Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.119
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biomed Sci ; 31(1): 54, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790021

RESUMEN

BACKGROUND: Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood. METHODS: To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks. RESULTS: Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice. CONCLUSIONS: These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.


Asunto(s)
Moléculas de Adhesión Celular , Receptores de Hialuranos , Cirrosis Hepática , Hepatopatías Alcohólicas , Animales , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Ratones , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Masculino , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Ratones Endogámicos C57BL , Péptidos/farmacología , Péptidos/metabolismo , Etanol
2.
Genes (Basel) ; 15(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790166

RESUMEN

Clear cell RCC (ccRCC) represents the most common type of kidney cancer, with surgery being the only potential curative treatment. Almost one-third of ccRCC patients relapse either locally or as cases of distant metastases. Several biomarkers have been employed in order to separate ccRCC patients with better prognosis or to predict treatment outcomes, with limited results. CD44 is a membrane glycoprotein with multiple roles in normal development but also cancer. Recently, the CD44 standard isoform has been implicated in tumor progression and the metastasis cascade through microenvironment interactions. Here, through CD44 immunohistochemical staining of ccRCC patient samples and TCGA data analysis, we sought to elucidate the expression patterns (mRNA and protein) of CD44 in clear cell RCC and correlate its expression with clinicopathological parameters. We were able to show that CD44 expression presents a positive association with tumor grade and overall survival, predicting a worse patient outcome in ccRCC. In addition, our data indicate that the CD44 mRNA upregulation can be attributed to reduced gene methylation, implicating epigenetic gene regulation in ccRCC development and progression.


Asunto(s)
Carcinoma de Células Renales , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Receptores de Hialuranos , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/mortalidad , Neoplasias Renales/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Clasificación del Tumor , Anciano , Pronóstico , Adulto
3.
Cell Commun Signal ; 22(1): 291, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802835

RESUMEN

A promising new therapy option for acute kidney injury (AKI) is mesenchymal stem cells (MSCs). However, there are several limitations to the use of MSCs, such as low rates of survival, limited homing capacity, and unclear differentiation. In search of better therapeutic strategies, we explored all-trans retinoic acid (ATRA) pretreatment of MSCs to observe whether it could improve the therapeutic efficacy of AKI. We established a renal ischemia/reperfusion injury model and treated mice with ATRA-pretreated MSCs via tail vein injection. We found that AKI mice treated with ATRA-MSCs significantly improved renal function compared with DMSO-MSCs treatment. RNA sequencing screened that hyaluronic acid (HA) production from MSCs promoted by ATRA. Further validation by chromatin immunoprecipitation experiments verified that retinoic acid receptor RARα/RXRγ was a potential transcription factor for hyaluronic acid synthase 2. Additionally, an in vitro hypoxia/reoxygenation model was established using human proximal tubular epithelial cells (HK-2). After co-culturing HK-2 cells with ATRA-pretreated MSCs, we observed that HA binds to cluster determinant 44 (CD44) and activates the PI3K/AKT pathway, which enhances the anti-inflammatory, anti-apoptotic, and proliferative repair effects of MSCs in AKI. Inhibition of the HA/CD44 axis effectively reverses the renal repair effect of ATRA-pretreated MSCs. Taken together, our study suggests that ATRA pretreatment promotes HA production by MSCs and activates the PI3K/AKT pathway in renal tubular epithelial cells, thereby enhancing the efficacy of MSCs against AKI.


Asunto(s)
Lesión Renal Aguda , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Tretinoina , Lesión Renal Aguda/terapia , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Tretinoina/farmacología , Tretinoina/uso terapéutico , Humanos , Ratones , Masculino , Ratones Endogámicos C57BL , Ácido Hialurónico/farmacología , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Daño por Reperfusión/terapia , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos
4.
Nat Commun ; 15(1): 3904, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724502

RESUMEN

Chronic wounds are a major complication in patients with diabetes. Here, we identify a therapeutic circRNA and load it into small extracellular vesicles (sEVs) to treat diabetic wounds in preclinical models. We show that circCDK13 can stimulate the proliferation and migration of human dermal fibroblasts and human epidermal keratinocytes by interacting with insulin-like growth factor 2 mRNA binding protein 3 in an N6-Methyladenosine-dependent manner to enhance CD44 and c-MYC expression. We engineered sEVs that overexpress circCDK13 and show that local subcutaneous injection into male db/db diabetic mouse wounds and wounds of streptozotocin-induced type I male diabetic rats could accelerate wound healing and skin appendage regeneration. Our study demonstrates that the delivery of circCDK13 in sEVs may present an option for diabetic wound treatment.


Asunto(s)
Proliferación Celular , Diabetes Mellitus Experimental , Vesículas Extracelulares , Fibroblastos , Queratinocitos , ARN Circular , Cicatrización de Heridas , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Cicatrización de Heridas/efectos de los fármacos , Humanos , Masculino , Ratones , Ratas , Fibroblastos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Queratinocitos/metabolismo , Movimiento Celular , Piel/metabolismo , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
5.
Mol Biol Rep ; 51(1): 641, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727798

RESUMEN

BACKGROUND: The interrelationship between cellular metabolism and the epithelial-to-mesenchymal transition (EMT) process has made it an interesting topic to investigate the adjuvant effect of therapeutic diets in the treatment of cancers. However, the findings are controversial. In this study, the effects of glucose limitation along and with the addition of beta-hydroxybutyrate (bHB) were examined on the expression of specific genes and proteins of EMT, Wnt, Hedgehog, and Hippo signaling pathways, and also on cellular behavior of gastric cancer stem-like (MKN-45) and non-stem-like (KATO III) cells. METHODS AND RESULTS: The expression levels of chosen genes and proteins studied in cancer cells gradually adopted a low-glucose condition of one-fourth, along and with the addition of bHB, and compared to the unconditioned control cells. The long-term switching of the metabolic fuels successfully altered the expression profiles and behaviors of both gastric cancer cells. However, the results for some changes were the opposite. Glucose limitation along and with the addition of bHB reduced the CD44+ population in MKN-45 cells. In KATO III cells, glucose restriction increased the CD44+ population. Glucose deprivation alleviated EMT-related signaling pathways in MKN-45 cells but stimulated EMT in KATO III cells. Interestingly, bHB enrichment reduced the beneficial effect of glucose starvation in MKN-45 cells, but also alleviated the adverse effects of glucose restriction in KATO III cells. CONCLUSIONS: The findings of this research clearly showed that some controversial results in clinical trials for ketogenic diet in cancer patients stemmed from the different signaling responses of various cells to the metabolic changes in a heterogeneous cancer mass.


Asunto(s)
Ácido 3-Hidroxibutírico , Transición Epitelial-Mesenquimal , Glucosa , Transducción de Señal , Neoplasias Gástricas , Transición Epitelial-Mesenquimal/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Humanos , Línea Celular Tumoral , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Glucosa/metabolismo , Cetosis/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética
6.
Mol Biol Rep ; 51(1): 646, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727931

RESUMEN

BACKGROUND: Breast cancer (BC) is one of the most common cancers in the world. Despite the many advances that have been made in treating patients, many patients are still resistant to treatment. CD44 is one of the surface glycoproteins of BC cells that plays an important role in the proliferation of these cells and inhibition of their apoptosis. Therefore, targeting it can be a treatment way for BC patients. METHODS: In this study, the effect of anti-CD44 siRNA on the proliferation, apoptosis, and migration rate of MDA-MB-231 and 4T1 cells was investigated. The techniques used in this study were MTT assay, RT-PCR, and flow cytometry. RESULTS: The apoptosis and proliferation rates in CD44 siRNA-treated cells were higher and lower, respectively, compared to untreated cells. Also, cell migration was less in treated cells compared to untreated cells. CD44 siRNA also decreased the expression of CXCR4, c-myc, Vimentin, ROCK, and MMP-9. CONCLUSION: Finally, CD44 targeting can be a good treatment option to make BC cells more sensitive to apoptosis.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Receptores de Hialuranos , ARN Interferente Pequeño , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Humanos , Apoptosis/genética , Línea Celular Tumoral , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , ARN Interferente Pequeño/genética , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Vimentina/metabolismo , Vimentina/genética
7.
Mol Med ; 30(1): 61, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760717

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous and aggressive disease characterized by a high risk of mortality and poor prognosis. It has been reported that Laminin γ2 (LAMC2) is highly expressed in a variety of tumors, and its high expression is correlated with cancer development and progression. However, the function and mechanism by which LAMC2 influences TNBC remain unclear. METHODS: Kaplan-Meier survival analysis and Immunohistochemical (IHC) staining were used to examine the expression level of LAMC2 in TNBC. Subsequently, cell viability assay, wound healing and transwell assay were performed to detect the function of LAMC2 in cell proliferation and migration. A xenograft mouse model was used to assess tumorigenic function of LAMC2 in vivo. Luciferase reporter assay and western blot were performed to unravel the underlying mechanism. RESULTS: In this study, we found that higher expression of LAMC2 significantly correlated with poor survival in the TNBC cohort. Functional characterization showed that LAMC2 promoted cell proliferation and migration capacity of TNBC cell lines via up-regulating CD44. Moreover, LAMC2 exerted oncogenic roles in TNBC through modulating the expression of epithelial-mesenchymal transition (EMT) markers. Luciferase reporter assay verified that LAMC2 targeted ZEB1 to promote its transcription. Interestingly, LAMC2 regulated cell migration in TNBC via STAT3 signaling pathway. CONCLUSION: LAMC2 targeted ZEB1 via activating CD44/STAT3 signaling pathway to promote TNBC proliferation and migration, suggesting that LAMC2 could be a potential therapeutic target in TNBC patients.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Receptores de Hialuranos , Laminina , Factor de Transcripción STAT3 , Transducción de Señal , Neoplasias de la Mama Triple Negativas , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Humanos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Animales , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/mortalidad , Línea Celular Tumoral , Femenino , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Laminina/metabolismo , Laminina/genética , Ratones , Transición Epitelial-Mesenquimal/genética , Movimiento Celular/genética , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética
8.
Front Immunol ; 15: 1363834, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633247

RESUMEN

Background: Hyaluronan-mediated motility receptor (HMMR) is overexpressed in multiple carcinomas and influences the development and treatment of several cancers. However, its role in hepatocellular carcinoma (HCC) remains unclear. Methods: The "limma" and "GSVA" packages in R were used to perform differential expression analysis and to assess the activity of signalling pathways, respectively. InferCNV was used to infer copy number variation (CNV) for each hepatocyte and "CellChat" was used to analyse intercellular communication networks. Recursive partitioning analysis (RPA) was used to re-stage HCC patients. The IC50 values of various drugs were evaluated using the "pRRophetic" package. In addition, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to confirm HMMR expression in an HCC tissue microarray. Flow cytometry (FCM) and cloning, Edu and wound healing assays were used to explore the capacity of HMMR to regulate HCC tumour. Results: Multiple cohort studies and qRT-PCR demonstrated that HMMR was overexpressed in HCC tissue compared with normal tissue. In addition, HMMR had excellent diagnostic performance. HMMR knockdown inhibited the proliferation and migration of HCC cells in vitro. Moreover, high HMMR expression was associated with "G2M checkpoint" and "E2F targets" in bulk RNA and scRNA-seq, and FCM confirmed that HMMR could regulate the cell cycle. In addition, HMMR was involved in the regulation of the tumour immune microenvironment via immune cell infiltration and intercellular interactions. Furthermore, HMMR was positively associated with genomic heterogeneity with patients with high HMMR expression potentially benefitting more from immunotherapy. Moreover, HMMR was associated with poor prognosis in patients with HCC and the re-staging by recursive partitioning analysis (RPA) gave a good prognosis prediction value and could guide chemotherapy and targeted therapy. Conclusion: The results of the present study show that HMMR could play a role in the diagnosis, prognosis, and treatments of patients with HCC based on bulk RNA-seq and scRAN-seq analyses and is a promising molecular marker for HCC.


Asunto(s)
Carcinoma Hepatocelular , Receptores de Hialuranos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Variaciones en el Número de Copia de ADN , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Análisis de Expresión Génica de una Sola Célula , Microambiente Tumoral/genética
9.
Biomolecules ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672482

RESUMEN

Hyaluronic acid (HA), a major glycosaminoglycan of the brain extracellular matrix, modulates cell behaviors through binding its receptor, Cd44. In this study, we assessed the influence of HA on high-grade brain tumors in vitro. The model comprised cell cultures derived from six rodent carcinogen-induced brain tumors, forming 3D spheroids prone to spontaneous fusion. Supplementation of the standard culture medium with 0.25% HA significantly inhibited the fusion rates, preserving the shape and size uniformity of spheroids. The 3D cultures were assigned to two groups; a Cd44lo group had a tenfold decreased relative expression of Cd44 than another (Cd44hi) group. In addition, these two groups differed by expression levels of Sox2 transcription factor; the correlation analysis revealed a tight negative association for Cd44 and Sox2. Transcriptomic responses of spheroids to HA exposure also depended on Cd44 expression levels, from subtle in Cd44lo to more pronounced and specific in Cd44hi, involving cell cycle progression, PI3K/AKT/mTOR pathway activation, and multidrug resistance genes. The potential HA-induced increase in brain tumor 3D models' resistance to anticancer drug therapy should be taken into account when designing preclinical studies using HA scaffold-based models. The property of HA to prevent the fusion of brain-derived spheroids can be employed in CNS regenerative medicine and experimental oncology to ensure the production of uniform, controllably fusing neurospheres when creating more accurate in vitro brain models.


Asunto(s)
Neoplasias Encefálicas , Receptores de Hialuranos , Ácido Hialurónico , Factores de Transcripción SOXB1 , Esferoides Celulares , Ácido Hialurónico/farmacología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Animales , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Ratas , Transcriptoma/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Tumorales Cultivadas , Fusión Celular
10.
JMIR Res Protoc ; 13: e54042, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38635586

RESUMEN

BACKGROUND: Single-nucleotide variations (SNVs; formerly SNPs) are inherited genetic variants that can be easily determined in routine clinical practice using a simple blood or saliva test. SNVs have potential to serve as noninvasive biomarkers for predicting cancer-specific patient outcomes after resection of pancreatic ductal adenocarcinoma (PDAC). Two recent analyses led to the identification and validation of three SNVs in the CD44 and CHI3L2 genes (rs187115, rs353630, and rs684559), which can be used as predictive biomarkers to help select patients most likely to benefit from pancreatic resection. These variants were associated with an over 2-fold increased risk for tumor-related death in three independent PDAC study cohorts from Europe and the United States, including The Cancer Genome Atlas cohorts (reaching a P value of 1×10-8). However, these analyses were limited by the inherent biases of a retrospective study design, such as selection and publication biases, thereby limiting the clinical use of these promising biomarkers in guiding PDAC therapy. OBJECTIVE: To overcome the limitations of previous retrospectively designed studies and translate the findings into clinical practice, we aim to validate the association of the identified SNVs with survival in a controlled setting using a prospective cohort of patients with PDAC following pancreatic resection. METHODS: All patients with PDAC who will undergo pancreatic resection at three participating hospitals in Switzerland and fulfill the inclusion criteria will be included in the study consecutively. The SNV genotypes will be determined using standard genotyping techniques from patient blood samples. For each genotyped locus, log-rank and Cox multivariate regression tests will be performed, accounting for the relevant covariates American Joint Committee on Cancer stage and resection status. Clinical follow-up data will be collected for at least 3 years. Sample size calculation resulted in a required sample of 150 patients to sufficiently power the analysis. RESULTS: The follow-up data collection started in August 2019 and the estimated end of data collection will be in May 2027. The study is still recruiting participants and 142 patients have been recruited as of November 2023. The DNA extraction and genotyping of the SNVs will be performed after inclusion of the last patient. Since no SNV genotypes have been determined, no data analysis has been performed to date. The results are expected to be published in 2027. CONCLUSIONS: This is the first prospective study of the CD44 and CHI3L2 SNV-based biomarker signature in PDAC. A prospective validation of this signature would enable its clinical use as a noninvasive predictive biomarker of survival after pancreatic resection that is readily available at the time of diagnosis and can assist in guiding PDAC therapy. The results of this study may help to individualize treatment decisions and potentially improve patient outcomes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/54042.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Pancreáticas , Polimorfismo de Nucleótido Simple , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Carcinoma Ductal Pancreático/sangre , Carcinoma Ductal Pancreático/genética , Receptores de Hialuranos/genética , Receptores de Hialuranos/sangre , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/genética , Estudios Prospectivos , Estudios de Validación como Asunto
11.
Br J Cancer ; 130(11): 1770-1782, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600327

RESUMEN

BACKGROUND: Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment (TME). However, the crosstalk between oesophageal squamous cell carcinoma (ESCC) cells and TAMs remains largely unexplored. METHODS: Clinical samples and the TCGA database were used to evaluate the relevance of SPP1 and TAM infiltration in ESCC. Mouse models were constructed to investigate the roles of macrophages educated by SPP1 in ESCC. Macrophage phenotypes were determined using qRT‒PCR and immunohistochemical staining. RNA sequencing was performed to elucidate the mechanism. RESULTS: Increasing expression of SPP1 correlated with M2-like TAM accumulation in ESCC, and they both predicted poor prognosis in the ESCC cohort. Knockdown of SPP1 significantly inhibited the infiltration of M2 TAMs in xenograft tumours. In vivo mouse model experiments showed that SPP1-mediated education of macrophages plays an essential role in the progression of ESCC. Mechanistically, SPP1 recruited macrophages and promoted M2 polarisation via CD44/PI3K/AKT signalling activation and then induced VEGFA and IL6 secretion to sustain ESCC progression. Finally, blockade of SPP1 with RNA aptamer significantly inhibited tumour growth and M2 TAM infiltration in xenograft mouse models. CONCLUSIONS: This study highlights SPP1-mediated crosstalk between ESCC cells and TAMs in ESCC. SPP1 could serve as a potential target in ESCC therapy.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Osteopontina , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Animales , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Ratones , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Microambiente Tumoral/inmunología , Osteopontina/genética , Osteopontina/metabolismo , Línea Celular Tumoral , Macrófagos/metabolismo , Macrófagos/inmunología , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Pronóstico , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Desnudos , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética
12.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542115

RESUMEN

Cluster of differentiation 44 (CD44), a cell surface adhesion molecule overexpressed in cancer stem cells, has been implicated in chemoresistance. This scoping review, following PRISMA-ScR guidelines, systematically identified and evaluated clinical studies on the impact of CD44 expression on chemotherapy treatment outcomes across various cancer types. The search encompassed PubMed (1985-2023) and SCOPUS (1936-2023) databases, yielding a total of 12,659 articles, of which 40 met the inclusion criteria and were included in the qualitative synthesis using a predefined data extraction table. Data collected included the cancer type, sample size, interventions, control, treatment outcome, study type, expression of CD44 variants and isoforms, and effect of CD44 on chemotherapy outcome. Most of the studies demonstrated an association between increased CD44 expression and negative chemotherapeutic outcomes such as shorter overall survival, increased tumor recurrence, and resistance to chemotherapy, indicating a potential role of CD44 upregulation in chemoresistance in cancer patients. However, a subset of studies also reported non-significant relationships or conflicting results. In summary, this scoping review highlighted the breadth of the available literature investigating the clinical association between CD44 and chemotherapeutic outcomes. Further research is required to elucidate this relationship to aid clinicians in managing CD44-positive cancer patients.


Asunto(s)
Resistencia a Antineoplásicos , Receptores de Hialuranos , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Resultado del Tratamiento
13.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38314577

RESUMEN

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Asunto(s)
Decidua , Galectinas , Macrófagos , Preeclampsia , Remodelación Vascular , Preeclampsia/metabolismo , Preeclampsia/inmunología , Embarazo , Femenino , Animales , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Ratones , Humanos , Decidua/metabolismo , Decidua/patología , Ratones Noqueados , Útero/metabolismo , Útero/irrigación sanguínea , Modelos Animales de Enfermedad , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Estudios Retrospectivos , Ratones Endogámicos C57BL , Antígenos CD11
14.
Int J Biol Sci ; 20(4): 1314-1331, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385088

RESUMEN

Peritoneal metastasis (PM) continues to limit the clinical efficacy of gastric cancer (GC). Early growth response 1 (EGR1) plays an important role in tumor cell proliferation, angiogenesis and invasion. However, the role of EGR1 derived from the tumor microenvironment in reshaping the phenotypes of GC cells and its specific molecular mechanisms in increasing the potential for PM are still unclear. In this study, we reported that EGR1 was significantly up-regulated in mesothelial cells from GC peritoneal metastases, leading to enhanced epithelial-mesenchymal transformation (EMT) and stemness phenotypes of GC cells under co-culture conditions. These phenotypes were achieved through the transcription and secretion of TGF-ß1 by EGR1 in mesothelial cells, which could regulate the expression and internalization of CD44s. After being internalized into the cytoplasm, CD44s interacted with STAT3 to promote STAT3 phosphorylation and activation, and induced EMT and stemness gene transcription, thus positively regulating the metastasis of GC cells. Moreover, TGF-ß1 secretion in the PM microenvironment was significantly increased compared with the matched primary tumor. The blocking effect of SHR-1701 on TGF-ß1 was verified by inhibiting peritoneal metastases in xenografts. Collectively, the interplay of EGR1/TGF-ß1/CD44s/STAT3 signaling between mesothelial cells and GC cells induces EMT and stemness phenotypes, offering potential as a therapeutic target for PM of GC.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz , Neoplasias Peritoneales , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Movimiento Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Peritoneo/patología , Transducción de Señal/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Microambiente Tumoral/genética , Animales
15.
FEBS J ; 291(8): 1719-1731, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38275079

RESUMEN

Trastuzumab is widely used in human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC) therapy, but ubiquitous resistance limits its clinical application. In this study, we first showed that CD44 antigen is a significant predictor of overall survival for patients with HER2-positive GC. Next, we found that CD44 could be co-immunoprecipitated and co-localized with HER2 on the membrane of GC cells. By analyzing the interaction between CD44 and HER2, we identified that CD44 could upregulate HER2 protein by inhibiting its proteasome degradation. Notably, the overexpression of CD44 could decrease the sensitivity of HER2-positive GC cells to trastuzumab. Further mechanistic study showed that CD44 upregulation could induce its ligand, hyaluronan (HA), to deposit on the cancer cell surface, resulting in covering up the binding sites of trastuzumab to HER2. Removing the HA glycocalyx restored sensitivity of the cells to trastuzumab. Collectively, our findings suggested a role for CD44 in regulating trastuzumab sensitivity and provided novel insights into HER2-targeted therapy.


Asunto(s)
Ácido Hialurónico , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Glicocálix/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Trastuzumab/farmacología
16.
Mol Biol Rep ; 51(1): 157, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252332

RESUMEN

BACKGROUND: This study aims to evaluate the role of cancer stem cell marker, CD44, and its ligand HA as potential molecular biomarker for early detection of HNSCC. METHODS AND RESULTS: The expression profile (mRNA/Protein) of CD44 variants were analysed in primary HNSCC lesions and plasma of the patients. Then, prevalence of HA variants was analysed in plasma of the patients. The mRNA expression of CD44 variants, CD44S and CD44v3, were significantly high in both early (stage I/II) and late (stage III/IV) invasive lesions, with predominant expression of CD44v3 in the late-stage lesions. In plasma of HNSCC patients, increased levels of SolCD44, CD44-ICD and unique 62 KD CD44 variants with respect to standard CD44S were seen, in comparison to their prevalence in plasma of normal individuals. The abundance of CD44-ICD and 62 KD variants were significantly high in plasma of late stage HNSCC patients. Interestingly, significantly high level of low molecular weight HA(LMW HA) with respect to high molecular weight HA(HMW HA) was seen in plasma of HNSCC patients irrespective of clinical stages. On the contrary, high HMW HA level in plasma of normal individuals was seen. The high level of LMW HA in plasma of HNSCC patients might be due to combinatorial effect of increased mRNA expression of HA synthesizing enzyme HAS1/2/3 and HA degrading enzyme HYAL1/2, as seen in the primary HNSCC samples. CONCLUSION: Thus, our data revealed the importance of specific CD44 and HA variants in plasma of HNSCC patients during its development as potential non-invasive molecular biomarker of the disease.


Asunto(s)
Neoplasias de Cabeza y Cuello , Ácido Hialurónico , Humanos , Relevancia Clínica , Prevalencia , Ligandos , Peso Molecular , Carcinoma de Células Escamosas de Cabeza y Cuello , ARN Mensajero , Neoplasias de Cabeza y Cuello/genética , Biomarcadores , Receptores de Hialuranos/genética
17.
Life Sci ; 336: 122345, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092140

RESUMEN

AIMS: Although epidermal growth factor receptor (EGFR)-mutant lung cancers respond well to osimertinib, acquired resistance to osimertinib eventually develops through EGFR-dependent and EGFR-independent resistance mechanisms. CD44 splicing variants are widely expressed in lung cancer tissues. However, it remains unclear whether specific splicing variants are involved in acquired resistance to osimertinib. MAIN METHODS: The real-time PCR was performed to measure the expression levels of total CD44 and specific CD44 splicing variants (CD44s or CD44v). Gene knockdown and restoration were performed to investigate the effects of CD44 splicing variants on osimertinib sensitivity. Activation of the signaling pathway was evaluated using receptor-tyrosine-kinase phosphorylation membrane arrays, co-immunoprecipitation, and western blotting. KEY FINDINGS: Clinical analysis demonstrated that the expression level of total CD44 increased in primary cancer cells from lung adenocarcinomas patients after the development of acquired resistance to osimertinib. Furthermore, osimertinib-resistant cells showed elevated levels of either the CD44s variant or CD44v variants. Manipulations of CD44s or CD44v8-10 were performed to investigate their effects on treatment sensitivity to osimertinib. Knockdown of CD44 increased osimertinib-induced cell death in osimertinib-resistant cells. However, restoration of CD44s or CD44v8-10 in CD44-knockdown H1975/AZD-sgCD44 cells induced osimertinib resistance. Mechanically, we showed that ErbB3 interacted with CD44 and was transactivated by CD44, that consequently triggered activation of the ErbB3/STAT3 signaling pathway and led to CD44s- or CD44v8-10-mediated osimertinib resistance. SIGNIFICANCE: CD44 is a co-receptor for ErbB3 and triggers activation of the ErbB3 signaling axis, leading to acquired resistance to osimertinib. CD44/ErbB3 signaling may represent a therapeutic target for overcoming osimertinib resistance.


Asunto(s)
Neoplasias Pulmonares , Humanos , Isoformas de Proteínas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Compuestos de Anilina/farmacología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transducción de Señal , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
18.
Mol Oncol ; 18(1): 62-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37849446

RESUMEN

Hematogenous metastasis limits the survival of colorectal cancer (CRC) patients. Here, we illuminated the roles of CD44 isoforms in this process. Isoforms 3 and 4 were predominantly expressed in CRC patients. CD44 isoform 4 indicated poor outcome and correlated with epithelial-mesenchymal transition (EMT) and decreased oxidative phosphorylation (OxPhos) in patients; opposite associations were found for isoform 3. Pan-CD44 knockdown (kd) independently impaired primary tumor formation and abrogated distant metastasis in CRC xenografts. The xenograft tumors mainly expressed the clinically relevant CD44 isoforms 3 and 4. Both isoforms were enhanced in the paranecrotic, hypoxic tumor regions but were generally absent in lung metastases. Upon CD44 kd, tumor angiogenesis was increased in the paranecrotic areas, accompanied by reduced hypoxia-inducible factor-1α and CEACAM5 but increased E-cadherin expression. Mitochondrial genes and proteins were induced upon pan-CD44 kd, as were OxPhos genes. Hypoxia increased VEGF release from tumor spheres, particularly upon CD44 kd. Genes affected upon CD44 kd in xenografts specifically overlapped concordantly with genes correlating with CD44 isoform 4 (but not isoform 3) in patients, validating the clinical relevance of the used model and highlighting the metastasis-promoting role of CD44 isoform 4.


Asunto(s)
Angiogénesis , Neoplasias Colorrectales , Humanos , Xenoinjertos , Línea Celular Tumoral , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Hipoxia/genética , Regulación Neoplásica de la Expresión Génica
19.
Cells ; 12(23)2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38067149

RESUMEN

Osteopontin (OPN)-CD44 signaling plays an important role in promoting tumor progression and metastasis. In cancer, OPN and CD44 overexpression is a marker of aggressive disease and poor prognosis, and correlates with therapy resistance. In this study, we aimed to evaluate the association of single nucleotide polymorphisms (SNPs) in the OPN and CD44 genes with clinical outcomes in 307 non-small cell lung cancer (NSCLC) patients treated with radiotherapy or chemoradiotherapy. The potential impact of the variants on plasma OPN levels was also investigated. Multivariate analysis showed that OPN rs11730582 CC carriers had a significantly increased risk of death (p = 0.029), while the CD44 rs187116 A allele correlated with a reduced risk of locoregional recurrence (p = 0.016) in the curative treatment subset. The rs11730582/rs187116 combination was associated with an elevated risk of metastasis in these patients (p = 0.016). Furthermore, the OPN rs1126772 G variant alone (p = 0.018) and in combination with rs11730582 CC (p = 7 × 10-5) was associated with poor overall survival (OS) in the squamous cell carcinoma subgroup. The rs11730582 CC, rs187116 GG, and rs1126772 G, as well as their respective combinations, were independent risk factors for unfavorable treatment outcomes. The impact of rs11730582-rs1126772 haplotypes on OS was also observed. These data suggest that OPN and CD44 germline variants may predict treatment effects in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Quimioradioterapia , Receptores de Hialuranos/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Recurrencia Local de Neoplasia , Osteopontina/genética , Resultado del Tratamiento , Radioterapia
20.
Arkh Patol ; 85(6): 70-75, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-38010641

RESUMEN

Immunotherapy of malignant tumors is a rapidly developing area of oncology. PD-1 is a receptor expressed by activated T-lymphocytes. As a result of its interaction with the ligand (PD-L1 or PD-L2), the activity of T-lymphocytes is inhibited and their apoptosis occurs. Drugs that inhibit the interaction of PD-1 with ligands have an immunostimulatory effect and are effective in the treatment of many types of neoplasms: melanoma, lung cancer, bladder cancer, stomach cancer, various lymphomas, etc. However, response to this treatment is observed only in a narrow cohort of patients. To increase the effectiveness of immunotherapy, combined preparations and nanoparticles are being developed and created to enhance the effect of PD-L1 inhibitors, and containing hyaluronic acid as a ligand for the CD44 protein, which is expressed in many human tumors. However, the issue of co-expression of CD44 and PD-L1 remains poorly understood. This review is devoted to describing the features of co-expression and the mechanisms of interaction between CD44 and PD-L1. Promising directions for the development of new approaches to the immunotherapy of malignant tumors are presented.


Asunto(s)
Antígeno B7-H1 , Melanoma , Humanos , Antígeno B7-H1/genética , Receptor de Muerte Celular Programada 1/genética , Ligandos , Inmunoterapia , Receptores de Hialuranos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA