Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.515
Filtrar
1.
Pharmacol Res Perspect ; 12(4): e1226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886975

RESUMEN

Although classically recognized as a neurotransmitter, gamma aminobutyric acid (GABA) has also been identified in colonic tumors. Moreover, the gut microbiome represents another potential source of GABA. Both GABAA and GABAB receptors have been implicated in contributing to the effects of GABA in colorectal cancer, with both pro- and anti-tumorigenic functions identified. However, their subunit composition is often overlooked. Studies to date have not addressed whether the GABA-producing potential of the microbiome changes over the course of colon tumor development or whether receptor subunit expression patterns are altered in colon cancer. Therefore, we investigated the clusters of orthologous group frequencies of glutamate decarboxylase (GAD) in feces from two murine models of colon cancer and found that the frequency of microbial GAD was significantly decreased early in the tumorigenic process. We also determined that microbial-derived GABA inhibited proliferation of colon cancer cells in vitro and that this effect of GABA on SW480 cells involved both GABAA and GABAB receptors. GABA also inhibited prostaglandin E2 (PGE2)-induced proliferation and interleukin-6 (IL-6) expression in these cells. Gene expression correlations were assessed using the "Cancer Exploration" suite of the TIMER2.0 web tool and identified that GABA receptor subunits were differentially expressed in human colon cancer. Moreover, GABAA receptor subunits were predominantly positively associated with PGE2 synthase, cyclooxygenase-2 and IL-6. Collectively, these data demonstrate decreased potential of the microbiome to produce GABA during tumorigenesis, a novel anti-tumorigenic pathway for GABA, and that GABA receptor subunit expression adds a further layer of complexity to GABAergic signaling in colon cancer.


Asunto(s)
Proliferación Celular , Neoplasias del Colon , Microbioma Gastrointestinal , Receptores de GABA-A , Receptores de GABA-B , Transducción de Señal , Ácido gamma-Aminobutírico , Animales , Neoplasias del Colon/metabolismo , Neoplasias del Colon/microbiología , Neoplasias del Colon/patología , Ácido gamma-Aminobutírico/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-B/metabolismo , Dinoprostona/metabolismo , Glutamato Descarboxilasa/metabolismo , Interleucina-6/metabolismo , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Carcinogénesis , Heces/microbiología , Receptores de GABA/metabolismo , Receptores de GABA/genética , Masculino , Ratones Endogámicos C57BL , Femenino
2.
Acta Neuropathol ; 147(1): 80, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714540

RESUMEN

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons. Using single-nuclei RNA sequencing in TSC patient material, we identify somatostatin-expressing (SST+) interneurons as a unique and immature subpopulation in TSC. The disrupted maturation of SST+ interneurons may undergo an incomplete switch from excitatory to inhibitory GABAergic signaling during development, resulting in reduced inhibitory properties. Notably, this study reveals markers of immaturity specifically in SST+ interneurons, including an abnormal NKCC1/KCC2 ratio, indicating an imbalance in chloride homeostasis crucial for the postsynaptic consequences of GABAergic signaling as well as the downregulation of GABAA receptor subunits, GABRA1, and upregulation of GABRA2. Further exploration of SST+ interneurons revealed altered localization patterns of SST+ interneurons in TSC brain tissue, concentrated in deeper cortical layers, possibly linked to cortical dyslamination. In the epilepsy context, our research underscores the diverse cell type-specific roles of GABAergic interneurons in shaping seizures, advocating for precise therapeutic considerations. Moreover, this study illuminates the potential contribution of SST+ interneurons to TSC pathophysiology, offering insights for targeted therapeutic interventions.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Esclerosis Tuberosa , Interneuronas/patología , Interneuronas/metabolismo , Esclerosis Tuberosa/patología , Esclerosis Tuberosa/metabolismo , Humanos , Neuronas GABAérgicas/patología , Neuronas GABAérgicas/metabolismo , Masculino , Femenino , Eminencia Media/patología , Eminencia Media/metabolismo , Somatostatina/metabolismo , Niño , Preescolar , Receptores de GABA-A/metabolismo , Adolescente , Eminencia Ganglionar
3.
J Cell Biol ; 223(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695719

RESUMEN

Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.


Asunto(s)
Microglía , Receptores de GABA-A , Sueño de Onda Lenta , Sinapsis , Factor de Necrosis Tumoral alfa , Animales , Masculino , Ratones , Consolidación de la Memoria , Ratones Endogámicos C57BL , Microglía/metabolismo , Plasticidad Neuronal/fisiología , Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Transducción de Señal , Sueño/fisiología , Sinapsis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Cell Cycle ; 23(4): 448-465, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38623967

RESUMEN

Triple negative breast cancer (TNBC) is known for its heterogeneous nature and aggressive onset. The unresponsiveness to hormone therapies and immunotherapy and the toxicity of chemotherapeutics account for the limited treatment options for TNBC. Ion channels have emerged as possible therapeutic candidates for cancer therapy, but little is known about how ligand gated ion channels, specifically, GABA type A ligand-gated ion channel receptors (GABAAR), affect cancer pathogenesis. Our results show that the GABAA ß3 subunit is expressed at higher levels in TNBC cell lines than non-tumorigenic cells, therefore contributing to the idea that limiting the GABAAR via knockdown of the GABAA ß3 subunit is a potential strategy for decreasing the proliferation and migration of TNBC cells. We employed pharmacological and genetic approaches to investigate the role of the GABAA ß3 subunit in TNBC proliferation, migration, and cell cycle progression. The results suggest that pharmacological antagonism or genetic knockdown of GABAA ß3 subunit decreases TNBC proliferation and migration. In addition, GABAA ß3 subunit knockdown causes cell cycle arrest in TNBC cell lines via decreased cyclin D1 and increased p21 expression. Our findings suggest that membrane bound GABAA receptors containing the ß3 subunit can be further developed as a potential novel target for the treatment of TNBC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Receptores de GABA-A , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Proliferación Celular/genética , Movimiento Celular/genética , Línea Celular Tumoral , Femenino , Ciclo Celular/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética
5.
J Steroid Biochem Mol Biol ; 241: 106525, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636682

RESUMEN

Gamma-aminobutyric acid A (GABA-A) receptors in the cells of the immune system enhance anti-inflammatory responses by regulating cytokine secretion, cytotoxic responses, and cell activation. In the CNS, the formation of GABA-A subunits into a pentameric structure has been extensively studied; however, no such study has been conducted in the immune system. The objective of the present study was to examine associations between the levels of steroid hormones and GABA-A receptor δ subunit expression in the immune system. We focused on this subunit because GABA-A receptors that contain it become significantly more sensitive to steroid hormones. We collected 80 blood samples from reproductive age women for the purpose of analyzing dehydroepiandrosterone (DHEA), 17ß-estradiol, progesterone, and allopregnanolone using liquid chromatography-mass spectrometry (LC-MS). Furthermore, we extracted peripheral blood mononuclear cells (PBMCs) for determining mRNA expression levels of GABA-A receptor genes encoding the δ and ε subunits. We constructed linear mixed effect models for each GABA-A receptor subunit with all 4 steroid hormones, age, and age of menarche as predictors. Whereas DHEA was significantly associated with δ subunit expression (t-value = 2.981; p = 0.003), in line with our hypothesis, none of the steroid hormones were significantly associated with the expression of the ε subunit. Results of this study indicate that significant interactions between hormones from the steroid hormone biosynthesis pathway and GABAergic machinery from the immune cells may be utilized to expand models examining the molecular basis of inflammatory conditions.


Asunto(s)
Deshidroepiandrosterona , Receptores de GABA-A , Humanos , Femenino , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Adulto , Progesterona/sangre , Adulto Joven , Estradiol/sangre , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Pregnanolona/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Expresión Génica/efectos de los fármacos
6.
Eur J Pharmacol ; 974: 176616, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38679122

RESUMEN

The purpose of this study was to investigate the mechanisms underlying sex differences in the role of spinal α6-subunit containing GABAA (α6GABAA) receptors in rats with neuropathic pain. Intrathecal 2,5-dihydro-7-methoxy-2-(4-methoxyphenyl)-3H-pyrazolo [4,3-c] quinoline-3-one (PZ-II-029, positive allosteric modulator of α6GABAA receptors) reduced tactile allodynia in female but not in male rats with neuropathic pain. PZ-II-029 was also more effective in females than males in inflammatory and nociplastic pain. Ovariectomy abated the antiallodynic effect of PZ-II-029 in neuropathic rats, whereas 17ß-estradiol or 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), estradiol receptor-α agonist, restored the effect of PZ-II-029 in ovariectomized rats. Blockade of estradiol receptor-α, using MPP (1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride), prevented the effect of 17ß-estradiol on PZ-II-029-induced antiallodynia in ovariectomized neuropathic females. Nerve injury reduced α6GABAA receptor protein expression at the dorsal root ganglia (DRG) and spinal cord of intact and ovariectomized female rats. In this last group, reconstitution with 17ß-estradiol fully restored its expression in DRG and spinal cord. In male rats, nerve injury reduced α6GABAA receptor protein expression only at the spinal cord. Nerve injury enhanced estradiol receptor-α protein expression at the DRG in intact non-ovariectomized rats. However, ovariectomy decreased estradiol receptor-α protein expression at the DRG. In the spinal cord there were no changes in estradiol receptor-α protein expression. 17ß-estradiol restored estradiol receptor-α protein expression at the DRG and increased it at the spinal cord of neuropathic rats. These data suggest that 17ß-estradiol modulates the expression and function of the α6GABAA receptor through its interaction with estradiol receptor-α in female rats.


Asunto(s)
Estradiol , Neuralgia , Receptores de GABA-A , Médula Espinal , Animales , Femenino , Estradiol/farmacología , Receptores de GABA-A/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ratas , Masculino , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Ovariectomía , Ratas Sprague-Dawley , Caracteres Sexuales , Receptor alfa de Estrógeno/metabolismo , Pirazoles/farmacología
7.
J Cell Mol Med ; 28(9): e18352, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685685

RESUMEN

Gliomas, the most lethal tumours in brain, have a poor prognosis despite accepting standard treatment. Limited benefits from current therapies can be attributed to genetic, epigenetic and microenvironmental cues that affect cell programming and drive tumour heterogeneity. Through the analysis of Hi-C data, we identified a potassium-chloride co-transporter SLC12A5 associated with disrupted topologically associating domain which was downregulated in tumour tissues. Multiple independent glioma cohorts were included to analyse the characterization of SLC12A5 and found it was significantly associated with pathological features, prognostic value, genomic alterations, transcriptional landscape and drug response. We constructed two SLC12A5 overexpression cell lines to verify the function of SLC12A5 that suppressed tumour cell proliferation and migration in vitro. In addition, SLC12A5 was also positively associated with GABAA receptor activity and negatively associated with pro-tumour immune signatures and immunotherapy response. Collectively, our study provides a comprehensive characterization of SLC12A5 in glioma and supports SLC12A5 as a potential suppressor of disease progression.


Asunto(s)
Neoplasias Encefálicas , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioma , Cotransportadores de K Cl , Simportadores , Humanos , Glioma/genética , Glioma/patología , Glioma/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Simportadores/genética , Simportadores/metabolismo , Movimiento Celular/genética , Pronóstico , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética
8.
Virus Res ; 344: 199366, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38548137

RESUMEN

Gamma-aminobutyric acid (GABA) signals in various non-neuronal cells including hepatocytes and some immune cells. Studies, including ours, show that type A GABA receptors (GABAARs)-mediated signaling occurs in macrophages regulating tissue-specific functions. Our recent study reveals that activation of GABAARs in liver macrophages promotes their M2-like polarization and increases HBV replication in mice. This short article briefly summarizes the GABA signaling system in macrophages and discusses potential mechanisms by which GABA signaling promotes HBV replication.


Asunto(s)
Hepatitis B , Macrófagos , Receptores de GABA-A , Transducción de Señal , Replicación Viral , Ácido gamma-Aminobutírico , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Ácido gamma-Aminobutírico/metabolismo , Hepatitis B/virología , Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/genética , Hígado/virología , Hígado/metabolismo , Macrófagos/virología , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética
9.
Phytother Res ; 38(5): 2198-2214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38414297

RESUMEN

Quercetin is the most common polyphenolic flavonoid present in fruits and vegetables demonstrating versatile health-promoting effects. This study aimed to examine the effects of quercetin (QR) and sclareol (SCL) on the thiopental sodium (TS)-induced sleeping and forced swimming test (FST) mouse models. SCL (1, 5, and 10 mg/kg, p.o.) or QR (50 mg/kg, p.o.) and/or diazepam (DZP) (3 mg/kg, i.p.) were employed. After 30 min of TS induction, individual or combined effects on the animals were checked. In the FST test, the animals were subjected to forced swimming after 30 min of administration of the test and/or controls for 5 min. In this case, immobility time was measured. In silico studies were conducted to evaluate the involvement of GABA receptors. SCL (5 and 10 mg/kg) significantly increased the latency and decreased sleeping time compared to the control in the TS-induced sleeping time study. DZP (3 mg/kg) showed a sedative-like effect in animals in both sleeping and FST studies. QR (50 mg/kg) exhibited a similar pattern of activity as SCL. However, its effects were more prominent than those of SCL groups. SCL (10 mg/kg) altered the DZP-3-mediated effects. SCL-10 co-treated with QR-50 significantly (p < 0.05) increased the latency and decreased sleep time and immobility time, suggesting possible synergistic antidepressant-like effects. In silico studies revealed that SCL and QR demonstrated better binding affinities with GABAA receptor, especially α2, α3, and α5 subunits. Both compounds also exhibited good ADMET and drug-like properties. In animal studies, the both compounds worked synergistically to provide antidepressant-like effects in a slightly different fashion. As a conclusion, the combined administration of SCL and QR may be used in upcoming neurological clinical trials, according to in vivo and in silico findings. However, additional investigation is necessary to verify this behavior and clarify the potential mechanism of action.


Asunto(s)
Antidepresivos , Diazepam , Quercetina , Sueño , Tiopental , Animales , Ratones , Antidepresivos/farmacología , Masculino , Quercetina/farmacología , Diazepam/farmacología , Sueño/efectos de los fármacos , Tiopental/farmacología , Natación , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular , Hipnóticos y Sedantes/farmacología , Receptores de GABA-A/metabolismo
10.
Biochem Genet ; 62(1): 242-253, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37326897

RESUMEN

Pancreatic cancer remains the common cancer with the worst prognosis because of its late diagnosis and extensive metastasis. This study aimed to investigate the effects of GABRP on pancreatic cancer metastasis and the molecular mechanism. The expression of GABRP was measured using the quantitative real-time PCR and western blot. The biological behaviors of cancer cells were assessed using the cell counting kit-8, Transwell assay, and western blot. The regulation of GABRP on the MEK/ERK pathway was detected by western blot. The results indicated that GABRP was overexpressed in pancreatic cancer tissues and cells. Knockdown of GABRP suppressed cell viability, invasion, migration, and epithelial-mesenchymal transition (EMT), whereas GABRP overexpression facilitated these biological behaviors. Inactivation of the MEK/ERK pathway reversed the effects on cellular processes induced by GABRP. Moreover, silencing of GABRP inhibited tumor growth. In conclusion, GABRP promoted the progression of pancreatic cancer by facilitating cell metastasis and tumor growth via activating the MEK/ERK pathway. The findings suggest that GABRP has the potential to be a therapeutic target for the metastatic pancreatic cancer.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias Pancreáticas/patología , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transducción de Señal
11.
Metab Brain Dis ; 39(1): 67-76, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37966694

RESUMEN

Brain damage caused by ethanol abuse may lead to permanent damage, including severe dementia. The aim of this study was to investigate the effects of ginger powder on ethanol-induced cognitive disorders by examining oxidative damage and inflammation status, and the gene expression of N-methyl-D-aspartate (NMDA) and γ-Aminobutyric acid (GABA)-A receptors in the hippocampus of male rats. 24 adult male Sprague-Dawley rats were allocated randomly to four groups as follows control, ethanol (4g/kg/day, by gavage), ginger (1g/kg/day, by gavage), and ginger-ethanol. At the end of the study, memory and learning were evaluated by the shuttle box test. Moreover, to explore mechanisms involved in ethanol-induced cognitive impairment and the protective effect of ginger, the expression of Nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), NMDA receptor, and GABA-A receptor was measured along with inflammatory and oxidative biomarkers in the hippocampus tissue. The results showed that ethanol could induce cognitive impairment in the ethanol group, while pretreatment with ginger could reverse it. The gene expression of the NF-κB/ Tumor necrosis factor (TNF)-α/Interleukin (IL)-1ß pathway and NMDA and GABA-A receptors significantly increased in the ethanol group compared to the control group. While pretreatment with ginger could significantly improve ethanol-induced cognitive impairment through these pathways in the ginger-ethanol group compared to the ethanol group (P < 0.05). It can be concluded that ginger powder could ameliorate ethanol-induced cognitive impairment by modulating the expression of NMDA and GABA-A receptors and inhibiting oxidative damage and the NF-κB/TNF-α/IL-1ß pathway in the rat hippocampus.


Asunto(s)
Disfunción Cognitiva , Zingiber officinale , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Etanol/toxicidad , FN-kappa B/metabolismo , Receptores de GABA/metabolismo , Polvos/metabolismo , Polvos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo , Hipocampo/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
Transl Res ; 267: 39-53, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38042478

RESUMEN

General anesthetic drugs cause cognitive deficits that persist after the drugs have been eliminated. Astrocytes may contribute to such cognition-impairing effects through the release of one or more paracrine factors that increase a tonic inhibitory conductance generated by extrasynaptic γ-aminobutyric acid type A (GABAA) receptors in hippocampal neurons. The mechanisms underlying this astrocyte-to-neuron crosstalk remain unknown. Interestingly, astrocytes express anesthetic-sensitive GABAA receptors. Here, we tested the hypothesis that anesthetic drugs activate astrocytic GABAA receptors to initiate crosstalk leading to a persistent increase in extrasynaptic GABAA receptor function in neurons. We also investigated the signaling pathways in neurons and aimed to identify the paracrine factors released from astrocytes. Astrocytes and neurons from mice were grown in primary cell cultures and studied using in vitro electrophysiological and biochemical assays. We discovered that the commonly used anesthetics etomidate (injectable) and sevoflurane (inhaled) stimulated astrocytic GABAA receptors, which in turn promoted the release paracrine factors, that increased the tonic current in neurons via a p38 MAPK-dependent signaling pathway. The increase in tonic current was mimicked by exogenous IL-1ß and abolished by blocking IL-1 receptors; however, unexpectedly, IL-1ß and other cytokines were not detected in astrocyte-conditioned media. In summary, we have identified a novel form of crosstalk between GABAA receptors in astrocytes and neurons that engages a p38 MAPK-dependent pathway. Brief commentary BACKGROUND: Many older patients experience cognitive deficits after surgery. Anesthetic drugs may be a contributing factor as they cause a sustained increase in the function of "memory blocking" extrasynaptic GABAA receptors in neurons. Interestingly, astrocytes are required for this increase; however, the mechanisms underlying the astrocyte-to-neuron crosstalk remain unknown. TRANSLATIONAL SIGNIFICANCE: We discovered that commonly used general anesthetic drugs stimulate GABAA receptors in astrocytes, which in turn release paracrine factors that trigger a persistent increase in extrasynaptic GABAA receptor function in neurons via p38 MAPK. This novel form of crosstalk may contribute to persistent cognitive deficits after general anesthesia and surgery.


Asunto(s)
Anestésicos Generales , Receptores de GABA-A , Humanos , Ratones , Animales , Receptores de GABA-A/metabolismo , Astrocitos/metabolismo , Neuronas , Anestésicos Generales/farmacología , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Neuropsychopharmacology ; 49(1): 73-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37369775

RESUMEN

Like other classes of treatments described in this issue's section, neuroactive steroids have been studied for decades but have risen as a new class of rapid-acting, durable antidepressants with a distinct mechanism of action from previous antidepressant treatments and from other compounds covered in this issue. Neuroactive steroids are natural derivatives of progesterone but are proving effective as exogenous treatments. The best understood mechanism is that of positive allosteric modulation of GABAA receptors, where subunit selectivity may promote their profile of action. Mechanistically, there is some reason to think that neuroactive steroids may separate themselves from liabilities of other GABA modulators, although research is ongoing. It is also possible that intracellular targets, including inflammatory pathways, may be relevant to beneficial actions. Strengths and opportunities for further development include exploiting non-GABAergic targets, structural analogs, enzymatic production of natural steroids, precursor loading, and novel formulations. The molecular mechanisms of behavioral effects are not fully understood, but study of brain network states involved in emotional processing demonstrate a robust influence on affective states not evident with at least some other GABAergic drugs including benzodiazepines. Ongoing studies with neuroactive steroids will further elucidate the brain and behavioral effects of these compounds as well as likely underpinnings of disease.


Asunto(s)
Neuroesteroides , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Encéfalo/metabolismo , Receptores de GABA-A/metabolismo , Progesterona
14.
J Physiol Pharmacol ; 74(5)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38085514

RESUMEN

Resveratrol is a polyphenolic phytocompound known to possess anxiolytic-like effects but its impact on central gammaaminobutyric acid (GABA) modulation has never been explored. The purpose of this study was to analyze the anxiolytic-like effects of resveratrol alone and in combination with rufinamide, an antiepileptic drug which has never been studied for its anxiolytic potential. The BALB/c mice were tested in a battery of behavior testing after administration of resveratrol (50 mg/kg) and rufinamide (50 mg/kg) alone and in combination. Moreover, molecular docking studies were also carried out to understand the interaction of resveratrol and rufinamide with GABA aminotransferase, GABA receptor and GABA-A transporter type 1. Resveratrol alone exerted notable anxiolytic-like effects and improved outcomes in few experiments but rufinamide alone did not yield any beneficial outcomes. However, the animal co-administered with resveratrol and rufinamide behaved exceptionally well (p<0.05) and preferred open, illuminated and exposed areas of open field, light/dark and elevated plus maze. Further, these animals showed reduced anxiety towards anxiogenic stimuli i.e. holes and marbles in hole board and marble bury tests, respectively. Resveratrol and rufinamide showed moderate to strong binding affinities with GABA proteins, indicating the potential to treat anxiety-like neurological disorders. Moreover, resveratrol and rufinamide were analyzed using molecular docking to determine their interaction with GABA receptors, transporters, and transaminase. The results suggest that their anxiolytic-like effects may be due to inhibiting GABA reuptake transporter 1 protein, leading to increased synaptic levels of GABA neurotransmitter, as seen in stable molecular dynamics results with the 7SK2 GABA transporter protein.


Asunto(s)
Ansiolíticos , Ratones , Animales , Ansiolíticos/farmacología , Resveratrol/farmacología , Simulación del Acoplamiento Molecular , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/farmacología , Ácido gamma-Aminobutírico/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Conducta Animal
15.
Commun Biol ; 6(1): 1010, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798443

RESUMEN

Pyroptosis is a cell death process that causes inflammation and contributes to numerous diseases. Pyroptosis is mediated by caspase-1 family proteases that cleave the pore-forming protein gasdermin D, causing plasma membrane rupture and release of pathogenic cellular contents. We previously identified muscimol as a small molecule that prevents plasma membrane rupture during pyroptosis via an unidentified mechanism. Here, we show that muscimol has reversible activity to prevent cellular lysis without affecting earlier pyroptotic events. Although muscimol is a well-characterized agonist for neuronal GABAA receptors, muscimol protection is not altered by GABAA receptor antagonists or recapitulated by other GABAA agonists, suggesting that muscimol acts via a novel mechanism. We find that muscimol blocks oligomerization of ninjurin-1, which is required for plasma membrane rupture downstream of gasdermin D pore formation. Our structure-activity relationship studies reveal distinct molecular determinants defining inhibition of pyroptotic lysis compared to GABAA binding. In addition, we demonstrate that muscimol reduces lethality during LPS-induced septic shock. Together, these findings demonstrate that ninjurin-1-mediated plasma membrane rupture can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis.


Asunto(s)
Gasderminas , Piroptosis , Muscimol/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Membrana Celular/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo
16.
Mol Pharmacol ; 104(6): 266-274, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37586749

RESUMEN

Multiple approaches, including cryogenic electron microscopy (cryo-EM), indicate that the anesthetics etomidate and propofol modulate α1ß2/3γ2 GABAA receptors by binding in overlapping transmembrane inter-subunit sites near ßM286 and αL232 sidechains. High-precision approaches in functional receptors are needed for comparisons with cryo-EM. We previously used substituted cysteine modification and protection (SCAMP) with n-alkyl-methanethiosulfonate (MTS) reagents and electrophysiology in α1ß3M286Cγ2L receptors to estimate the distance from etomidate to ß3M286 with precision near 1.3 Å. Here, we address three more aims using this approach: (i) SCAMP with etomidate was tested in α1L232Cß3γ2L receptors; (ii) studies in α1L232Wß3M286Cγ2L receptors assessed whether α1L232W displaces etomidate relative to ß3M286C; and (iii) results with propofol were compared with those with etomidate. Voltage-clamp electrophysiology in Xenopus oocytes was used to assess persistent functional changes after exposing cysteine-substituted receptors to methyl-MTS through n-decyl-MTS. Overlap of modified cysteine sidechains with bound anesthetic was inferred when anesthetic co-application with alkyl-MTS reagent blocked the development of persistent effects. In α1L232Cß3γ2L receptors, only pentyl-MTS and hexyl-MTS induced persistent effects that were unaltered by etomidate co-application, precluding a direct estimate of intermolecular distance. In α1L232Wß3M286Cγ2L receptors, sidechain overlap with bound etomidate was inferred for modifications with ethyl-MTS through n-pentyl-MTS, with unambiguous cut-on and cut-off. Comparison with results in α1ß3M286Cγ2L reveals that α1L232W, which increases maximal sidechain length by 2.1 Å, displaces etomidate closer to ß3M286C by about 1.3 Å. Propofol results largely mirrored those with etomidate. These findings indicate that both etomidate and propofol bind within 1 Å of α1L232, consistent with cryo-EM structures. SIGNIFICANCE STATEMENT: We combined electrophysiology, cysteine substitutions, and n-alkyl-methanethiosulfonate modifiers in functional GABAA receptors to enable precise estimates of the distance between ß3M286C sidechains and anesthetics (etomidate and propofol) bound in transmembrane ß+/α- inter-subunit pockets. Comparing results in α1ß3M286Cγ2L and α1L232Wß3M286Cγ2L receptors reveals that α1L232W mutations displace both anesthetics toward ß3M286C, indicating that these anesthetics bind within 1 Å of the α1L232 sidechain in functional receptors, consistent with cryogenic electron microscopy structures derived under nonphysiologic conditions.


Asunto(s)
Anestésicos , Etomidato , Propofol , Receptores de GABA-A/metabolismo , Etomidato/farmacología , Etomidato/química , Propofol/farmacología , Cisteína/genética , Anestésicos/farmacología , Sitios de Unión , Mutación , Ácido gamma-Aminobutírico/genética
17.
Molecules ; 28(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513487

RESUMEN

Sedatives promote calmness or sleepiness during surgery or severely stressful events. In addition, depression is a mental health issue that negatively affects emotional well-being. A group of drugs called anti-depressants is used to treat major depressive illnesses. The aim of the present work was to evaluate the effects of quercetin (QUR) and linalool (LIN) on thiopental sodium (TS)-induced sleeping mice and to investigate the combined effects of these compounds using a conventional co-treatment strategy and in silico studies. For this, the TS-induced sleeping mice were monitored to compare the occurrence, latency, and duration of the sleep-in response to QUR (10, 25, 50 mg/kg), LIN (10, 25, 50 mg/kg), and diazepam (DZP, 3 mg/kg, i.p.). Moreover, an in silico investigation was undertaken to assess this study's putative modulatory sedation mechanism. For this, we observed the ability of test and standard medications to interact with various gamma-aminobutyric acid A receptor (GABAA) subunits. Results revealed that QUR and LIN cause dose-dependent antidepressant-like and sedative-like effects in animals, respectively. In addition, QUR-50 mg/kg and LIN-50 mg/kg and/or DZP-3 mg/kg combined were associated with an increased latency period and reduced sleeping times in animals. Results of the in silico studies demonstrated that QUR has better binding interaction with GABAA α3, ß1, and γ2 subunits when compared with DZP, whereas LIN showed moderate affinity with the GABAA receptor. Taken together, the sleep duration of LIN and DZP is opposed by QUR in TS-induced sleeping mice, suggesting that QUR may be responsible for providing sedation-antagonizing effects through the GABAergic interaction pathway.


Asunto(s)
Trastorno Depresivo Mayor , Hipnóticos y Sedantes , Ratones , Animales , Hipnóticos y Sedantes/farmacología , Quercetina/farmacología , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico
18.
Neurosci Lett ; 810: 137358, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37356564

RESUMEN

Benzodiazepines are among the most prescribed drug class worldwide to treat disorders such as anxiety, insomnia, muscle spasticity, and convulsive disorders, and to induce presurgical sedation. Although benzodiazepines exhibit a high therapeutic index and low toxicity in short-term treatments, prolonged administration induces tolerance to most of their therapeutic actions. The mechanism of this tolerance remains unclear. The central actions of benzodiazepines are mediated by binding to GABAA receptors, which mediate most fast inhibitory transmission in the brain. The majority of GABAA receptors are composed of two α-(1-6), two ß-(1-3) and one γ-subunits (1-3). In a previous report, we demonstrated that the prolonged exposure of cerebrocortical neurons to diazepam produces a transcriptional repression of the GABAA receptor α1 subunit gene via a mechanism dependent on the activation of L-type voltage-gated calcium channels (L-VGCCs). The results reported here confirm that the diazepam-induced downregulation of the α1 subunit is contingent upon calcium influx from extracellular space. In addition, this regulatory mechanism involves the activation of protein kinase A (PKA) and is accompanied by the activation of two transcription factors, the cAMP-response element-binding protein (CREB) and the inducible cAMP early repressor (ICER). Together, our results suggest that diazepam s activation of an L-VGCC/Ca2+/PKA/CREB-ICER signaling pathway is responsible for the regulation of GABAA receptors. This elucidation of the intracellular signaling cascade activated by a prolonged benzodiazepine exposure, itself potentially involved in the development of tolerance, may contribute to locating molecular targets for future therapeutic interventions.


Asunto(s)
Diazepam , Receptores de GABA-A , Diazepam/farmacología , Receptores de GABA-A/metabolismo , Regulación hacia Abajo , Benzodiazepinas/farmacología , Transducción de Señal , Canales de Calcio/genética , Ácido gamma-Aminobutírico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
19.
Biomolecules ; 13(5)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37238731

RESUMEN

Clozapine is an effective antipsychotic for the treatment of antipsychotic-resistant schizophrenia; however, specific types of A/B adverse effects and clozapine-discontinuation syndromes are also well known. To date, both the critical mechanisms of clinical actions (effective for antipsychotic-resistant schizophrenia) and the adverse effects of clozapine remain to be elucidated. Recently, we demonstrated that clozapine increased the synthesis of L-ß-aminoisobutyric acid (L-BAIBA) in the hypothalamus. L-BAIBA is an activator of the adenosine monophosphate-activated protein kinase (AMPK), glycine receptor, GABAA receptor, and GABAB receptor (GABAB-R). These targets of L-BAIBA overlap as potential targets other than the monoamine receptors of clozapine. However, the direct binding of clozapine to these aminoacidic transmitter/modulator receptors remains to be clarified. Therefore, to explore the contribution of increased L-BAIBA on the clinical action of clozapine, this study determined the effects of clozapine and L-BAIBA on tripartite synaptic transmission, including GABAB-R and the group-III metabotropic glutamate receptor (III-mGluR) using cultured astrocytes, as well as on the thalamocortical hyper-glutamatergic transmission induced by impaired glutamate/NMDA receptors using microdialysis. Clozapine increased astroglial L-BAIBA synthesis in time/concentration-dependent manners. Increased L-BAIBA synthesis was observed until 3 days after clozapine discontinuation. Clozapine did not directly bind III-mGluR or GABAB-R, whereas L-BAIBA activated these receptors in the astrocytes. Local administration of MK801 into the reticular thalamic nucleus (RTN) increased L-glutamate release in the medial frontal cortex (mPFC) (MK801-evoked L-glutamate release). Local administration of L-BAIBA into the mPFC suppressed MK801-evoked L-glutamate release. These actions of L-BAIBA were inhibited by antagonists of III-mGluR and GABAB-R, similar to clozapine. These in vitro and in vivo analyses suggest that increased frontal L-BAIBA signaling likely plays an important role in the pharmacological actions of clozapine, such as improving the effectiveness of treating treatment-resistant schizophrenia and several clozapine discontinuation syndromes via the activation of III-mGluR and GABAB-R in the mPFC.


Asunto(s)
Antipsicóticos , Clozapina , Receptores de Glutamato Metabotrópico , Esquizofrenia , Ratas , Animales , Clozapina/efectos adversos , Antipsicóticos/efectos adversos , Esquizofrenia/metabolismo , Maleato de Dizocilpina/farmacología , Ácido Glutámico/metabolismo , Esquizofrenia Resistente al Tratamiento , Ratas Sprague-Dawley , Corteza Prefrontal/metabolismo , Receptores de Glutamato , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo
20.
Intern Med ; 62(23): 3545-3548, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37062747

RESUMEN

We herein report a case of anti-gamma aminobutyric acid type A receptor antibody-associated encephalitis (anti-GABAA-RE) with progressive aphasia and generalized tonic-clonic seizures. Cerebral magnetic resonance imaging (MRI) showed cortical brain lesions coupled with hypermetabolism on fluorodeoxyglucose-positron emission tomography. After two courses of methylprednisolone pulse therapy, improvements in neurological symptoms without sequelae and the total disappearance of MRI lesions were observed. Upon encountering patients with refractory status epilepticus, multifocal cerebral MRI lesions, and suspected autoimmune encephalitis, especially in cases with thymoma, it would be prudent to suspect anti-GABAA-RE and consider the evaluation of anti-GABAA receptor antibody and methylprednisolone pulse therapy.


Asunto(s)
Encefalitis , Neoplasias del Timo , Humanos , Encéfalo/patología , Receptores de GABA-A/metabolismo , Encefalitis/diagnóstico por imagen , Encefalitis/tratamiento farmacológico , Imagen por Resonancia Magnética/métodos , Anticuerpos , Neoplasias del Timo/complicaciones , Metilprednisolona/uso terapéutico , Glucosa/metabolismo , Autoanticuerpos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA