Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.078
Filtrar
1.
SLAS Technol ; 29(5): 100183, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39218304

RESUMEN

Breast cancer (BC), a prevalent and severe malignancy, detrimentally affects women globally. Its prognostic implications are profoundly influenced by gene expression patterns. This study retrieved 509 BCE-associated oncogenes and 1,012 neurotransmitter receptor-related genes from the GSEA and KEGG databases, intersecting to identify 98 relevant genes. Clinical and transcriptomic expression data related to BC were downloaded from the TCGA, and differential genes were identified based on an FDR value <0.05 & |log2FC| ≥ 0.585. Univariate analysis of these genes revealed that high expression of NSF and low expression of HRAS, KIF17, and RPS6KA1 are closely associated with BC survival prognosis. A prognostic model constructed for these four genes demonstrated significant prognostic relevance for BC-TCGA patients (P < 0.001). Subsequently, an immunofunctional analysis of the BC oncogene-neurotransmitter receptor-related gene cluster revealed the involvement of immune cells such as T cells CD8, T cells CD4 memory resting, and Macrophages M2. Further analysis indicated that immune functions were primarily concentrated in APC_co_inhibition, APC_co_stimulation, CCR, and Check-point, among others. Lastly, a prognostic nomogram model was established, and ROC curve analysis revealed that the nomogram is a vital indicator for assessing BC prognosis, with 1-year, 3-year, and 5-year survival rates of 0.981, 0.897, and 0.802, respectively. This model demonstrates high calibration, clinical utility, and predictive capability, promising to offer an effective preliminary tool for clinical diagnostics.


Asunto(s)
Neoplasias de la Mama , Receptores de Neurotransmisores , Humanos , Pronóstico , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Transcriptoma
2.
Sci Transl Med ; 16(740): eadd6570, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536934

RESUMEN

Fibrotic diseases impose a major socioeconomic challenge on modern societies and have limited treatment options. Adropin, a peptide hormone encoded by the energy homeostasis-associated (ENHO) gene, is implicated in metabolism and vascular homeostasis, but its role in the pathogenesis of fibrosis remains enigmatic. Here, we used machine learning approaches in combination with functional in vitro and in vivo experiments to characterize adropin as a potential regulator involved in fibroblast activation and tissue fibrosis in systemic sclerosis (SSc). We demonstrated consistent down-regulation of adropin/ENHO in skin across multiple cohorts of patients with SSc. The prototypical profibrotic cytokine TGFß reduced adropin/ENHO expression in a JNK-dependent manner. Restoration of adropin signaling by therapeutic application of bioactive adropin34-76 peptides in turn inhibited TGFß-induced fibroblast activation and fibrotic tissue remodeling in primary human dermal fibroblasts, three-dimensional full-thickness skin equivalents, mouse models of bleomycin-induced pulmonary fibrosis and sclerodermatous chronic graft-versus-host-disease (sclGvHD), and precision-cut human skin slices. Knockdown of GPR19, an adropin receptor, abrogated the antifibrotic effects of adropin in fibroblasts. RNA-seq demonstrated that the antifibrotic effects of adropin34-76 were functionally linked to deactivation of GLI1-dependent profibrotic transcriptional networks, which was experimentally confirmed in vitro, in vivo, and ex vivo using cultured human dermal fibroblasts, a sclGvHD mouse model, and precision-cut human skin slices. ChIP-seq confirmed adropin34-76-induced changes in TGFß/GLI1 signaling. Our study characterizes the TGFß-induced down-regulation of adropin/ENHO expression as a potential pathomechanism of SSc as a prototypical systemic fibrotic disease that unleashes uncontrolled activation of profibrotic GLI1 signaling.


Asunto(s)
Esclerodermia Sistémica , Ratones , Animales , Humanos , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/farmacología , Fibrosis , Esclerodermia Sistémica/metabolismo , Fibroblastos/patología , Factor de Crecimiento Transformador beta/metabolismo , Piel/patología , Células Cultivadas , Modelos Animales de Enfermedad , Bleomicina/metabolismo , Bleomicina/farmacología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Neurotransmisores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Chem Commun (Camb) ; 60(26): 3563-3566, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38465405

RESUMEN

CPN-116 is a peptidic agonist that activates human neuromedin U receptor type 2 (NMUR2) but suffers from chemical instability due to inherent backbone isomerization on the Dap residue. To address this, a Leu-Dap-type (Z)-chloroalkene dipeptide isostere was synthesized diastereoselectively as a surrogate of the Leu-Dap peptide bond to develop a (Z)-chloroalkene analogue of CPN-116. The synthesized CPN-116 analogue is stable in 1.0 M phosphate buffer (pH 7.4) without backbone isomerization and can activate NMUR2 with similar potency to CPN-116 at nM concentrations (EC50 = 1.0 nM).


Asunto(s)
Neuropéptidos , Humanos , Neuropéptidos/química , Amidas/farmacología , Péptidos , Receptores de Neurotransmisores/agonistas
4.
Cancer Sci ; 115(2): 334-346, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38071753

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a poor prognosis, which is lethal in approximately 90% of cases despite advanced standard therapies. A typical feature of PDAC is the immunosuppressive tumor microenvironment with multiple immunosuppressive factors including neurotransmitters. Recently, neuromedin U (NMU), a highly conserved neuropeptide with many physiological functions, has attracted attention for its roles in tumorigenesis and metastasis in several types of cancers. However, whether NMU affects PDAC progression remains unclear. In this study, using an orthotopic mouse model of PDAC in combination with bioinformatics analysis, we found that NMU was upregulated in tumor tissues from the patients with PDAC and positively correlated with a poor prognosis of the disease. Interestingly, knockout of the Nmu gene in mice enhanced the anti-tumor functions of tumor-infiltrating CD8+ T cells in an NMU receptor 1-dependent manner. Additionally, NMU promoted the glycolytic metabolism of mouse PDAC tumors. The activities of pyruvate kinase (PK) and lactate dehydrogenase (LDH), pivotal enzymes involved in the regulation of lactate production, were markedly reduced in tumor tissues from NMU-knockout mice. In vitro the presence of LDHA inhibitor can reduce the production of lactic acid stimulated by NMU, which can increase the anti-tumor activity of CD8+ T cells. Moreover, treatment of the pancreatic cancer cells with a phosphoinositide 3-kinase (PI3K) inhibitor diminished NMU-induced lactate production and the activities of PK and LDH, suggesting that NMU might regulate glycolysis via the PI3K/AKT pathway.


Asunto(s)
Carcinoma Ductal Pancreático , Neuropéptidos , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Linfocitos T CD8-positivos/metabolismo , Glucólisis , Lactatos , Neuropéptidos/genética , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo , Microambiente Tumoral
5.
Cancer Res ; 83(23): 3868-3885, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037454

RESUMEN

Nerves can support tumor development by secreting neurotransmitters that promote cancer cell proliferation and invasion. 5-Hydroxytryptamine (5-HT) is a critical neurotransmitter in the gastrointestinal nervous system, and 5-HT signaling has been shown to play a role in tumorigenesis. Here, we found that expression of the 5-HT receptor HTR2B was significantly elevated in human gastric adenocarcinoma tissues compared with nontumor tissues, and high HTR2B expression corresponded to shorter patient survival. Both 5-HT and a specific HTR2B agonist enhanced gastric adenocarcinoma cell viability under metabolic stress, reduced cellular and lipid reactive oxygen species, and suppressed ferroptosis; conversely, HTR2B loss or inhibition with a selective HTR2B antagonist yielded the inverse tumor suppressive effects. In a patient-derived xenograft tumor model, HTR2B-positive tumors displayed accelerated growth, which was inhibited by HTR2B antagonists. Single-cell analysis of human gastric adenocarcinoma tissues revealed enrichment of PI3K/Akt/mTOR and fatty acid metabolism-related gene clusters in cells expressing HTR2B compared with HTR2B-negative cells. Mechanistically, HTR2B cooperated with Fyn to directly regulate p85 activity and trigger the PI3K/Akt/mTOR signaling pathway, which led to increased expression of HIF1α and ABCD1 along with decreased levels of lipid peroxidation and ferroptosis. Together, these findings demonstrate that HTR2B activity modulates PI3K/Akt/mTOR signaling to stimulate gastric cancer cell survival and indicate that HTR2B expression could be a potential prognostic biomarker in patients with gastric cancer. SIGNIFICANCE: Nerve cancer cross-talk mediated by HTR2B inhibits lipid peroxidation and ferroptosis in gastric cancer cells and promotes viability under metabolic stress, resulting in increased tumor growth and decreased patient survival.


Asunto(s)
Adenocarcinoma , Ferroptosis , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Metabolismo de los Lípidos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Neurotransmisores/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Neoplasias Gástricas/patología , Serina-Treonina Quinasas TOR/metabolismo
6.
Sci Rep ; 13(1): 18993, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923782

RESUMEN

Little is known about the expression of the orphan G protein-coupled receptor GPR19 at the protein level. Therefore, we developed a rabbit antibody, targeting human GPR19. After verification of the antibody specificity using GPR19-expressing cell lines and a GPR19-specific siRNA, the antibody was used for immunohistochemical staining of a variety of formalin-fixed, paraffin-embedded normal and neoplastic human tissue samples. In normal tissues, GPR19 expression was detected in a distinct cell population within the cortex, in single cells of the pancreatic islets, in intestinal ganglia, gastric chief cells, and in endocrine cells of the bronchial tract, the gastrointestinal tract, and the prostate. Among the 30 different tumour entities investigated, strong GPR19 expression was found in adenocarcinomas, typical and atypical carcinoids of the lung, and small cell lung cancer. To a lesser extent, the receptor was also present in large cell neuroendocrine carcinomas of the lung, medullary thyroid carcinomas, parathyroid adenomas, pheochromocytomas, and a subpopulation of pancreatic neuroendocrine neoplasms. In lung tumours, a negative correlation with the expression of the proliferation marker Ki-67 and a positive interrelationship with patient survival was observed. Overall, our results indicate that in adenocarcinomas and neuroendocrine tumours of the lung GPR19 may serve as a suitable diagnostic or therapeutic target.


Asunto(s)
Adenocarcinoma , Neoplasias de las Glándulas Suprarrenales , Carcinoma Neuroendocrino , Neoplasias Pulmonares , Tumores Neuroendocrinos , Masculino , Animales , Conejos , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Pulmonares/patología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Neurotransmisores/metabolismo
7.
J Cancer Res Clin Oncol ; 149(20): 18135-18160, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38006451

RESUMEN

BACKGROUND: G protein-coupled receptors (GPCRs) have been shown to have an important role in tumor development and metastasis, and abnormal expression of GPCRs is significantly associated with poor prognosis of tumor patients. In this study, we analyzed the GPCRs-related gene (GPRGs) and tumor microenvironment (TME) in skin cutaneous melanoma (SKCM) to construct a prognostic model to help SKCM patients obtain accurate clinical treatment strategies. METHODS: SKCM expression data and clinical information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression analysis, LASSO algorithm, and univariate and multivariate cox regression analysis were used to screen prognosis-related genes (GPR19, GPR146, S1PR2, PTH1R, ADGRE5, CXCR3, GPR143, and OR2I1P) and multiple prognosis-good immune cells; the data set was analyzed according to above results and build up a GPR-TME classifier. The model was further subjected to immune infiltration, functional enrichment, tumor mutational load, immunotherapy prediction, and scRNA-seq data analysis. Finally, cellular experiments were conducted to validate the functionality of the key gene GPR19 in the model. RESULTS: The findings indicate that high expression of GPRGs is associated with a poor prognosis in patients with SKCM, highlighting the significant role of GPRGs and the tumor microenvironment (TME) in SKCM development. Notably, the group characterized by low GPR expression and a high TME exhibited the most favorable prognosis and immunotherapeutic efficacy. Furthermore, cellular assays demonstrated that knockdown of GPR19 significantly reduced the proliferation, migration, and invasive capabilities of melanoma cells in A375 and A2058 cell lines. CONCLUSION: This study provides novel insights for the prognosis evaluation and treatment of melanoma, along with the identification of a new biomarker, GPR19.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Pronóstico , Neoplasias Cutáneas/genética , Microambiente Tumoral/genética , Biomarcadores , Receptores Acoplados a Proteínas G/genética , Proteínas del Tejido Nervioso , Receptores de Neurotransmisores
8.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189007, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37907132

RESUMEN

This review summarizes emerging evidence that the neuroendocrine system is involved in the regulation of the tumor immune microenvironment (TIME) to influence cancer progression. The basis of the interaction between the neuroendocrine system and cancer is usually achieved by the infiltration of nerve fibers into the tumor tissue, which is called neurogenesis; the migration of cancer cells toward nerve fibers, which is called perineural invasion (PNI), and the neurotransmitters. In addition to the traditional role of neurotransmitters in neural communications, neurotransmitters are increasingly recognized as mediators of crosstalk between the nervous system, cancer cells, and the immune system. Recent studies have revealed that not only nerve fibers but also cancer cells and immune cells within the TIME can secrete neurotransmitters, exerting influence on both neurons and themselves. Furthermore, immune cells infiltrating the tumor environment have been found to express a wide array of neurotransmitter receptors. Hence, targeting these neurotransmitter receptors may promote the activity of immune cells in the tumor microenvironment and exert anti-tumor immunity. Herein, we discuss the crosstalk between the neuroendocrine system and tumor-infiltrating immune cells, which may provide feasible cancer immunotherapy options.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Sistemas Neurosecretores/patología , Inmunoterapia , Neurotransmisores/fisiología , Receptores de Neurotransmisores , Microambiente Tumoral
9.
J Endod ; 49(12): 1641-1651.e6, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37769871

RESUMEN

INTRODUCTION: Human dental pulp stem cells (hDPSCs) reside in specialized microenvironments in the dental pulp, termed "niches," which are composed of diverse cellular components including nerves. Sensory nerves can positively regulate the expansion and differentiation of pulp cells, while the biological effects of the sympathetic nervous system (SNS) on hDPSCs remain elusive. This study is devoted to investigating the effects and underlying mechanisms of the SNS on the proliferation and migration of hDPSCs. METHODS: The distribution of sympathetic nerve fibers in human dental pulp was examined by immunofluorescence staining of tyrosine hydroxylase. The concentration of norepinephrine in healthy and carious human dental pulp tissues was detected using enzyme-linked immunosorbent assay. RNA-sequencing was applied to identify the dominant sympathetic neurotransmitter receptor in hDPSCs. Seahorse metabolic assay, adenosine triphosphate assay, lactate assay, and mitochondrial DNA copy number were performed to determine the level of glycometabolism. Transwell assay, wound healing assay, 5-ethynyl-2'-deoxyuridine staining assay, cell cycle assay, and Cell Counting Kit-8 assay were conducted to analyze the migratory and proliferative capacities of hDPSCs. RESULTS: Sprouting of sympathetic nerve fibers and an increased concentration of norepinephrine were observed in inflammatory pulp tissues. Sympathetic nerve fibers were mainly distributed along blood vessels, and aldehyde dehydrogenase 1-positive hDPSCs resided in close proximity to neurovascular bundles. ADRA1B was identified as the major sympathetic neurotransmitter receptor expressed in hDPSCs, and its expression was enhanced in inflammatory pulp tissues. In addition, the SNS inhibited the proliferation and migration of hDPSCs through metabolic reprogramming via ADRA1B and its crosstalk with serine-threonine kinase and p38 mitogen-activated protein kinase signaling pathways. CONCLUSIONS: This study demonstrates that the SNS can shift the metabolism of hDPSCs from oxidative phosphorylation to anaerobic glycolysis via ADRA1B and its crosstalk with serine-threonine kinase and p38 mitogen-activated protein kinase signaling pathways, thereby inhibiting the proliferative and migratory abilities of hDPSCs. This metabolic shift may facilitate the maintenance of the quiescent state of hDPSCs.


Asunto(s)
Pulpa Dental , Proteínas Serina-Treonina Quinasas , Humanos , Proliferación Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/farmacología , Diferenciación Celular/fisiología , Células Madre/fisiología , Sistema Nervioso Simpático , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología , Norepinefrina/farmacología , Norepinefrina/metabolismo , Receptores de Neurotransmisores/metabolismo , Receptores Adrenérgicos/metabolismo , Células Cultivadas
10.
Altern Ther Health Med ; 29(8): 356-365, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37632962

RESUMEN

Context: Kidney renal clear-cell carcinoma (KIRC) is a malignant tumor. At an early stage, KIRC patients may experience only mild fever and fatigue or even no symptoms, and these early nonspecific indications can delay treatment. Neurotransmitters and their receptors may be very useful in determining tumorigenesis and predicting metastasis. Objective: The study intended to investigate the predictive value of neurotransmitter receptor-related genes (NRRGs) using public KIRC data, by determining the biological processes that implicate the prognostic NRRGs and establishing a predictive NR-related risk model, to provide an empirical basis for identifying and treating KIRC patients. Design: The research team performed a genetic case-control study. Setting: The study took place at Research Center of Health, Big Data Mining and Applications, Wannan Medical College, Wuhu, China. Methods: The research team: (1) obtained the transcriptome data related to KIRC from the Cancer Genome Atlas (TCGA) and ArrayExpress databases; (2) developed the differentially expressed NRRGs (DENRRGs) by identifying the NRRGs that intersected with DEGs in KIRC and normal samples; (3) carried out functional enrichment analyses of the DENRRGs; (4) screened the characteristic genes of the DENRRGs using machine learning; (5) created a predictive model using multivariate Cox analyses of the distinctive genes; (6) obtained independent prognostic factors for KIRC patients and established a nomograph model; (7) investigated the sensitivity of KIRC patients to therapeutic agents to examine the variations in immunological features between high-risk and low-risk individuals. Results: Differential analysis found that 115 NRRGs intersected with 5275 DEGs to provide 52 DENRRGs. Functional enrichment showed that DENRRGs were mainly involved in signal transduction in the nervous system. The machine learning on the 52 DENRRGs filtered out nine characteristic genes. Subsequently, the research team found eight prognostic biomarkers-histamine receptor H2 (HRH2), gamma-aminobutyric acid (GABA) receptor subunit epsilon (GABRE), cholinergic receptor nicotinic delta subunit (CHRND), glutamate receptor ionotropic subunit 2D (GRIN2D), glutamate metabotropic receptor 4 (GRM4), glycine receptor alpha 3 (GLRA3), cholinergic receptor nicotinic beta 4 subunit (CHRNB4), and cholinergic receptor muscarinic-1 (CHRM1)-and established a predictive model. Furthermore, the team precisely predicted the KIRC patients' prognoses using a nomogram that combined their ages, risk scores, and M stages. The infiltration levels of 21 immune cells also significantly differed between the high-risk and low-risk groups, with neutrophils having a significant positive correlation with GABRE and HRH2 and a significant negative correlation with CHRNB4 and GRM4. Finally, the 50% inhibitory concentration (IC50) values for various drugs, such as 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR), 8-hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid (NSC-87877), Sunitinib, c-Jun N-terminal kinase (JNK) inhibitor VIII, and tanespimyci (X17.AAG) were significantly lower for high-risk group. Conclusions: By studying the relevance of biomarkers to the immunological microenvironment of KIRC, the current research team was able to propose a new predictive model for KIRC based on NRRGs, to offer a novel viewpoint for investigating KIRC. The study's results suggest new avenues for research into the pathophysiology and therapy of KIRC. Determining the precise molecular processes by which predictive biomarkers regulate KIRC requires further evidence and analysis.


Asunto(s)
Carcinoma , Receptores de Neurotransmisores , Humanos , Pronóstico , Estudios de Casos y Controles , Biomarcadores , Receptores Colinérgicos , Riñón , Microambiente Tumoral , Receptor Muscarínico M1
11.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36233175

RESUMEN

Dystrophin Dp71 is the most abundant product of the Duchenne muscular dystrophy gene in the nervous system, and mutations impairing its function have been associated with the neurodevelopmental symptoms present in a third of DMD patients. Dp71 is required for the clustering of neurotransmitter receptors and the neuronal differentiation of cultured cells; nonetheless, its precise role in neuronal cells remains to be poorly understood. In this study, we analyzed the effect of two pathogenic DMD gene point mutations on the Dp71 function in neurons. We engineered C272Y and E299del mutations to express GFP-tagged Dp71 protein variants in N1E-115 and SH-SY5Y neuronal cells. Unexpectedly, the ectopic expression of Dp71 mutants resulted in protein aggregation, which may be mechanistically caused by the effect of the mutations on Dp71 structure, as predicted by protein modeling and molecular dynamics simulations. Interestingly, Dp71 mutant variants acquired a dominant negative function that, in turn, dramatically impaired the distribution of different Dp71 protein partners, including ß-dystroglycan, nuclear lamins A/C and B1, the high-mobility group (HMG)-containing protein (BRAF35) and the BRAF35-family-member inhibitor of BRAF35 (iBRAF). Further analysis of Dp71 mutants provided evidence showing a role for Dp71 in modulating both heterochromatin marker H3K9me2 organization and the neuronal genes' expression, via its interaction with iBRAF and BRAF5.


Asunto(s)
Distrofina , Neuroblastoma , Distroglicanos/genética , Distrofina/genética , Heterocromatina , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Laminas/genética , Neuronas/metabolismo , Lámina Nuclear/metabolismo , Mutación Puntual , Agregado de Proteínas , Receptores de Neurotransmisores/genética
12.
Sci Rep ; 12(1): 17472, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302800

RESUMEN

Studies in genetically modified mice establish that essential roles of endogenous neuromedin U (NMU) are anorexigenic function and metabolic regulation, indicating that NMU is expected to be a potential target for anti-obesity agents. However, in central administration experiments in rats, inconsistent results have been obtained, and the essential role of NMU energy metabolism in rats remain unclear. This study aims to elucidate the role of endogenous NMU in rats. We generated NMU knockout (KO) rats that unexpectedly showed no difference in body weight, adiposity, circulating metabolic markers, body temperature, locomotor activity, and food consumption in both normal and high fat chow feeding. Furthermore, unlike reported in mice, expressions of Nmu and NMU receptor type 2 (Nmur2) mRNA were hardly detectable in the rat hypothalamic nuclei regulating feeding and energy metabolism, including the arcuate nucleus and paraventricular nucleus, while Nmu was expressed in pars tuberalis and Nmur2 was expressed in the ependymal cell layer of the third ventricle. These results indicate that the species-specific expression pattern of Nmu and Nmur2 may allow NMU to have distinct functions across species, and that endogenous NMU does not function as an anorexigenic hormone in rats.


Asunto(s)
Neuropéptidos , Hormonas Peptídicas , Ratas , Animales , Ratones , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo , Neuropéptidos/metabolismo , Peso Corporal/fisiología , Ingestión de Alimentos
13.
Front Immunol ; 13: 964118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059470

RESUMEN

Background: Necroptosis is considered to be a new form of programmed necrotic cell death, which is associated with metastasis, progression and prognosis of various types of tumors. However, the potential role of necroptosis-related genes (NRGs) in the triple negative breast cancer (TNBC) is unclear. Methods: We extracted the gene expression and relevant clinicopathological data of TNBC from The Cancer Genome Atlas (TCGA) databases and the Gene Expression Omnibus (GEO) databases. We analyzed the expression, somatic mutation, and copy number variation (CNV) of 67 NRGs in TNBC, and then observed their interaction, biological functions, and prognosis value. By performing Lasso and COX regression analysis, a NRGs-related risk model for predicting overall survival (OS) was constructed and its predictive capabilities were verified. Finally, the relationship between risk_score and immune cell infiltration, tumor microenvironment (TME), immune checkpoint, and tumor mutation burden (TMB), cancer stem cell (CSC) index, and drug sensitivity were analyzed. Results: A total 67 NRGs were identified in our analysis. A small number of genes (23.81%) detected somatic mutation, most genes appeared to have a high frequency of CNV, and there was a close interaction between them. These genes were remarkably enriched in immune-related process. A seven-gene risk_score was generated, containing TPSG1, KRT6A, GPR19, EIF4EBP1, TLE1, SLC4A7, ESPN. The low-risk group has a better OS, higher immune score, TMB and CSC index, and lower IC50 value of common therapeutic agents in TNBC. To improve clinical practicability, we added age, stage_T and stage_N to the risk_score and construct a more comprehensive nomogram for predicting OS. It was verified that nomogram had good predictive capability, the AUC values for 1-, 3-, and 5-year OS were 0.847, 0.908, and 0.942. Conclusion: Our research identified the significant impact of NRGs on immunity and prognosis in TNBC. These findings were expected to provide a new strategy for personalize the treatment of TNBC and improve its clinical benefit.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Biomarcadores de Tumor/genética , Variaciones en el Número de Copia de ADN , Humanos , Necroptosis/genética , Proteínas del Tejido Nervioso/genética , Pronóstico , Receptores Acoplados a Proteínas G/genética , Receptores de Neurotransmisores , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral/genética
14.
Front Immunol ; 13: 756928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359970

RESUMEN

Many epidemiological reports have indicated an increase in the incidence of breast cancer among psychotic patients, suggesting that the targets of antipsychotics, neurotransmitter receptors, may have a role in tumorigenesis. However, the functions of neurotransmitter receptors in cancer are barely known. Here, we analyzed 44 neurotransmitter receptors in breast cancer and revealed that the expression of 34 receptors was positively correlated with relapse-free survival rates (RFS) of patients using the public database (n = 3951). Among all these receptors, we revealed decreased expression of HTR6 in human advanced breast cancer versus tumors in situ using our original data (n = 44). After a pan-cancer analysis including 22 cancers (n = 11262), we disclosed that HTR6 was expressed in 12 tumors and uncovered its influence on survival in seven tumors. Using multi-omics datasets from Linkedomics, we revealed a potential regulatory role of HTR6 in MAPK, JUN, and leukocyte-differentiation pathways through enriching 294 co-expressed phosphorylated proteins of HTR6. Furthermore, we proclaimed a close association of HTR6 expression with the immune microenvironment. Finally, we uncovered two possible reasons for HTR6 down-regulation in breast cancer, including deep deletion in the genome and the up-regulation of FOXA1 in breast cancer, which was a potential negatively regulatory transcription factor of HTR6. Taken together, we revealed a new function of neurotransmitter receptors in breast cancer and identified HTR6 as a survival-related gene potentially regulating the immune microenvironment. The findings in our study would improve our understanding of the pathogenesis of breast cancer and provided a theoretical basis for personalized medication in psychotic patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Recurrencia Local de Neoplasia , Receptores de Neurotransmisores/genética , Microambiente Tumoral/genética
15.
Molecules ; 27(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011543

RESUMEN

Neuropeptides are autocrine and paracrine signalling factors and mainly bind to G protein-coupled receptors (GPCRs) to trigger intracellular secondary messenger release including adenosine 3', 5'-cyclic monophosphate (cAMP), thus modulating cancer progress in different kind of tumours. As one of the downstream effectors of cAMP, exchange proteins directly activated by cAMP (EPACs) play dual roles in cancer proliferation and metastasis. More evidence about the relationship between neuropeptides and EPAC pathways have been proposed for their potential role in cancer development; hence, this review focuses on the role of neuropeptide/GPCR system modulation of cAMP/EPACs pathways in cancers. The correlated downstream pathways between neuropeptides and EPACs in cancer cell proliferation, migration, and metastasis is discussed to glimmer the direction of future research.


Asunto(s)
AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neoplasias/metabolismo , Neuropéptidos/metabolismo , Transducción de Señal , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Regulación Neoplásica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Neoplasias/etiología , Neoplasias/patología , Especificidad de Órganos/genética , Unión Proteica , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo
16.
J Exp Clin Cancer Res ; 40(1): 283, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493299

RESUMEN

BACKGROUND: Successful colorectal cancer (CRC) therapy often depends on the accurate identification of primary tumours with invasive potential. There is still a lack of identified pathological factors associated with disease recurrence that could help in making treatment decisions. Neuromedin U (NMU) is a secretory neuropeptide that was first isolated from the porcine spinal cord, and it has emerged as a novel factor involved in the tumorigenesis and/or metastasis of many types of cancers. Previously associated with processes leading to CRC cell invasiveness, NMU has the potential to be a marker of poor outcome, but it has not been extensively studied in CRC. METHODS: Data from The Cancer Genome Atlas (TCGA) were used to analyse NMU and NMU receptor (NMUR1 and NMUR2) expression in CRC tissues vs. normal tissues, and real-time PCR was used for NMU and NMU receptor expression analysis. NMU protein detection was performed by immunoblotting. Secreted NMU was immunoprecipitated from cell culture-conditioned media and analysed by immunoblotting and protein sequencing. DNA demethylation by 5-aza-CdR was used to analyse the regulation of NMUR1 and NMUR2 expression. NMU receptor activity was monitored by detecting calcium mobilisation in cells loaded with fluo-4, and ERK1/2 kinase activation was detected after treatment with NMU or receptor agonist. Cell migration and invasion were investigated using membrane filters. Integrin expression was evaluated by flow cytometry. RESULTS: The obtained data revealed elevated expression of NMU and NMUR2 in CRC tissue samples and variable expression in the analysed CRC cell lines. We have shown, for the first time, that NMUR2 activation induces signalling in CRC cells and that NMU increases the motility and invasiveness of NMUR2-positive CRC cells and increases prometastatic integrin receptor subunit expression. CONCLUSIONS: Our results show the ability of CRC cells to respond to NMU via activation of the NMUR2 receptor, which ultimately leads to a shift in the CRC phenotype towards a more invasive phenotype.


Asunto(s)
Neoplasias Colorrectales/genética , Neuropéptidos/metabolismo , Receptores de Neurotransmisores/metabolismo , Línea Celular Tumoral , Humanos , Fenotipo
17.
Mol Neurobiol ; 58(11): 5548-5563, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34365585

RESUMEN

The identification and quantification of mitochondrial effects of novel antipsychotics (brexpiprazole, cariprazine, loxapine, and lurasidone) were studied in vitro in pig brain mitochondria. Selected parameters of mitochondrial metabolism, electron transport chain (ETC) complexes, citrate synthase (CS), malate dehydrogenase (MDH), monoamine oxidase (MAO), mitochondrial respiration, and total ATP and reactive oxygen species (ROS) production were evaluated and associated with possible adverse effects of drugs. All tested antipsychotics decreased the ETC activities (except for complex IV, which increased in activity after brexpiprazole and loxapine addition). Both complex I- and complex II-linked respiration were dose-dependently inhibited, and significant correlations were found between complex I-linked respiration and both complex I activity (positive correlation) and complex IV activity (negative correlation). All drugs significantly decreased mitochondrial ATP production at higher concentrations. Hydrogen peroxide production was significantly increased at 10 µM brexpiprazole and lurasidone and at 100 µM cariprazine and loxapine. All antipsychotics acted as partial inhibitors of MAO-A, brexpiprazole and loxapine partially inhibited MAO-B. Based on our results, novel antipsychotics probably lacked oxygen uncoupling properties. The mitochondrial effects of novel antipsychotics might contribute on their adverse effects, which are mostly related to decreased ATP production and increased ROS production, while MAO-A inhibition might contribute to their antidepressant effect, and brexpiprazole- and loxapine-induced MAO-B inhibition might likely promote neuroplasticity and neuroprotection. The assessment of drug-induced mitochondrial dysfunctions is important in development of new drugs as well as in the understanding of molecular mechanism of adverse or side drug effects.


Asunto(s)
Antipsicóticos/farmacología , Mitocondrias/efectos de los fármacos , Adenosina Trifosfato/biosíntesis , Animales , Antipsicóticos/clasificación , Proteínas del Complejo de Cadena de Transporte de Electrón/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Loxapina/farmacología , Clorhidrato de Lurasidona/farmacología , Mitocondrias/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Consumo de Oxígeno/efectos de los fármacos , Piperazinas/farmacología , Quinolonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Neurotransmisores/efectos de los fármacos , Porcinos , Tiofenos/farmacología
18.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205261

RESUMEN

The amyloid ß peptide (Aß) is a central player in the neuropathology of Alzheimer's disease (AD). The alteration of Aß homeostasis may impact the fine-tuning of cell signaling from the very beginning of the disease, when amyloid plaque is not deposited yet. For this reason, primary culture of rat cortical neurons was exposed to Aß25-35, a non-oligomerizable form of Aß. Cell viability, metabotropic glutamate receptors (mGluR) and adenosine receptors (AR) expression and signalling were assessed. Aß25-35 increased mGluR density and affinity, mainly due to a higher gene expression and protein presence of Group I mGluR (mGluR1 and mGluR5) in the membrane of cortical neurons. Intriguingly, the main effector of group I mGluR, the phospholipase C ß1 isoform, was less responsive. Also, the inhibitory action of group II and group III mGluR on adenylate cyclase (AC) activity was unaltered or increased, respectively. Interestingly, pre-treatment of cortical neurons with an antagonist of group I mGluR reduced the Aß25-35-induced cell death. Besides, Aß25-35 increased the density of A1R and A2AR, along with an increase in their gene expression. However, while A1R-mediated AC inhibition was increased, the A2AR-mediated stimulation of AC remained unchanged. Therefore, one of the early events that takes place after Aß25-35 exposure is the up-regulation of adenosine A1R, A2AR, and group I mGluR, and the different impacts on their corresponding signaling pathways. These results emphasize the importance of deciphering the early events and the possible involvement of metabotropic glutamate and adenosine receptors in AD physiopathology.


Asunto(s)
Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/toxicidad , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , Receptores de Neurotransmisores/metabolismo , Adenosina/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Corteza Cerebral , Femenino , Neuronas/metabolismo , Fosfolipasa C beta/metabolismo , Embarazo , Ratas , Ratas Wistar , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores de Glutamato/metabolismo , Transducción de Señal
19.
Neuropeptides ; 89: 102159, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34293596

RESUMEN

T cells of aged people, and of patients with either cancer or severe infections (including COVID-19), are often exhausted, senescent and dysfunctional, leading to increased susceptibilities, complications and mortality. Neurotransmitters and Neuropeptides bind their receptors in T cells, and induce multiple beneficial T cell functions. Yet, T cells of different people vary in the expression levels of Neurotransmitter and Neuropeptide receptors, and in the magnitude of the corresponding effects. Therefore, we performed an individual-based study on T cells of 3 healthy subjects, and 3 Hepatocellular Carcinoma (HCC) patients. HCC usually develops due to chronic inflammation. The inflamed liver induces reduction and inhibition of CD4+ T cells and Natural Killer (NK) cells. Immune-based therapies for HCC are urgently needed. We tested if selected Neurotransmitters and Neuropeptides decrease the key checkpoint protein PD-1 in human T cells, and increase proliferation and killing of HCC cells. First, we confirmed human T cells express all dopamine receptors (DRs), and glutamate receptors (GluRs): AMPA-GluR3, NMDA-R and mGluR. Second, we discovered that either Dopamine, Glutamate, GnRH-II, Neuropeptide Y and/or CGRP (10nM), as well as DR and GluR agonists, induced the following effects: 1. Decreased significantly both %PD-1+ T cells and PD-1 expression level per cell (up to 60% decrease, within 1 h only); 2. Increased significantly the number of T cells that proliferated in the presence of HCC cells (up to 7 fold increase), 3. Increased significantly T cell killing of HCC cells (up to 2 fold increase). 4. Few non-conventional combinations of Neurotransmitters and Neuropeptides had surprising synergistic beneficial effects. We conclude that Dopamine, Glutamate, GnRH-II, Neuropeptide Y and CGRP, alone or in combinations, can decrease % PD-1+ T cells and PD-1 expression per cell, in T cells of both healthy subjects and HCC patients, and increase their proliferation in response to HCC cells and killing of HCC cells. Yet, testing T cells of many more cancer patients is absolutely needed. Based on these findings and previous ones, we designed a novel "Personalized Adoptive Neuro-Immunotherapy", calling for validation of safety and efficacy in clinical trials.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neuropéptidos/farmacología , Neurotransmisores/farmacología , Receptor de Muerte Celular Programada 1/biosíntesis , Receptor de Muerte Celular Programada 1/genética , Linfocitos T/metabolismo , Linfocitos T CD4-Positivos/metabolismo , COVID-19/complicaciones , Carcinoma Hepatocelular/patología , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Humanos , Inmunoterapia , Células Asesinas Naturales/metabolismo , Neoplasias Hepáticas/patología , Receptores de Glutamato/efectos de los fármacos , Receptores de Neuropéptido/metabolismo , Receptores de Neurotransmisores/metabolismo
20.
Neuropeptides ; 89: 102168, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34243110

RESUMEN

Neuromedin U (NMU) is a neuropeptide that was initially isolated from the porcine spinal cord and later from several species. Although NMU receptors exist in the CA1 region of the hippocampus, the role of NMU in hippocampal synaptic transmission remains unknown. In the present study, we demonstrated that the colocalization ratio of NMU type 1 (NMUR1) or type 2 (NMUR2) receptors was higher with neuronal nuclei (a neuronal marker) than with glial fibrillary acidic protein (an astrocyte marker) in the CA1 region of rats. Moreover, we revealed that the bath application of NMU (1 µM) enhanced extracellular field excitatory postsynaptic potentials at Schaffer collateral-CA1 synapses in rat hippocampal slices (+28.9 ± 1.3%; P < 0.05). After extracellular recordings, we examined the pattern of neuronal activation induced by NMU using c-Fos immunohistochemistry (Fos-IR). Histological analyses revealed that NMU increased Fos-IR in the CA1 region, but reduced the proportion of Fos-IR colocalized with glutamic acid decarboxylase (a GABA neuron marker). These results suggest that the activation of NMU receptors contributes to GABAergic neuronal activity in the CA1 region of the hippocampus.


Asunto(s)
Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuropéptidos/farmacología , Receptores de Neurotransmisores/metabolismo , Animales , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Masculino , Neuronas/metabolismo , Proteínas Oncogénicas v-fos/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA