Synapse ; 78(2): e22289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436644

RESUMEN

Epileptic seizures are seen as a result of changing excitability balance depending on the deterioration in synaptic plasticity in the brain. Neuroplastin, and its related molecules which are known to play a role in synaptic plasticity, neurotransmitter activities that provide balance of excitability and, different neurological diseases, have not been studied before in epilepsy. In this study, a total of 34 Sprague-Dawley male and female rats, 2 months old, weighing 250-300 g were used. The epilepsy model in rats was made via pentylenetetrazole (PTZ). After the completion of the experimental procedure, the brain tissue of the rats were taken and the histopathological changes in the hippocampus and cortex parts and the brain stem were investigated, as well as the immunoreactivity of the proteins related to the immunohistochemical methods. As a result of the histopathological evaluation, it was determined that neuron degeneration and the number of dilated blood vessels in the hippocampus, frontal cortex, and brain stem were higher in the PTZ status epilepticus (SE) groups than in the control groups. It was observed that neuroplastin and related proteins TNF receptor-associated factor 6 (TRAF6), Gamma amino butyric acid type A receptors [(GABA(A)], and plasma membrane Ca2+ ATPase (PMCA) protein immunoreactivity levels increased especially in the male hippocampus, and only AMPA receptor subunit type 1 (GluA1) immunoreactivity decreased, unlike other proteins. We believe this may be caused by a problem in the mechanisms regulating the interaction of neuroplastin and GluA1 and may cause problems in synaptic plasticity in the experimental epilepsy model. It may be useful to elucidate this mechanism and target GluA1 when determining treatment strategies.


Asunto(s)
Epilepsia , Animales , Femenino , Masculino , Ratas , Tronco Encefálico/metabolismo , Epilepsia/inducido químicamente , Epilepsia/genética , Hipocampo/metabolismo , Pentilenotetrazol , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Factor 6 Asociado a Receptor de TNF/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Receptores AMPA/genética , Corteza Cerebral/metabolismo
7.
Clin Exp Pharmacol Physiol ; 51(3): e13840, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38302076

RESUMEN

Remimazolam is a newly developed ultra-short-acting benzodiazepine that exerts sedative effects. This study aimed to clarify the effects of remimazolam on cardiac contractility. In a randomised-parallel group trial, haemodynamic parameters were compared between propofol (n = 11) and remimazolam (n = 12) groups during the induction of general anaesthesia in patients undergoing non-cardiac surgery. In a preclinical study, the direct effects of remimazolam on cardiac contractility were also evaluated using isolated rat hearts. RNA sequence data obtained from rat and human hearts were analysed to assess the expression patterns of the cardiac γ-aminobutyric acid type A (GABAA ) receptor subunits. In a clinical study, the proportional change of the maximum rate of arterial pressure rise was milder during the study period in the remimazolam group (propofol: -52.6 [10.2] (mean [standard deviation])% vs. remimazolam: -39.7% [10.5%], p = 0.007). In a preclinical study, remimazolam did not exert a negative effect on left ventricle developed pressure, whereas propofol did exert a negative effect after bolus administration of a high dose (propofol: -26.9% [3.5%] vs. remimazolam: -1.1 [6.9%], p < 0.001). Analysis of the RNA sequence revealed a lack of γ subunits, which are part of the major benzodiazepine binding site of the GABAA receptor, in rat and human hearts. These results indicate that remimazolam does not have a direct negative effect on cardiac contractility, which might contribute to its milder effect on cardiac contractility during the induction of general anaesthesia. The expression patterns of cardiac GABAA receptor subunits might be associated with the unique pharmacokinetics of benzodiazepines in the heart.


Asunto(s)
Propofol , Humanos , Animales , Ratas , Propofol/farmacología , Receptores de GABA-A/genética , Benzodiazepinas/farmacología , Ácido gamma-Aminobutírico
9.
Biochem Genet ; 62(1): 242-253, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37326897

RESUMEN

Pancreatic cancer remains the common cancer with the worst prognosis because of its late diagnosis and extensive metastasis. This study aimed to investigate the effects of GABRP on pancreatic cancer metastasis and the molecular mechanism. The expression of GABRP was measured using the quantitative real-time PCR and western blot. The biological behaviors of cancer cells were assessed using the cell counting kit-8, Transwell assay, and western blot. The regulation of GABRP on the MEK/ERK pathway was detected by western blot. The results indicated that GABRP was overexpressed in pancreatic cancer tissues and cells. Knockdown of GABRP suppressed cell viability, invasion, migration, and epithelial-mesenchymal transition (EMT), whereas GABRP overexpression facilitated these biological behaviors. Inactivation of the MEK/ERK pathway reversed the effects on cellular processes induced by GABRP. Moreover, silencing of GABRP inhibited tumor growth. In conclusion, GABRP promoted the progression of pancreatic cancer by facilitating cell metastasis and tumor growth via activating the MEK/ERK pathway. The findings suggest that GABRP has the potential to be a therapeutic target for the metastatic pancreatic cancer.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias Pancreáticas/patología , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transducción de Señal
10.
Commun Biol ; 6(1): 1010, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798443

RESUMEN

Pyroptosis is a cell death process that causes inflammation and contributes to numerous diseases. Pyroptosis is mediated by caspase-1 family proteases that cleave the pore-forming protein gasdermin D, causing plasma membrane rupture and release of pathogenic cellular contents. We previously identified muscimol as a small molecule that prevents plasma membrane rupture during pyroptosis via an unidentified mechanism. Here, we show that muscimol has reversible activity to prevent cellular lysis without affecting earlier pyroptotic events. Although muscimol is a well-characterized agonist for neuronal GABAA receptors, muscimol protection is not altered by GABAA receptor antagonists or recapitulated by other GABAA agonists, suggesting that muscimol acts via a novel mechanism. We find that muscimol blocks oligomerization of ninjurin-1, which is required for plasma membrane rupture downstream of gasdermin D pore formation. Our structure-activity relationship studies reveal distinct molecular determinants defining inhibition of pyroptotic lysis compared to GABAA binding. In addition, we demonstrate that muscimol reduces lethality during LPS-induced septic shock. Together, these findings demonstrate that ninjurin-1-mediated plasma membrane rupture can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis.


Asunto(s)
Gasderminas , Piroptosis , Muscimol/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Membrana Celular/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo
11.
Cell Mol Life Sci ; 80(10): 280, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684532

RESUMEN

Nuclear Cyclin D1 (Ccnd1) is a main regulator of cell cycle progression and cell proliferation. Interestingly, Ccnd1 moves to the cytoplasm at the onset of differentiation in neuronal precursors. However, cytoplasmic functions and targets of Ccnd1 in post-mitotic neurons are unknown. Here we identify the α4 subunit of gamma-aminobutyric acid (GABA) type A receptors (GABAARs) as an interactor and target of Ccnd1-Cdk4. Ccnd1 binds to an intracellular loop in α4 and, together with Cdk4, phosphorylates the α4 subunit at threonine 423 and serine 431. These modifications upregulate α4 surface levels, increasing the response of α4-containing GABAARs, measured in whole-cell patch-clamp recordings. In agreement with this role of Ccnd1-Cdk4 in neuronal signalling, inhibition of Cdk4 or expression of the non-phosphorylatable α4 decreases synaptic and extra-synaptic currents in the hippocampus of newborn rats. Moreover, according to α4 functions in synaptic pruning, CCND1 knockout mice display an altered pattern of dendritic spines that is rescued by the phosphomimetic α4. Overall, our findings molecularly link Ccnd1-Cdk4 to GABAARs activity in the central nervous system and highlight a novel role for this G1 cyclin in neuronal signalling.


Asunto(s)
Ciclina D1 , Quinasa 4 Dependiente de la Ciclina , Receptores de GABA-A , Animales , Ratones , Ratas , Ciclina D1/genética , Ácido gamma-Aminobutírico , Ratones Noqueados , Neuronas , Fosforilación , Receptores de GABA-A/genética , Quinasa 4 Dependiente de la Ciclina/genética
12.
Mediators Inflamm ; 2023: 8709458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181811

RESUMEN

Colon adenocarcinoma (COAD) is one of the tumors with the highest mortality rates. It is of the utmost significance to make an accurate prognostic assessment and to tailor one's treatment to the specific needs of the patient. Multiple lines of evidence point to the possibility that genetic variables and clinicopathological traits are connected to the onset and development of cancer. In the past, a number of studies have revealed that gamma-aminobutyric acid type A receptor subunit delta (GABRD) plays a role in the advancement of a number of different cancers. However, its function in COAD was rarely reported. In this study, we analyzed TCGA datasets and identified 29 survival-related differentially expressed genes (DEGs) in COAD patients. In particular, GABRD expression was noticeably elevated in COAD specimens. There was a correlation between high GABRD expression and an advanced clinical stage. According to the results of the survival tests, patients whose GABRD expression was high had a lower overall survival time and progression-free survival time than those whose GABRD expression was low. GABRD expression was found to be an independent predictive predictor for overall survival, as determined by multivariate COX regression analysis. Additionally, the predictive nomogram model can accurately predict the fate of individuals with COAD. In addition, we observed that GABRD expressions were positively associated with the expression of T cells regulatory (Tregs), macrophages M0, while negatively associated with the expression of T cells CD8, T cells follicular helper, macrophages M1, dendritic cells activated, eosinophils, and T cells CD4 memory activated. The IC50 of BI-2536, bleomycin, embelin, FR-180204, GW843682X, LY317615, NSC-207895, rTRAIL, and VX-11e was higher in the GABRD high-expression group. In conclusion, we have shown evidence that GABRD is a novel biomarker that is connected with immune cell infiltration in COAD and may be utilized to predict the prognosis of COAD patients.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Neoplasias del Colon/genética , Pronóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Nomogramas , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Receptores de GABA-A/genética
13.
Epilepsy Res ; 189: 107056, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36469977

RESUMEN

Benzodiazepines (BDZ) such as diazepam and lorazepam are popular as first-line treatment for acute seizures due to their rapid action and high efficacy. However, long-term usage of BDZ leads to benzodiazepine resistance, a phenomenon whose underlying mechanisms are still being investigated. One of the hypothesised mechanisms contributing to BDZ resistance is the presence of mutations in benzodiazepine-sensitive receptors. While a few genetic variants have been reported previously, knowledge of relevant pathogenic variants is still scarce. We used Sanger Sequencing to detect variants in the ligand-binding domain of BDZ-sensitive GABAA receptor subunits α1-3 and 5 expressed in resected brain tissues of drug-resistant epilepsy (DRE) patients with a history of BDZ resistance and found two previously unreported predicted pathogenic frameshifting variants - NM_000807.4(GABRA2):c.367_368insG and NM_000810.4(GABRA5):c.410del - significantly enriched in these patients. The findings were further explored in resected DRE brain tissues through cellular electrophysiological experiments.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Humanos , Benzodiazepinas/uso terapéutico , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsiones/complicaciones
14.
Epilepsy Res ; 189: 107070, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36584483

RESUMEN

Epilepsy is a complex neurological disease that can be caused by both genetic and environmental factors. Many studies have been conducted to investigate the genetic risk variants and molecular mechanisms of epilepsy. Disruption of excitation-inhibition balance (E/I balance) is one of the widely accepted disease mechanisms of epilepsy. The maintenance of E/I balance is an intricate process that is governed by multiple proteins. Using whole exome sequencing (WES), we identified a novel GABRA1 c.448G>A (p.E150K) variant and ERBB4 c.1972A>T (p.I658F, rs190654033) variant in a Malaysian Chinese family with genetic generalized epilepsy (GGE). The GGE may be triggered by dysregulation of E/I balance mechanism. Segregation of the variants in the family was verified by Sanger sequencing. All family members with GGE inherited both variants. However, family members who carried only one of the variants did not show any symptoms of GGE. Both the GABRA1 and ERBB4 variants were predicted damaging by MutationTaster and CADD, and protein structure analysis showed that the variants had resulted in the formation of additional hydrogen bonds in the mutant proteins. GABRA1 variant could reduce the efficiency of GABAA receptors, and constitutively active ERBB4 receptors caused by the ERBB4 variant promote internalization of GABAA receptors. The interaction between the two variants may cause a greater disruption in E/I balance, which is more likely to induce a seizure. Nevertheless, this disease model was derived from a single small family, further studies are still needed to confirm the verifiability of the purported disease model.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Humanos , Epilepsia Generalizada/genética , Epilepsia/genética , Convulsiones , Familia , Receptores de GABA-A/genética , Receptores de GABA-A/química , Ácido gamma-Aminobutírico , Receptor ErbB-4/genética
15.
Medicina (Kaunas) ; 58(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36422192

RESUMEN

Background and Objectives: Variants of GABRA2 have been repeatedly associated with alcohol dependence risk. However, no study investigated potential epigenetic alterations in the GABRA2 gene in alcohol-dependent (AD) subjects during alcohol withdrawal. We investigated DNA methylation pattern in the regulatory region of GABRA2 gene in peripheral leukocytes of AD patients and controls. Further, GABRA2 methylation patterns were analysed in neuroblastoma cells under ethanol exposure and withdrawal. Materials and Methods: In the present study, blood samples were obtained from 41 AD subjects on the day of inpatient admission, after the first and second week of inpatient treatment. The comparison group included 47 healthy controls. GABRA2 methylation of 4 CpG sites in the CpG island was compared to neuroblastoma cells which were exposed to 100 mM of ethanol for 2, 5 and 9 days, followed by a withdrawal interval of 4 days. Results: no significant differences in GABRA2 methylation patterns were found in AD subjects over time and vs. controls, after controlling for age. Further, no influence of withdrawal severity, alcohol consumption before admission and other alcohol dependence characteristics were found. Conclusions: The results indicate that GABRA2 methylation in AD individuals and in a cell model is unaffected by alcohol exposition and withdrawal. Influences of GABRA2 on characteristics of alcohol dependence may be exerted by mechanisms other than epigenetic alterations related to alcohol intoxication or withdrawal.


Asunto(s)
Alcoholismo , Neuroblastoma , Síndrome de Abstinencia a Sustancias , Humanos , Alcoholismo/genética , Metilación de ADN/genética , Estudios Prospectivos , Síndrome de Abstinencia a Sustancias/genética , Etanol/efectos adversos , Receptores de GABA-A/genética
16.
Biomolecules ; 12(7)2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35883422

RESUMEN

GABAA receptors are a major contributor to fast inhibitory neurotransmission in the brain. The receptors are activated upon binding the transmitter GABA or allosteric agonists including a number of GABAergic anesthetics and neurosteroids. Functional receptors can be formed by various combinations of the nineteen GABAA subunits cloned to date. GABAA receptors containing the ε subunit exhibit a significant degree of constitutive activity and have been suggested to be unresponsive to allosteric agents. In this study, we have characterized the functional properties of the rat α1ß2ε GABAA receptor. We confirm that the α1ß2ε receptor exhibits a higher level of constitutive activity than typical of GABAA receptors and show that it is inefficaciously activated by the transmitter and the allosteric agonists propofol, pentobarbital, and allopregnanolone. Manipulations intended to alter ε subunit expression and receptor stoichiometry were largely without effect on receptor properties including sensitivity to GABA and allosteric agonists. Surprisingly, amino acid substitutions at the conserved 9' and 6' positions in the second transmembrane (TM2) domain in the ε subunit did not elicit the expected functional effects of increased constitutive activity and resistance to the channel blocker picrotoxin, respectively. We tested the accessibility of TM2 residues mutated to cysteine using the cysteine-modifying reagent 4-(hydroxymercuri)benzoic acid and found a unique pattern of water-accessible residues in the ε subunit.


Asunto(s)
Propofol , Receptores de GABA-A , Animales , Cisteína , Pentobarbital/metabolismo , Pentobarbital/farmacología , Propofol/farmacología , Ratas , Receptores de GABA-A/química , Receptores de GABA-A/genética , Ácido gamma-Aminobutírico/metabolismo
17.
CNS Neurosci Ther ; 28(11): 1767-1778, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35822698

RESUMEN

AIMS: GABAergic modulation involved in cognitive processing appears to be substantially changed in Alzheimer's disease (AD). In a widely used 5xFAD model of AD, we aimed to assess if negative and positive allosteric modulators of α5 GABAA receptors (NAM and PAM, respectively) would affect social interaction, social, object and spatial memory, and neuroinflammation. METHODS: After 10-day treatment with PAM, NAM, or solvent, 6-month-old transgenic and non-transgenic 5xFAD mice underwent testing in a behavioral battery. Gene expressions of IL-1ß, IL-6, TNF-α, GFAP, and IBA-1 were determined in hippocampus and prefrontal cortex by qPCR. RESULTS: PAM treatment impaired spatial learning in transgenic females compared to solvent-treated transgenic females, and social recognition in transgenic and non-transgenic males. NAM treatment declined social interaction in transgenic and non-transgenic males, while had beneficial effect on cognitive flexibility in non-transgenic males compared to solvent-treated non-transgenic males. Transgenic animals have not fully displayed cognitive symptoms, but neuroinflammation was confirmed. NAM reduced proinflammatory gene expressions in transgenic females and astrogliosis in transgenic males compared to pathological controls. CONCLUSION: PAM and NAM failed to exert favorable behavioral effects in transgenic animals. Suppression of neuroinflammation obtained with NAM calls for more studies with GABAergic ligands in amyloid beta- and/or tau-dependent models with prominent neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Interleucina-6/metabolismo , Masculino , Memoria , Ratones , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Receptores de GABA-A/genética , Interacción Social , Solventes , Factor de Necrosis Tumoral alfa/metabolismo , Ácido gamma-Aminobutírico
18.
J Mol Neurosci ; 72(7): 1500-1515, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35819636

RESUMEN

Epilepsy is a neurological disease characterized by abnormal or synchronous brain activity causing seizures, which may produce convulsions, minor physical signs, or a combination of symptoms. These disorders affect approximately 65 million people worldwide, from all ages and genders. Seizures apart, epileptic patients present a high risk to develop neuropsychological comorbidities such as cognitive deficits, emotional disturbance, and psychiatric disorders, which severely impair quality of life. Currently, the treatment for epilepsy includes the administration of drugs or surgery, but about 30% of the patients treated with antiepileptic drugs develop time-dependent pharmacoresistence. Therefore, further investigation about epilepsy and its causes is needed to find new pharmacological targets and innovative therapeutic strategies. Pharmacoresistance is associated to changes in neuronal plasticity and alterations of GABAA receptor-mediated neurotransmission. The downregulation of GABA inhibitory activity may arise from a positive shift in GABAA receptor reversal potential, due to an alteration in chloride homeostasis. In this paper, we review the contribution of K+-Cl--cotransporter (KCC2) to the alterations in the Cl- gradient observed in epileptic condition, and how these alterations are coupled to the increase in the excitability.


Asunto(s)
Epilepsia , Simportadores , Cloruros/metabolismo , Femenino , Humanos , Masculino , Calidad de Vida , Receptores de GABA-A/genética , Convulsiones , Simportadores/genética
19.
J Orthop Surg Res ; 17(1): 304, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689264

RESUMEN

OBJECTIVE: This study was conducted to investigate the effect of long non-coding RNA (lncRNA) Gm37494 on osteoarthritis (OA) and its related molecular mechanism. METHODS: The cartilage tissues were obtained from OA patients, and an OA mouse model was induced by the destabilization of the medial meniscus, followed by measurement of Gm37494, microRNA (miR)-181a-5p, GABRA1 mRNA, and the encoded GABAARα1 protein expression. Thereafter, a cellular model was induced by interleukin-1ß (IL-1ß) treatment in chondrocytes, followed by ectopic and silencing experiments. Chondrocyte proliferation was detected by CCK-8 and EdU assays, chondrocyte apoptosis by flow cytometry and western blot, and the levels of inflammatory factors by ELISA. The binding of Gm37494 to miR-181a-5p was evaluated by dual-luciferase reporter gene and RIP assays, and that of GABRA1 to miR-181a-5p by dual-luciferase reporter gene and RNA pull-down assays. RESULTS: OA patients and mice had decreased GABRA1 mRNA and GABAARα1 protein levels and elevated miR-181a-5p expression in cartilage tissues. Additionally, Gm37494 was poorly expressed in OA mice. Mechanistically, Gm37494 directly bound to and inversely modulated miR-181a-5p that negatively targeted GABRA1. In IL-1ß-induced chondrocytes, Gm37494 overexpression enhanced cell proliferation and suppressed cell apoptosis and inflammation, whereas further miR-181a-5p up-regulation or GABRA1 silencing abolished these trends. CONCLUSIONS: Conclusively, Gm37494 elevated GABRA1 expression by binding to miR-181a-5p, thus ameliorating OA-induced chondrocyte damage.


Asunto(s)
MicroARNs , Osteoartritis , ARN Largo no Codificante , Animales , Apoptosis/genética , Condrocitos/metabolismo , Regulación hacia Abajo , Humanos , Interleucina-1beta/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico
20.
Biomolecules ; 12(5)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35625659

RESUMEN

The ventral tegmental area (VTA) in the ventral midbrain is the origin of the dopaminergic neurotransmission pathways. Although GABAA receptors and AKT-GSK3ß signaling are involved in the pathophysiology of mental disorders and are modulated by antipsychotics, an unmet task is to reveal the pathological changes in these biomarkers and antipsychotic modulations in the VTA. Using a juvenile polyriboinosinic-polyribocytidylic acid (Poly I:C) psychiatric rat model, this study investigated the effects of adolescent risperidone treatment on GABAA receptors and AKT/GSK3ß in the VTA. Pregnant female Sprague-Dawley rats were administered Poly I:C (5mg/kg; i.p) or saline at gestational day 15. Juvenile female offspring received risperidone (0.9 mg/kg, twice per day) or a vehicle from postnatal day 35 for 25 days. Poly I:C offspring had significantly decreased mRNA expression of GABAA receptor ß3 subunits and glutamic acid decarboxylase (GAD2) in the VTA, while risperidone partially reversed the decreased GAD2 expression. Prenatal Poly I:C exposure led to increased expression of AKT2 and GSK3ß. Risperidone decreased GABAA receptor ß2/3, but increased AKT2 mRNA expression in the VTA of healthy rats. This study suggests that Poly I:C-elicited maternal immune activation and risperidone differentially modulate GABAergic neurotransmission and AKT-GSK3ß signaling in the VTA of adolescent rats.


Asunto(s)
Antipsicóticos , Área Tegmental Ventral , Animales , Antipsicóticos/farmacología , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Poli I-C/farmacología , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Risperidona/metabolismo , Risperidona/farmacología , Área Tegmental Ventral/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA