Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.182
Filtrar
1.
Oncotarget ; 15: 699-713, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352803

RESUMEN

Monoclonal antibody therapies for cancer have demonstrated extraordinary clinical success in recent years. However, these strategies are thus far mostly limited to specific cell surface antigens, even though many disease targets are found intracellularly. Here we report studies on the humanization of a full-length, nucleic acid binding, monoclonal lupus-derived autoantibody, 3E10, which exhibits a novel mechanism of cell penetration and tumor specific targeting. Comparing humanized variants of 3E10, we demonstrate that cell uptake depends on the nucleoside transporter ENT2, and that faster cell uptake and superior in vivo tumor targeting are associated with higher affinity nucleic acid binding. We show that one human variant retains the ability of the parental 3E10 to bind RAD51, serving as a synthetically lethal inhibitor of homology-directed repair in vitro. These results provide the basis for the rational design of a novel antibody platform for therapeutic tumor targeting with high specificity following systemic administration.


Asunto(s)
Recombinasa Rad51 , Humanos , Animales , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , Recombinasa Rad51/inmunología , Ratones , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/química
2.
Nat Commun ; 15(1): 8292, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333100

RESUMEN

BRCA2 is essential for DNA repair by homologous recombination in mitosis and meiosis. It interacts with recombinases RAD51 and DMC1 to facilitate the formation of nucleoprotein filaments on resected DNA ends that catalyse recombination-mediated repair. BRCA2's BRC repeats bind and disrupt RAD51 and DMC1 filaments, whereas its PhePP motifs bind recombinases and stabilise their nucleoprotein filaments. However, the mechanism of filament stabilisation has hitherto remained unknown. Here, we report the crystal structure of a BRCA2-DMC1 complex, revealing how core interaction sites of PhePP motifs bind to recombinases. The interaction mode is conserved for RAD51 and DMC1, which selectively bind to BRCA2's two distinct PhePP motifs via subtly divergent binding pockets. PhePP motif sequences surrounding their core interaction sites protect nucleoprotein filaments from BRC-mediated disruption. Hence, we report the structural basis of how BRCA2's PhePP motifs stabilise RAD51 and DMC1 nucleoprotein filaments for their essential roles in mitotic and meiotic recombination.


Asunto(s)
Proteína BRCA2 , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Unión Proteica , Recombinasa Rad51 , Recombinasa Rad51/metabolismo , Recombinasa Rad51/química , Proteína BRCA2/metabolismo , Proteína BRCA2/química , Proteína BRCA2/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Nucleoproteínas/metabolismo , Nucleoproteínas/química , Nucleoproteínas/genética , Cristalografía por Rayos X , Meiosis , Sitios de Unión , Secuencias de Aminoácidos , Modelos Moleculares , Mitosis
3.
Nature ; 634(8033): 492-500, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39261728

RESUMEN

DNA double-strand break (DSB) repair by homologous recombination is initiated by DNA end resection, a process involving the controlled degradation of the 5'-terminated strands at DSB sites1,2. The breast cancer suppressor BRCA1-BARD1 not only promotes resection and homologous recombination, but it also protects DNA upon replication stress1,3-9. BRCA1-BARD1 counteracts the anti-resection and pro-non-homologous end-joining factor 53BP1, but whether it functions in resection directly has been unclear10-16. Using purified recombinant proteins, we show here that BRCA1-BARD1 directly promotes long-range DNA end resection pathways catalysed by the EXO1 or DNA2 nucleases. In the DNA2-dependent pathway, BRCA1-BARD1 stimulates DNA unwinding by the Werner or Bloom helicase. Together with MRE11-RAD50-NBS1 and phosphorylated CtIP, BRCA1-BARD1 forms the BRCA1-C complex17,18, which stimulates resection synergistically to an even greater extent. A mutation in phosphorylated CtIP (S327A), which disrupts its binding to the BRCT repeats of BRCA1 and hence the integrity of the BRCA1-C complex19-21, inhibits resection, showing that BRCA1-C is a functionally integrated ensemble. Whereas BRCA1-BARD1 stimulates resection in DSB repair, it paradoxically also protects replication forks from unscheduled degradation upon stress, which involves a homologous recombination-independent function of the recombinase RAD51 (refs. 4-6,8). We show that in the presence of RAD51, BRCA1-BARD1 instead inhibits DNA degradation. On the basis of our data, the presence and local concentration of RAD51 might determine the balance between the pronuclease and the DNA protection functions of BRCA1-BARD1 in various physiological contexts.


Asunto(s)
Proteína BRCA1 , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN , Exodesoxirribonucleasas , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , ADN/metabolismo , ADN/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Exodesoxirribonucleasas/metabolismo , Recombinación Homóloga/genética , Fosforilación , Unión Proteica , Recombinasa Rad51/metabolismo , RecQ Helicasas , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
Nature ; 634(8033): 482-491, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39261729

RESUMEN

The licensing step of DNA double-strand break repair by homologous recombination entails resection of DNA ends to generate a single-stranded DNA template for assembly of the repair machinery consisting of the RAD51 recombinase and ancillary factors1. DNA end resection is mechanistically intricate and reliant on the tumour suppressor complex BRCA1-BARD1 (ref. 2). Specifically, three distinct nuclease entities-the 5'-3' exonuclease EXO1 and heterodimeric complexes of the DNA endonuclease DNA2, with either the BLM or WRN helicase-act in synergy to execute the end resection process3. A major question concerns whether BRCA1-BARD1 directly regulates end resection. Here, using highly purified protein factors, we provide evidence that BRCA1-BARD1 physically interacts with EXO1, BLM and WRN. Importantly, with reconstituted biochemical systems and a single-molecule analytical tool, we show that BRCA1-BARD1 upregulates the activity of all three resection pathways. We also demonstrate that BRCA1 and BARD1 harbour stand-alone modules that contribute to the overall functionality of BRCA1-BARD1. Moreover, analysis of a BARD1 mutant impaired in DNA binding shows the importance of this BARD1 attribute in end resection, both in vitro and in cells. Thus, BRCA1-BARD1 enhances the efficiency of all three long-range DNA end resection pathways during homologous recombination in human cells.


Asunto(s)
Proteína BRCA1 , Roturas del ADN de Doble Cadena , Exodesoxirribonucleasas , Recombinación Homóloga , RecQ Helicasas , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , ADN/metabolismo , ADN/genética , ADN Helicasas , Reparación del ADN , Enzimas Reparadoras del ADN , ADN de Cadena Simple/metabolismo , Exodesoxirribonucleasas/metabolismo , Unión Proteica , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Imagen Individual de Molécula , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba , Helicasa del Síndrome de Werner/metabolismo , Helicasa del Síndrome de Werner/genética
5.
Nat Commun ; 15(1): 7797, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242676

RESUMEN

Ribosomal DNA (rDNA) encodes the ribosomal RNA genes and represents an intrinsically unstable genomic region. However, the underlying mechanisms and implications for genome integrity remain elusive. Here, we use Bloom syndrome (BS), a rare genetic disease characterized by DNA repair defects and hyper-unstable rDNA, as a model to investigate the mechanisms leading to rDNA instability. We find that in Bloom helicase (BLM) proficient cells, the homologous recombination (HR) pathway in rDNA resembles that in nuclear chromatin; it is initiated by resection, replication protein A (RPA) loading and BRCA2-dependent RAD51 filament formation. However, BLM deficiency compromises RPA-loading and BRCA1/2 recruitment to rDNA, but not RAD51 accumulation. RAD51 accumulates at rDNA despite depletion of long-range resection nucleases and rDNA damage results in micronuclei when BLM is absent. In summary, our findings indicate that rDNA is permissive to RAD51 accumulation in the absence of BLM, leading to micronucleation and potentially global genomic instability.


Asunto(s)
ADN Ribosómico , Inestabilidad Genómica , Recombinasa Rad51 , RecQ Helicasas , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Humanos , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Recombinación Homóloga , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Reparación del ADN
6.
Cell Physiol Biochem ; 58(5): 459-476, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39248186

RESUMEN

BACKGROUND/AIMS: One of the treatments for breast cancer is surgical resection of the tumour and prevention of recurrence with postoperative radiotherapy. Unfortunately, radiotherapy is not always effective enough due to the low sensitivity of cancer cells to ionising radiation. This study aimed to evaluate the radiosensitising properties of resveratrol, piceatannol and polydatin on breast cancer cells, which differ in the presence of hormonal receptors on their surface. METHODS: The experimental part was carried out on triple-negative breast cancer cells (HCC38) and hormone-dependent cells (MCF7). The study assessed the level of cell death, changes in the expression of genes (BAX, BCL-2) and proteins related to the apoptosis process (CASPASE 3, 8 and P53), changes in the expression of antioxidant enzymes (CATALASE, SOD, GPx1/2) and NRF-2. Additionally, the expression level of RAD51 protein and histone H2AX, which are involved in DNA repair processes, was assessed. Statistical significance was evaluated by a two-way analysis of variance (ANOVA) followed by Tukey's post hoc test (p < 0.05). RESULTS: Ionising radiation in combination with resveratrol or piceatannol activates the apoptosis process by internal and external pathways. Greater sensitivity of MCF7 cells compared to HCC38 cells to ionising radiation in combination with resveratrol is associated with a weaker antioxidant response of cells and reduced intensity of DNA damage repair. DNA repair induced by ionising radiation occurs more effectively in HCC38 cells than in MCF7 cells. CONCLUSION: Resveratrol has the highest radiosensitising potential among the tested stilbene for cells of both lines. The effectiveness of ionizing radiation in combination with resveratrol (to a lesser extent with piceatannol) is more significant in MCF7 than in HCC38 cells.


Asunto(s)
Apoptosis , Radiación Ionizante , Fármacos Sensibilizantes a Radiaciones , Resveratrol , Estilbenos , Humanos , Estilbenos/farmacología , Resveratrol/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Femenino , Fármacos Sensibilizantes a Radiaciones/farmacología , Línea Celular Tumoral , Células MCF-7 , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/tratamiento farmacológico , Histonas/metabolismo , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Recombinasa Rad51/metabolismo , Caspasa 3/metabolismo , Glucósidos
7.
Nat Commun ; 15(1): 7197, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169038

RESUMEN

Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1, SWS1, and SPIDR. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single-molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter Shu complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.


Asunto(s)
ADN de Cadena Simple , Recombinasa Rad51 , Proteína de Replicación A , Humanos , Reparación del ADN , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Recombinación Homóloga , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Unión Proteica , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Imagen Individual de Molécula , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
8.
Neoplasia ; 57: 101037, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39142065

RESUMEN

Ovarian cancer (OC) is the deadliest malignancy of the female reproductive system. The standard first-line therapy for OC involves cytoreductive surgical debulking followed by chemotherapy based on platinum and paclitaxel. Despite these treatments, there remains a high rate of tumor recurrence and resistance to platinum. Recent studies have highlighted the potential anti-tumor properties of metformin (met), a traditional diabetes drug. In our study, we investigated the impact of met on the anticancer activities of cisplatin (cDDP) both in vitro and in vivo. Our findings revealed that combining met with cisplatin significantly reduced apoptosis in OC cells, decreased DNA damage, and induced resistance to cDDP. Furthermore, our mechanistic study indicated that the resistance induced by met is primarily driven by the inhibition of the ATM/CHK2 pathway and the upregulation of the Rad51 protein. Using an ATM inhibitor, KU55933, effectively reversed the cisplatin resistance phenotype. In conclusion, our results suggest that met can antagonize the effects of cDDP in specific types of OC cells, leading to a reduction in the chemotherapeutic efficacy of cDDP.


Asunto(s)
Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada , Quinasa de Punto de Control 2 , Cisplatino , Metformina , Neoplasias Ováricas , Recombinasa Rad51 , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Cisplatino/farmacología , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Metformina/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Animales , Ratones , Línea Celular Tumoral , Quinasa de Punto de Control 2/metabolismo , Quinasa de Punto de Control 2/genética , Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos , Transducción de Señal/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Daño del ADN/efectos de los fármacos , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
9.
Nucleic Acids Res ; 52(18): 10999-11013, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39180395

RESUMEN

Eukaryotic chromosomal replication occurs in a segmented, temporal manner wherein open euchromatin and compact heterochromatin replicate during early and late S-phase respectively. Using single molecule DNA fiber analyses coupled with cell synchronization, we find that newly synthesized strands remain stable at perturbed forks in early S-phase. Unexpectedly, stalled forks are susceptible to nucleolytic digestion during late replication resulting in defective fork restart. This inherent vulnerability to nascent strand degradation is dependent on fork reversal enzymes and resection nucleases MRE11, DNA2 and EXO1. Inducing chromatin compaction elicits digestion of nascent DNA in response to fork stalling due to reduced association of RAD51 with nascent DNA. Furthermore, RAD51 occupancy at stalled forks in late S-phase is diminished indicating that densely packed chromatin limits RAD51 accessibility to mediate replication fork protection. Genetic analyses reveal that susceptibility of late replicating forks to nascent DNA digestion is dependent on EXO1 via DNA mismatch repair (MMR) and that the BRCA2-mediated replication fork protection blocks MMR from degrading nascent DNA. Overall, our findings illustrate differential regulation of fork protection between early and late replication and demonstrate nascent strand degradation as a critical determinant of heterochromatin instability in response to replication stress.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Replicación del ADN , Exodesoxirribonucleasas , Recombinasa Rad51 , Fase S , Fase S/genética , Humanos , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , ADN/metabolismo , ADN/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Cromatina/metabolismo
10.
Nat Commun ; 15(1): 7081, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152168

RESUMEN

DSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1's DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD. Importantly, these DSS1 mutations impair BRCA2/RAD51 ssDNA loading and focus formation and cause decreased HR efficiency, destabilization of stalled forks and R-loop accumulation, and hypersensitize cells to DNA-damaging agents. We propose that DSS1 restrains the intrinsic dsDNA binding of BRCA2-DBD to ensure BRCA2/RAD51 targeting to ssDNA, thereby promoting optimal execution of HR, and potentially replication fork protection and R-loop suppression.


Asunto(s)
Proteína BRCA2 , Replicación del ADN , ADN de Cadena Simple , ADN , Recombinación Homóloga , Mutación , Recombinasa Rad51 , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/química , Humanos , ADN/metabolismo , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Homeostasis , Unión Proteica , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Dominios Proteicos , Línea Celular Tumoral , Daño del ADN , Complejo de la Endopetidasa Proteasomal
11.
J Struct Biol ; 216(3): 108115, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39117045

RESUMEN

Human RAD52 protein binds DNA and is involved in genomic stability maintenance and several forms of DNA repair, including homologous recombination and single-strand annealing. Despite its importance, there are very few structural details about the variability of the RAD52 ring size and the RAD52 C-terminal protein-protein interaction domains. Even recent attempts to employ cryogenic electron microscopy (cryoEM) methods on full-length yeast and human RAD52 do not reveal interpretable structures for the C-terminal half that contains the replication protein A (RPA) and RAD51 binding domains. In this study, we employed the monodisperse purification of two RAD52 deletion constructs and small angle X-ray scattering (SAXS) to construct a structural model that includes RAD52's RPA binding domain. This model is of interest to DNA repair specialists as well as for drug development against HR-deficient cancers.


Asunto(s)
Unión Proteica , Proteína Recombinante y Reparadora de ADN Rad52 , Proteína de Replicación A , Dispersión del Ángulo Pequeño , Humanos , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteína de Replicación A/metabolismo , Proteína de Replicación A/química , Proteína de Replicación A/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/genética , Difracción de Rayos X/métodos , Reparación del ADN , Modelos Moleculares , Dominios Proteicos
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167481, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39186963

RESUMEN

Radiotherapy stands as an effective method in the clinical treatment of hepatocellular carcinoma (HCC) patients. However, both primary and acquired radioresistance limit its clinical application in HCC. Therefore, investigating the mechanism of radioresistance may provide other options for treating HCC. Based on single-cell RNA sequencing (scRNA-seq) and HCC transcriptome datasets, 227 feature genes with prognostic value were selected to establish the tSNE score. The tSNE score emerged as an independent prognostic factor for HCC and correlated with cell proliferation and radioresistance-related biological functions. UBAP2 was identified as the most relevant gene with the tSNE score, consistently elevated in human HCC samples, and positively associated with patient prognosis. Functionally, UBAP2 knockdown impeded HCC development and reduced radiation resistance in vitro and in vivo. The ectopic expression of SLC27A5 reversed the effects of UBAP2. Mechanically, we uncovered that UBAP2, through the ubiquitin-proteasome system, decreased the homologous recombination-related gene RAD51, not the non-homologous end-joining (NHEJ)-related gene CTIP, by degrading the antioncogene SLC27A5, thereby generating radioresistance in HCC. The findings recapitulated that UBAP2 promoted HCC progression and radioresistance via SLC27A5 stability mediated by the ubiquitin-proteasome pathway. It was also suggested that targeting the UBAP2/SLC27A5 axis could be a valuable radiosensitization strategy in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Tolerancia a Radiación , Ubiquitinación , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Tolerancia a Radiación/genética , Ratones , Animales , Recombinación Homóloga , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Pronóstico , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proliferación Celular/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Ratones Desnudos , Masculino , Proteínas Portadoras
13.
Mol Cell ; 84(16): 3026-3043.e11, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178838

RESUMEN

Abasic sites are DNA lesions repaired by base excision repair. Cleavage of unrepaired abasic sites in single-stranded DNA (ssDNA) can lead to chromosomal breakage during DNA replication. How rupture of abasic DNA is prevented remains poorly understood. Here, using cryoelectron microscopy (cryo-EM), Xenopus laevis egg extracts, and human cells, we show that RAD51 nucleofilaments specifically recognize and protect abasic sites, which increase RAD51 association rate to DNA. In the absence of BRCA2 or RAD51, abasic sites accumulate as a result of DNA base methylation, oxidation, and deamination, inducing abasic ssDNA gaps that make replicating DNA fibers sensitive to APE1. RAD51 assembled on abasic DNA prevents abasic site cleavage by the MRE11-RAD50 complex, suppressing replication fork breakage triggered by an excess of abasic sites or POLθ polymerase inhibition. Our study highlights the critical role of BRCA2 and RAD51 in safeguarding against unrepaired abasic sites in DNA templates stemming from base alterations, ensuring genomic stability.


Asunto(s)
Proteína BRCA2 , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple , Recombinasa Rad51 , Xenopus laevis , Humanos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Animales , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Microscopía por Crioelectrón , ADN Polimerasa theta , Metilación de ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
14.
Proc Natl Acad Sci U S A ; 121(34): e2402262121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145931

RESUMEN

Homologous recombination (HR) is essential for the maintenance of genome stability. During HR, Replication Protein A (RPA) rapidly coats the 3'-tailed single-strand DNA (ssDNA) generated by end resection. Then, the ssDNA-bound RPA must be timely replaced by Rad51 recombinase to form Rad51 nucleoprotein filaments that drive homology search and HR repair. How cells regulate Rad51 assembly dynamics and coordinate RPA and Rad51 actions to ensure proper HR remains poorly understood. Here, we identified that Rtt105, a Ty1 transposon regulator, acts to stimulate Rad51 assembly and orchestrate RPA and Rad51 actions during HR. We found that Rtt105 interacts with Rad51 in vitro and in vivo and restrains the adenosine 5' triphosphate (ATP) hydrolysis activity of Rad51. We showed that Rtt105 directly stimulates dynamic Rad51-ssDNA assembly, strand exchange, and D-loop formation in vitro. Notably, we found that Rtt105 physically regulates the binding of Rad51 and RPA to ssDNA via different motifs and that both regulations are necessary and epistatic in promoting Rad51 nucleation, strand exchange, and HR repair. Consequently, disrupting either of the interactions impaired HR and conferred DNA damage sensitivity, underscoring the importance of Rtt105 in orchestrating the actions of Rad51 and RPA. Our work reveals additional layers of mechanisms regulating Rad51 filament dynamics and the coordination of HR.


Asunto(s)
ADN de Cadena Simple , Recombinasa Rad51 , Reparación del ADN por Recombinación , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae , Recombinasa Rad51/metabolismo , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Unión Proteica
15.
Molecules ; 29(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39064836

RESUMEN

Genotoxic substances widely exist in the environment and the food supply, posing serious health risks due to their potential to induce DNA damage and cancer. Traditional genotoxicity assays, while valuable, are limited by insufficient sensitivity, specificity, and efficiency, particularly when applied to complex food matrices. This study introduces a multiparametric high-content analysis (HCA) for the detection of genotoxic substances in complex food matrices. The developed assay measures three genotoxic biomarkers, including γ-H2AX, p-H3, and RAD51, which enhances the sensitivity and accuracy of genotoxicity screening. Moreover, the assay effectively distinguishes genotoxic compounds with different modes of action, which not only offers a more comprehensive assessment of DNA damage and the cellular response to genotoxic stress but also provides new insights into the exploration of genotoxicity mechanisms. Notably, the five tested food matrices, including coffee, tea, pak choi, spinach, and tomato, were found not to interfere with the detection of these biomarkers under proper dilution ratios, validating the robustness and reliability of the assay for the screening of genotoxic compounds in the food industry. The integration of multiple biomarkers with HCA provides an efficient method for detecting and assessing genotoxic substances in the food supply, with potential applications in toxicology research and food safety.


Asunto(s)
Daño del ADN , Pruebas de Mutagenicidad , Mutágenos , Mutágenos/análisis , Mutágenos/toxicidad , Pruebas de Mutagenicidad/métodos , Humanos , Análisis de los Alimentos/métodos , Té/química , Biomarcadores , Solanum lycopersicum/química , Histonas/metabolismo , Histonas/análisis , Café/química , Spinacia oleracea/química , Recombinasa Rad51/metabolismo
16.
J Assist Reprod Genet ; 41(9): 2419-2439, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39023827

RESUMEN

PURPOSE: Ovarian aging is closely related to a decrease in follicular reserve and oocyte quality. The precise molecular mechanisms underlying these reductions have yet to be fully elucidated. Herein, we examine spatiotemporal distribution of key proteins responsible for DNA double-strand break (DSB) repair in ovaries from early to older ages. Functional studies have shown that the γH2AX, RAD51, BRCA1, and RPA70 proteins play indispensable roles in HR-based repair pathway, while the KU80 and XRCC4 proteins are essential for successfully operating cNHEJ pathway. METHODS: Female Balb/C mice were divided into five groups as follows: Prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). The expression of DSB repair proteins, cellular senescence (ß-GAL) and apoptosis (cCASP3) markers was evaluated in the ovaries using immunohistochemistry. RESULT: ß-GAL and cCASP3 levels progressively increased from prepuberty to aged groups (P < 0.05). Notably, γH2AX levels varied in preantral and antral follicles among the groups (P < 0.05). In aged groups, RAD51, BRCA1, KU80, and XRCC4 levels increased (P < 0.05), while RPA70 levels decreased (P < 0.05) compared to the other groups. CONCLUSIONS: The observed alterations were primarily attributed to altered expression in oocytes and granulosa cells of the follicles and other ovarian cells. As a result, the findings indicate that these DSB repair proteins may play a role in the repair processes and even other related cellular events in ovarian cells from early to older ages.


Asunto(s)
Proteína BRCA1 , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN , Histonas , Autoantígeno Ku , Folículo Ovárico , Ovario , Recombinasa Rad51 , Animales , Femenino , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Ratones , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparación del ADN/genética , Folículo Ovárico/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Histonas/genética , Histonas/metabolismo , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Envejecimiento/genética , Envejecimiento/metabolismo , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Ratones Endogámicos BALB C
18.
Front Biosci (Landmark Ed) ; 29(7): 262, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39082357

RESUMEN

BACKGROUND: The switching/sucrose non-fermentable (SWI/SNF) Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A (SMARCA) member 2 and member 4 (SMARCA2/4) are paralogs and act as the key enzymatic subunits in the SWI/SNF complex for chromatin remodeling. However, the role of SMARCA2/4 in DNA damage response remains unclear. METHODS: Laser microirradiation assays were performed to examine the key domains of SMARCA2/4 for the relocation of the SWI/SNF complex to DNA lesions. To examine the key factors that mediate the recruitment of SMARCA2/4, the relocation of SMARCA2/4 to DNA lesions was examined in HeLa cells treated with inhibitors of Ataxia-telangiectasia-mutated (ATM), Ataxia telangiectasia and Rad3-related protein (ATR), CREB-binding protein (CBP) and its homologue p300 (p300/CBP), or Poly (ADP-ribose) polymerase (PARP) 1/2 as well as in H2AX-deficient HeLa cells. Moreover, by concomitantly suppressing SMARCA2/4 with the small molecule inhibitor FHD286 or Compound 14, the function of SMARCA2/4 in Radiation sensitive 51 (RAD51) foci formation and homologous recombination repair was examined. Finally, using a colony formation assay, the synergistic effect of PARP inhibitors and SMARCA2/4 inhibitors on the suppression of tumor cell growth was examined. RESULTS: We show that SMARCA2/4 relocate to DNA lesions in response to DNA damage, which requires their ATPase activities. Moreover, these ATPase activities are also required for the relocation of other subunits in the SWI/SNF complex to DNA lesions. Interestingly, the relocation of SMARCA2/4 is independent of γH2AX, ATM, ATR, p300/CBP, or PARP1/2, indicating that it may directly recognize DNA lesions as a DNA damage sensor. Lacking SMARCA2/4 prolongs the retention of γH2AX, Ring Finger Protein 8 (RNF8) and Breast cancer susceptibility gene 1 (BRCA1) at DNA lesions and impairs RAD51-dependent homologous recombination repair. Furthermore, the treatment of an SMARCA2/4 inhibitor sensitizes tumor cells to PARP inhibitor treatment. CONCLUSIONS: This study reveals SMARCA2/4 as a DNA damage repair factor for double-strand break repair.


Asunto(s)
Daño del ADN , ADN Helicasas , Reparación del ADN , Proteínas Nucleares , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Células HeLa , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Histonas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteína BRCA1/metabolismo , Proteína BRCA1/genética
19.
DNA Repair (Amst) ; 141: 103738, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084178

RESUMEN

A key but often neglected component of genomic instability is the emergence of single-stranded DNA (ssDNA) gaps during DNA replication in the absence of functional homologous recombination (HR) proteins, such as RAD51 and BRCA1/2. Research in prokaryotes has shed light on the dual role of RAD51's bacterial ortholog, RecA, in HR and the protection of replication forks, emphasizing its essential role in preventing the formation of ssDNA gaps, which is vital for cellular viability. This phenomenon was corroborated in eukaryotic cells deficient in HR, where the formation of ssDNA gaps within newly synthesized DNA and their subsequent processing by the MRE11 nuclease were observed. Without functional HR proteins, cells employ alternative ssDNA gap-filling mechanisms to ensure survival, though this compensatory response can compromise genomic stability. A notable example is the involvement of the translesion synthesis (TLS) polymerase POLζ, along with the repair protein POLθ, in the suppression of replicative ssDNA gaps. Persistent ssDNA gaps may result in replication fork collapse, chromosomal anomalies, and cell death, which contribute to cancer progression and resistance to therapy. Elucidating the processes that avert ssDNA gaps and safeguard replication forks is critical for enhancing cancer treatment approaches by exploiting the vulnerabilities of cancer cells in these pathways.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Replicación del ADN , ADN de Cadena Simple , Recombinasa Rad51 , Humanos , Recombinasa Rad51/metabolismo , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , ADN de Cadena Simple/metabolismo , Proteína BRCA1/metabolismo , Recombinación Homóloga , Inestabilidad Genómica , Proteína Homóloga de MRE11/metabolismo , Animales , Reparación del ADN
20.
Cell Death Dis ; 15(7): 551, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085197

RESUMEN

PLK1 is currently at the forefront of mitotic research and has emerged as a potential target for small cell lung cancer (SCLC) therapy. However, the factors influencing the efficacy of PLK1 inhibitors remain unclear. Herein, BRCA1 was identified as a key factor affecting the response of SCLC cells to BI-2536. Targeting AURKA with alisertib, at a non-toxic concentration, reduced the BI-2536-induced accumulation of BRCA1 and RAD51, leading to DNA repair defects and mitotic cell death in SCLC cells. In vivo experiments confirmed that combining BI-2536 with alisertib impaired DNA repair capacity and significantly delayed tumor growth. Additionally, GSEA analysis and loss- and gain-of-function assays demonstrated that MYC/MYCN signaling is crucial for determining the sensitivity of SCLC cells to BI-2536 and its combination with alisertib. The study further revealed a positive correlation between RAD51 expression and PLK1/AURKA expression, and a negative correlation with the IC50 values of BI-2536. Manipulating RAD51 expression significantly influenced the efficacy of BI-2536 and restored the MYC/MYCN-induced enhancement of BI-2536 sensitivity in SCLC cells. Our findings indicate that the BRCA1 and MYC/MYCN-RAD51 axes govern the response of small cell lung cancer to BI-2536 and its combination with alisertib. This study propose the combined use of BI-2536 and alisertib as a novel therapeutic strategy for the treatment of SCLC patients with MYC/MYCN activation.


Asunto(s)
Azepinas , Proteína BRCA1 , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-myc , Pirimidinas , Carcinoma Pulmonar de Células Pequeñas , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Animales , Línea Celular Tumoral , Azepinas/farmacología , Aurora Quinasa A/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , Ratones , Ratones Desnudos , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasa Tipo Polo 1 , Reparación del ADN/efectos de los fármacos , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Pteridinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA