Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.470
Filtrar
1.
Int J Nanomedicine ; 19: 6519-6546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957181

RESUMEN

Background: Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results: This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/ß-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion: Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.


Asunto(s)
Gelatina , Glucósidos , Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , Nanofibras , Neovascularización Fisiológica , Osteogénesis , Fenantrenos , Fenoles , Poliésteres , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Animales , Nanofibras/química , Gelatina/química , Poliésteres/química , Glucósidos/química , Glucósidos/farmacología , Fenoles/química , Fenoles/farmacología , Fenantrenos/química , Fenantrenos/farmacología , Fenantrenos/farmacocinética , Fenantrenos/administración & dosificación , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratas , Masculino , Regeneración Ósea/efectos de los fármacos , Membranas Artificiales , Técnicas de Cocultivo , Liberación de Fármacos , Diferenciación Celular/efectos de los fármacos
2.
Clin Oral Investig ; 28(7): 414, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965076

RESUMEN

INTRODUCTION: The search to optimize the healing and bone repair processes in oral and maxillofacial surgeries reflects the constant evolution in clinical practice, driven by the demand for increasingly satisfactory results and the need to minimize postoperative complications. OBJECTIVE: To evaluate the efficacy of Platelet and Leukocyte Rich Fibrin (L-PRF) in the healing and bone repair process in oral and maxillofacial surgeries. MATERIALS AND METHODS: The systematic review protocol for this study included the definition of the research question, the domain of the study, the databases searched, the search strategy, the inclusion and exclusion criteria, the types of studies to be included, the measures of effect, the methods for screening, data extraction and analysis, and the approach to data synthesis. Systematic literature searches were carried out on Cochrane databases, Web of Science, PubMed, ScienceDirect, Embase and Google Scholar. RESULTS: The strategic search in the databases identified 1,159 studies. After removing the duplicates with the Rayyan© software, 946 articles remained. Of these, 30 met the inclusion criteria. After careful evaluation based on the inclusion and exclusion criteria, 8 studies were considered highly relevant and included in the systematic review. CONCLUSION: Platelet and Leukocyte Rich Fibrin (L-PRF) has a positive effect on the healing process and bone repair in oral and maxillofacial surgeries.


Asunto(s)
Leucocitos , Fibrina Rica en Plaquetas , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/efectos de los fármacos , Procedimientos Quirúrgicos Orales/métodos , Regeneración Ósea/efectos de los fármacos
3.
Stem Cell Res Ther ; 15(1): 194, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956719

RESUMEN

BACKGROUND: Repairation of bone defects remains a major clinical problem. Constructing bone tissue engineering containing growth factors, stem cells, and material scaffolds to repair bone defects has recently become a hot research topic. Nerve growth factor (NGF) can promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs), but the low survival rate of the BMSCs during transplantation remains an unresolved issue. In this study, we investigated the therapeutic effect of BMSCs overexpression of NGF on bone defect by inhibiting pyroptosis. METHODS: The relationship between the low survival rate and pyroptosis of BMSCs overexpressing NGF in localized inflammation of fractures was explored by detecting pyroptosis protein levels. Then, the NGF+/BMSCs-NSA-Sca bone tissue engineering was constructed by seeding BMSCs overexpressing NGF on the allograft bone scaffold and adding the pyroptosis inhibitor necrosulfonamide(NSA). The femoral condylar defect model in the Sprague-Dawley (SD) rat was studied by micro-CT, histological, WB and PCR analyses in vitro and in vivo to evaluate the regenerative effect of bone repair. RESULTS: The pyroptosis that occurs in BMSCs overexpressing NGF is associated with the nerve growth factor receptor (P75NTR) during osteogenic differentiation. Furthermore, NSA can block pyroptosis in BMSCs overexpression NGF. Notably, the analyses using the critical-size femoral condylar defect model indicated that the NGF+/BMSCs-NSA-Sca group inhibited pyroptosis significantly and had higher osteogenesis in defects. CONCLUSION: NGF+/BMSCs-NSA had strong osteogenic properties in repairing bone defects. Moreover, NGF+/BMSCs-NSA-Sca mixture developed in this study opens new horizons for developing novel tissue engineering constructs.


Asunto(s)
Células Madre Mesenquimatosas , Factor de Crecimiento Nervioso , Osteogénesis , Ratas Sprague-Dawley , Andamios del Tejido , Animales , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratas , Andamios del Tejido/química , Regeneración Ósea , Aloinjertos , Masculino , Ingeniería de Tejidos/métodos , Piroptosis , Sulfonamidas/farmacología , Diferenciación Celular , Trasplante de Células Madre Mesenquimatosas/métodos , Trasplante Óseo/métodos
4.
Sci Rep ; 14(1): 15492, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969711

RESUMEN

Unicystic ameloblastoma (UAM) of the jaw can be effectively reduced in volume through decompression, which promotes bone regeneration and restores jaw symmetry. This study quantitatively evaluated changes in mandible volume and symmetry following decompression of mandibular UAM. This study included 17 patients who underwent surgical decompression followed by second-stage curettage for mandibular UAM. Preoperative and postoperative three-dimensional computed tomography (CT) images were collected. Bone volume and the area of cortical perforation were measured to assess bone growth during decompression. Mandibular volumetric symmetry was analyzed by calculating the volumetric ratio of the two sides of the mandible. Twelve pairs of landmarks were identified on the surface of the lesion regions, and their coordinates were used to calculate the mean asymmetry index (AI) of the mandible. Paired t-tests and the Mann-Whitney U test were used for statistical analysis, with p < 0.05 considered indicative of statistical significance. The mean duration of decompression was 9.41 ± 3.28 months. The mean bone volume increased by 8.07 ± 2.41%, and cortical perforation recovery was 71.97 ± 14.99%. The volumetric symmetry of the mandible improved significantly (p < 0.05), and a statistically significant decrease in AI was observed (p < 0.05). In conclusion, UAM decompression enhances bone growth and symmetry recovery of the mandible. The present evaluation technique is clinically useful for quantitatively assessing mandibular asymmetry.


Asunto(s)
Ameloblastoma , Descompresión Quirúrgica , Imagenología Tridimensional , Mandíbula , Tomografía Computarizada por Rayos X , Humanos , Ameloblastoma/cirugía , Ameloblastoma/diagnóstico por imagen , Femenino , Masculino , Mandíbula/cirugía , Mandíbula/diagnóstico por imagen , Adulto , Descompresión Quirúrgica/métodos , Imagenología Tridimensional/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto Joven , Adolescente , Persona de Mediana Edad , Neoplasias Mandibulares/cirugía , Neoplasias Mandibulares/diagnóstico por imagen , Desarrollo Óseo , Regeneración Ósea
5.
Theranostics ; 14(9): 3739-3759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948054

RESUMEN

Background: The repair of osteoporotic bone defects remains challenging due to excessive reactive oxygen species (ROS), persistent inflammation, and an imbalance between osteogenesis and osteoclastogenesis. Methods: Here, an injectable H2-releasing hydrogel (magnesium@polyethylene glycol-poly(lactic-co-glycolic acid), Mg@PEG-PLGA) was developed to remodel the challenging bone environment and accelerate the repair of osteoporotic bone defects. Results: This Mg@PEG-PLGA gel shows excellent injectability, shape adaptability, and phase-transition ability, can fill irregular bone defect areas via minimally invasive injection, and can transform into a porous scaffold in situ to provide mechanical support. With the appropriate release of H2 and magnesium ions, the 2Mg@PEG-PLGA gel (loaded with 2 mg of Mg) displayed significant immunomodulatory effects through reducing intracellular ROS, guiding macrophage polarization toward the M2 phenotype, and inhibiting the IκB/NF-κB signaling pathway. Moreover, in vitro experiments showed that the 2Mg@PEG-PLGA gel inhibited osteoclastogenesis while promoting osteogenesis. Most notably, in animal experiments, the 2Mg@PEG-PLGA gel significantly promoted the repair of osteoporotic bone defects in vivo by scavenging ROS and inhibiting inflammation and osteoclastogenesis. Conclusions: Overall, our study provides critical insight into the design and development of H2-releasing magnesium-based hydrogels as potential implants for repairing osteoporotic bone defects.


Asunto(s)
Regeneración Ósea , Hidrogeles , Hidrógeno , Magnesio , Osteogénesis , Osteoporosis , Polietilenglicoles , Especies Reactivas de Oxígeno , Animales , Magnesio/química , Magnesio/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Ratones , Polietilenglicoles/química , Hidrogeles/química , Osteoporosis/tratamiento farmacológico , Osteogénesis/efectos de los fármacos , Hidrógeno/farmacología , Hidrógeno/administración & dosificación , Hidrógeno/química , Células RAW 264.7 , Regeneración Ósea/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Andamios del Tejido/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Poliésteres
6.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 755-762, 2024 Jun 15.
Artículo en Chino | MEDLINE | ID: mdl-38918199

RESUMEN

Objective: To investigate the physicochemical properties, osteogenic properties, and osteogenic ability in rabbit model of femoral condylar defect of acellular dermal matrix (ADM)/dicalcium phosphate (DCP) composite scaffold. Methods: ADM/DCP composite scaffolds were prepared by microfibril technique, and the acellular effect of ADM/DCP composite scaffolds was detected by DNA residue, fat content, and α-1,3-galactosyle (α-Gal) epitopes; the microstructure of scaffolds was characterized by field emission scanning electron microscopy and mercury porosimetry; X-ray diffraction was used to analyze the change of crystal form of scaffold; the solubility of scaffolds was used to detect the pH value and calcium ion content of the solution; the mineralization experiment in vitro was used to observe the surface mineralization. Twelve healthy male New Zealand white rabbits were selected to prepare the femoral condylar defect models, and the left and right defects were implanted with ADM/DCP composite scaffold (experimental group) and skeletal gold ® artificial bone repair material (control group), respectively. Gross observation was performed at 6 and 12 weeks after operation; Micro-CT was used to detect and quantitatively analyze the related indicators [bone volume (BV), bone volume/tissue volume (BV/TV), bone surface/bone volume (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), bone mineral density (BMD)], and HE staining and Masson staining were performed to observe the repair of bone defects and the maturation of bone matrix. Results: Gross observation showed that the ADM/DCP composite scaffold was a white spongy solid. Compared with ADM, ADM/DCP composite scaffolds showed a significant decrease in DNA residue, fat content, and α-Gal antigen content ( P<0.05). Field emission scanning electron microscopy showed that the ADM/DCP composite scaffold had a porous structure, and DCP particles were attached to the porcine dermal fibers. The porosity of the ADM/DCP composite scaffold was 76.32%±1.63% measured by mercury porosimetry. X-ray diffraction analysis showed that the crystalline phase of DCP in the ADM/DCP composite scaffolds remained intact. Mineralization results in vitro showed that the hydroxyapatite layer of ADM/DCP composite scaffolds was basically mature. The repair experiment of rabbit femoral condyle defect showed that the incision healed completely after operation without callus or osteophyte. Micro-CT showed that bone healing was complete and a large amount of new bone tissue was generated in the defect site of the two groups, and there was no difference in density between the defect site and the surrounding bone tissue, and the osteogenic properties of the two groups were equivalent. There was no significant difference in BV, BV/TV, BS/BV, Tb.Th, Tb.N, and BMD between the two groups ( P>0.05), except that the Tb.Sp in the experimental group was significantly higher than that in the control group ( P<0.05). At 6 and 12 weeks after operation, HE staining and Masson staining showed that the new bone and autogenous bone fused well in both groups, and the bone tissue tended to be mature. Conclusion: The ADM/DCP composite scaffold has good biocompatibility and osteogenic ability similar to the artificial bone material in repairing rabbit femoral condylar defects. It is a new scaffold material with potential in the field of bone repair.


Asunto(s)
Dermis Acelular , Regeneración Ósea , Sustitutos de Huesos , Fosfatos de Calcio , Osteogénesis , Ingeniería de Tejidos , Andamios del Tejido , Animales , Conejos , Fosfatos de Calcio/química , Masculino , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Sustitutos de Huesos/química , Materiales Biocompatibles/química , Fémur/cirugía , Microscopía Electrónica de Rastreo , Ensayo de Materiales
7.
Cells ; 13(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38920674

RESUMEN

Bone/fracture healing is a complex process with different steps and four basic tissue layers being affected: cortical bone, periosteum, fascial tissue surrounding the fracture, and bone marrow. Stem cells and their derivatives, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, skeletal stem cells, and multipotent stem cells, can function to artificially introduce highly regenerative cells into decrepit biological tissues and augment the healing process at the tissue level. Stem cells are molecularly and functionally indistinguishable from standard human tissues. The widespread appeal of stem cell therapy lies in its potential benefits as a therapeutic technology that, if harnessed, can be applied in clinical settings. This review aims to establish the molecular pathophysiology of bone healing and the current stem cell interventions that disrupt or augment the bone healing process and, finally, considers the future direction/therapeutic options related to stem cells and bone healing.


Asunto(s)
Regeneración Ósea , Curación de Fractura , Humanos , Regeneración Ósea/fisiología , Animales , Células Madre/citología , Trasplante de Células Madre/métodos
8.
Cells ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38920693

RESUMEN

Bone tissue injuries within oral and dental contexts often present considerable challenges because traditional treatments may not be able to fully restore lost or damaged bone tissue. Novel approaches involving stem cells and targeted 3D scaffolds have been investigated in the search for workable solutions. The use of scaffolds in stem cell-assisted bone regeneration is a crucial component of tissue engineering techniques designed to overcome the drawbacks of traditional bone grafts. This study provides a detailed review of scaffold applications for bone regeneration with stem cells in dentistry. This review focuses on scaffolds and stem cells while covering a broad range of studies explaining bone regeneration in dentistry through the presentation of studies conducted in this field. The role of different stem cells in regenerative medicine is covered in great detail in the reviewed literature. These studies have addressed a wide range of subjects, including the effects of platelet concentrates during dental surgery or specific combinations, such as human dental pulp stem cells with scaffolds for animal model bone regeneration, to promote bone regeneration in animal models. Noting developments, research works consider methods to improve vascularization and explore the use of 3D-printed scaffolds, secretome applications, mesenchymal stem cells, and biomaterials for oral bone tissue regeneration. This thorough assessment outlines possible developments within these crucial regenerative dentistry cycles and provides insights and suggestions for additional study. Furthermore, alternative creative methods for regenerating bone tissue include biophysical stimuli, mechanical stimulation, magnetic field therapy, laser therapy, nutritional supplements and diet, gene therapy, and biomimetic materials. These innovative approaches offer promising avenues for future research and development in the field of bone tissue regeneration in dentistry.


Asunto(s)
Regeneración Ósea , Odontología , Células Madre , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Animales , Células Madre/citología , Odontología/métodos , Ingeniería de Tejidos/métodos , Pulpa Dental/citología , Trasplante de Células Madre/métodos , Medicina Regenerativa/métodos
9.
Biomed Mater ; 19(5)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917828

RESUMEN

The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.


Asunto(s)
Regeneración Ósea , Proliferación Celular , Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteogénesis , Andamios del Tejido , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Andamios del Tejido/química , Células Madre Mesenquimatosas/citología , Animales , Línea Celular Tumoral , Transducción de Señal , Supervivencia Celular , Ingeniería de Tejidos/métodos , Quitosano/química , Fosfatasa Alcalina/metabolismo , Oseointegración , Polímeros/química , Porosidad
10.
J Colloid Interface Sci ; 672: 179-199, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838627

RESUMEN

Mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as promising candidates for cell-free therapy in tissue regeneration. However, the native osteogenic and angiogenic capacities of MSC-Exos are often insufficient to repair critical-sized bone defects, and the underlying immune mechanisms remain elusive. Furthermore, achieving sustained delivery and stable activity of MSC-Exos at the defect site is essential for optimal therapeutic outcomes. Here, we extracted exosomes from osteogenically pre-differentiated human bone marrow mesenchymal stem cells (hBMSCs) by ultracentrifugation and encapsulated them in gelatin methacryloyl (GelMA) hydrogel to construct a composite scaffold. The resulting exosome-encapsulated hydrogel exhibited excellent mechanical properties and biocompatibility, facilitating sustained delivery of MSC-Exos. Osteogenic pre-differentiation significantly enhanced the osteogenic and angiogenic properties of MSC-Exos, promoting osteogenic differentiation of hBMSCs and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, MSC-Exos induced polarization of Raw264.7 cells from a pro-inflammatory phenotype to an anti-inflammatory phenotype under simulated inflammatory conditions, thereby creating an immune microenvironment conducive to osteogenesis. RNA sequencing and bioinformatics analysis revealed that MSC-Exos activate the p53 pathway through targeted delivery of internal microRNAs and regulate macrophage polarization by reducing DNA oxidative damage. Our study highlights the potential of osteogenic exosome-encapsulated composite hydrogels for the development of cell-free scaffolds in bone tissue engineering.


Asunto(s)
Regeneración Ósea , Diferenciación Celular , Exosomas , Gelatina , Hidrogeles , Inmunomodulación , Células Madre Mesenquimatosas , Osteogénesis , Exosomas/química , Exosomas/metabolismo , Células Madre Mesenquimatosas/citología , Gelatina/química , Osteogénesis/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Regeneración Ósea/efectos de los fármacos , Humanos , Ratones , Diferenciación Celular/efectos de los fármacos , Animales , Inmunomodulación/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Células RAW 264.7 , Metacrilatos/química , Metacrilatos/farmacología , Tamaño de la Partícula , Células Cultivadas , Propiedades de Superficie , Neovascularización Fisiológica/efectos de los fármacos , Andamios del Tejido/química
11.
J Colloid Interface Sci ; 672: 724-735, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870763

RESUMEN

The integration of functional nanomaterials with tissue engineering scaffolds has emerged as a promising solution for simultaneously treating malignant bone tumors and repairing resected bone defects. However, achieving a uniform bioactive interface on 3D-printing polymer scaffolds with minimized microstructural heterogeneity remains a challenge. In this study, we report a facile metal-coordination self-assembly strategy for the surface engineering of 3D-printed polycaprolactone (PCL) scaffolds with nanostructured two-dimensional conjugated metal-organic frameworks (cMOFs) consisting of Cu ions and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP). A tunable thickness of Cu-HHTP cMOF on PCL scaffolds was achieved via the alternative deposition of metal ions and HHTP. The resulting composite PCL@Cu-HHTP scaffolds not only demonstrated potent photothermal conversion capability for efficient OS ablation but also promoted the bone repair process by virtue of their cell-friendly hydrophilic interfaces. Therefore, the cMOF-engineered dual-functional 3D-printing scaffolds show promising potential for treating bone tumors by offering sequential anti-tumor effects and bone regeneration capabilities. This work also presents a new avenue for the interface engineering of bioactive scaffolds to meet multifaceted demands in osteosarcoma-related bone defects.


Asunto(s)
Neoplasias Óseas , Regeneración Ósea , Osteosarcoma , Poliésteres , Impresión Tridimensional , Andamios del Tejido , Osteosarcoma/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/terapia , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/terapia , Poliésteres/química , Humanos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/síntesis química , Propiedades de Superficie , Cobre/química , Cobre/farmacología , Hipertermia Inducida , Ingeniería de Tejidos , Tamaño de la Partícula , Catálisis , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones , Supervivencia Celular/efectos de los fármacos , Nanoestructuras/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos
12.
ACS Biomater Sci Eng ; 10(7): 4411-4424, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38913499

RESUMEN

Diabetic bone defects, exacerbated by hyperglycemia-induced inflammation and oxidative stress, present significant therapeutic challenges. This study introduces a novel injectable scaffold, MgH2@PLGA/F-GM, consisting of foamed gelatin-methacryloyl (GelMA) and magnesium hydride (MgH2) microspheres encapsulated in poly(lactic-co-glycolic acid) (PLGA). This scaffold is uniquely suited for diabetic bone defects, conforming to complex shapes and fostering an environment conducive to tissue regeneration. As it degrades, Mg(OH)2 is released and dissolved by PLGA's acidic byproducts, releasing therapeutic Mg2+ ions. These ions are instrumental in macrophage phenotype modulation, inflammation reduction, and angiogenesis promotion, all vital for diabetic bone healing. Additionally, hydrogen (H2) released during degradation mitigates oxidative stress by diminishing reactive oxygen species (ROS). This multifaceted approach not only reduces ROS and inflammation but also enhances M2 macrophage polarization and cell migration, culminating in improved angiogenesis and bone repair. This scaffold presents an innovative strategy for addressing the complexities of diabetic bone defect treatment.


Asunto(s)
Gelatina , Hidrogeles , Hidrógeno , Magnesio , Gelatina/química , Magnesio/química , Hidrógeno/química , Hidrógeno/farmacología , Hidrógeno/uso terapéutico , Hidrógeno/administración & dosificación , Animales , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Regeneración Ósea/efectos de los fármacos , Metacrilatos/química , Preparaciones de Acción Retardada/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Andamios del Tejido/química , Especies Reactivas de Oxígeno/metabolismo , Células RAW 264.7 , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Estrés Oxidativo/efectos de los fármacos
13.
Biomacromolecules ; 25(7): 4074-4086, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38838242

RESUMEN

The presence of oxidative stress in bone defects leads to delayed regeneration, especially in the aged population and patients receiving cancer treatment. This delay is attributed to the increased levels of reactive oxygen species (ROS) in these populations due to the accumulation of senescent cells. Tissue-engineered scaffolds are emerging as an alternative method to treat bone defects. In this study, we engineered tissue scaffolds tailored to modulate the adverse effects of oxidative stress and promote bone regeneration. We used polycaprolactone to fabricate nanofibrous mats by using electrospinning. We exploited the ROS-scavenging properties of cerium oxide nanoparticles to alleviate the high oxidative stress microenvironment caused by the presence of senescent cells. We characterized the nanofibers for their physical and mechanical properties and utilized an ionization-radiation-based model to induce senescence in bone cells. We demonstrate that the presence of ceria can modulate ROS levels, thereby reducing the level of senescence and promoting osteogenesis. Overall, this study demonstrates that ceria-infused nanofibrous scaffolds can be used for augmenting the osteogenic activity of senescent progenitor cells, which has important implications for engineering bone tissue scaffolds for patients with low regeneration capabilities.


Asunto(s)
Regeneración Ósea , Senescencia Celular , Cerio , Nanofibras , Osteogénesis , Especies Reactivas de Oxígeno , Ingeniería de Tejidos , Andamios del Tejido , Cerio/química , Cerio/farmacología , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Senescencia Celular/efectos de los fármacos , Nanofibras/química , Osteogénesis/efectos de los fármacos , Humanos , Ingeniería de Tejidos/métodos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poliésteres/química , Animales , Huesos/efectos de los fármacos
14.
ACS Biomater Sci Eng ; 10(7): 4463-4479, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38848471

RESUMEN

Scaffold-free bone microtissues differentiated from mesenchymal stem cell (MSC) spheroids offer great potential for bottom-up bone tissue engineering as a direct supply of cells and osteogenic signals. Many biomaterials or biomolecules have been incorporated into bone microtissues to enhance their osteogenic abilities, but these materials are far from clinical approval. Here, we aimed to incorporate hydroxyapatite (HAP) nanoparticles, an essential component of bone matrix, into MSC spheroids to instruct their osteogenic differentiation into bone microtissues and further self-organization into bone organoids with a trabecular structure. Furthermore, the biological interaction between HAP nanoparticles and MSCs and the potential molecular mechanisms in the bone development of MSC spheroids were investigated by both in vitro and in vivo studies. As a result, improved cell viability and osteogenic abilities were observed for the MSC spheroids incorporated with HAP nanoparticles at a concentration of 30 µg/mL. HAP nanoparticles could promote the sequential expression of osteogenic markers (Runx2, Osterix, Sclerostin), promote the expression of bone matrix proteins (OPN, OCN, and Collagen I), promote the mineralization of the bone matrix, and thus promote the bone development of MSC spheroids. The differentiated bone microtissues could further self-organize into linear, lamellar, and spatial bone organoids with trabecular structures. More importantly, adding FAK or Akt inhibitors could decrease the level of HAP-induced osteogenic differentiation of bone microtissues. Finally, excellent new bone regeneration was achieved after injecting bone microtissues into cranial bone defect models, which could also be eliminated by the Akt inhibitor. In conclusion, HAP nanoparticles could promote the development of bone microtissues by promoting the osteogenic differentiation of MSCs and the formation and mineralization of the bone matrix via the FAK/Akt pathway. The bone microtissues could act as individual ossification centers and self-organize into macroscale bone organoids, and in this meaning, the bone microtissues could be called microscale bone organoids. Furthermore, the bone microtissues revealed excellent clinical perspectives for injectable cellular therapies for bone defects.


Asunto(s)
Regeneración Ósea , Diferenciación Celular , Durapatita , Células Madre Mesenquimatosas , Nanopartículas , Osteogénesis , Proteínas Proto-Oncogénicas c-akt , Durapatita/química , Durapatita/farmacología , Regeneración Ósea/efectos de los fármacos , Nanopartículas/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Diferenciación Celular/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Ingeniería de Tejidos/métodos , Quinasa 1 de Adhesión Focal/metabolismo , Huesos/efectos de los fármacos , Ratones , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo
15.
Med Sci Monit ; 30: e945471, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864115

RESUMEN

The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Rongfeng Zhang, Jianwei Liu, Shengpeng Yu, Dong Sun, Xiaohua Wang, Jingshu Fu, Jie Shen, Zhao Xie. Osteoprotegerin (OPG) Promotes Recruitment of Endothelial Progenitor Cells (EPCs) via CXCR4 Signaling Pathway to Improve Bone Defect Repair. Med Sci Monit, 2019; 25: 5572-5579. DOI: 10.12659/MSM.916838.


Asunto(s)
Células Progenitoras Endoteliales , Osteoprotegerina , Receptores CXCR4 , Transducción de Señal , Células Progenitoras Endoteliales/metabolismo , Receptores CXCR4/metabolismo , Osteoprotegerina/metabolismo , Animales , Regeneración Ósea/efectos de los fármacos , Humanos , Huesos/metabolismo , Osteogénesis/efectos de los fármacos , Masculino , Ratones , Cicatrización de Heridas/efectos de los fármacos
16.
Lasers Med Sci ; 39(1): 158, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888695

RESUMEN

Orthopedic surgeons face a significant challenge in treating critical-size femoral defects (CSFD) caused by osteoporosis (OP), trauma, infection, or bone tumor resections. In this study for the first time, the application of photobiomodulation (PBM) and bone marrow mesenchymal stem cell-conditioned medium (BM-MSC-CM) to improve the osteogenic characteristics of mineralized bone scaffold (MBS) in ovariectomy-induced osteoporotic (OVX) rats with a CSFD was tested. Five groups of OVX rats with CSFD were created: (1) Control (C); (2) MBS; (3) MBS + CM; (4) MBS + PBM; (5) MBS + CM + PBM. Computed tomography scans (CT scans), compression indentation tests, and histological and stereological analyses were carried out after euthanasia at 12 weeks following implantation surgery. The CT scan results showed that CSFD in the MBS + CM, MBS + PBM, and MBS + CM + PBM groups was significantly smaller compared to the control group (p = 0.01, p = 0.04, and p = 0.000, respectively). Moreover, the CSFD size was substantially smaller in the MBS + CM + PBM treatment group than in the MBS, MBS + CM, and MBS + PBM treatment groups (p = 0.004, p = 0.04, and p = 0.01, respectively). The MBS + PBM and MBS + CM + PBM treatments had significantly increased maximum force relative to the control group (p = 0.01 and p = 0.03, respectively). Bending stiffness significantly increased in MBS (p = 0.006), MBS + CM, MBS + PBM, and MBS + CM + PBM treatments (all p = 0.004) relative to the control group. All treatment groups had considerably higher new trabecular bone volume (NTBV) than the control group (all, p = 0.004). Combined therapies with MBS + PBM and MBS + CM + PBM substantially increased the NTBV relative to the MBS group (all, p = 0.004). The MBS + CM + PBM treatment had a markedly higher NTBV than the MBS + PBM (p = 0.006) and MBS + CM (p = 0.004) treatments. MBS + CM + PBM, MBS + PBM, and MBS + CM treatments significantly accelerated bone regeneration of CSFD in OVX rats. PBM + CM enhanced the osteogenesis of the MBS compared to other treatment groups.


Asunto(s)
Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas , Animales , Ratas , Terapia por Luz de Baja Intensidad/métodos , Medios de Cultivo Condicionados , Femenino , Ratas Sprague-Dawley , Fémur/efectos de la radiación , Fémur/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Osteoporosis/radioterapia , Osteoporosis/terapia , Ovariectomía , Andamios del Tejido , Osteogénesis/efectos de la radiación , Regeneración Ósea/efectos de la radiación
17.
ACS Appl Mater Interfaces ; 16(24): 30793-30809, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38833412

RESUMEN

Both bone mesenchymal stem cells (BMSCs) and their exosomes suggest promising therapeutic tools for bone regeneration. Lithium has been reported to regulate BMSC function and engineer exosomes to improve bone regeneration in patients with glucocorticoid-induced osteonecrosis of the femoral head. However, the mechanisms by which lithium promotes osteogenesis have not been elucidated. Here, we demonstrated that lithium promotes the osteogenesis of BMSCs via lithium-induced increases in the secretion of exosomal Wnt10a to activate Wnt/ß-catenin signaling, whose secretion is correlated with enhanced MARK2 activation to increase the trafficking of the Rab11a and Rab11FIP1 complexes together with exosomal Wnt10a to the plasma membrane. Then, we compared the proosteogenic effects of exosomes derived from lithium-treated or untreated BMSCs (Li-Exo or Con-Exo) both in vitro and in vivo. We found that, compared with Con-Exo, Li-Exo had superior abilities to promote the uptake and osteogenic differentiation of BMSCs. To optimize the in vivo application of these hydrogels, we fabricated Li-Exo-functionalized gelatin methacrylate (GelMA) hydrogels, which are more effective at promoting osteogenesis and bone repair than Con-Exo. Collectively, these findings demonstrate the mechanism by which lithium promotes osteogenesis and the great promise of lithium for engineering BMSCs and their exosomes for bone regeneration, warranting further exploration in clinical practice.


Asunto(s)
Exosomas , Litio , Células Madre Mesenquimatosas , Osteogénesis , beta Catenina , Proteínas de Unión al GTP rab , Osteogénesis/efectos de los fármacos , Exosomas/metabolismo , Exosomas/efectos de los fármacos , Exosomas/química , Animales , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteínas de Unión al GTP rab/metabolismo , beta Catenina/metabolismo , Litio/química , Litio/farmacología , Proteínas Wnt/metabolismo , Ratones , Diferenciación Celular/efectos de los fármacos , Ratas , Hidrogeles/química , Hidrogeles/farmacología , Ratas Sprague-Dawley , Vía de Señalización Wnt/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Humanos , Masculino
18.
ACS Appl Mater Interfaces ; 16(24): 30685-30702, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38859670

RESUMEN

Macrophages play a pivotal role in the crosstalk between the immune and skeletal systems, while Mg-based biomaterials demonstrate immunomodulatory capabilities in this procedure. However, the mechanism of how Mg2+ promotes osteogenesis through the interplay of bone marrow-derived mesenchymal stem cells (BMSCs) and macrophages remains undescribed. Here, we demonstrated that a Mg-cross-linked alginate hydrogel exerted a dual enhancement of BMSCs osteogenic differentiation through the ligand-receptor pairing of the OSM/miR-370-3p-gp130 axis. On the one hand, Mg2+, released from the Mg-cross-linked hydrogel, stimulates bone marrow-derived macrophages to produce and secrete more OSM. On the other hand, Mg2+ lowers the miR-370-3p level in BMSCs and in turn, reverses its suppression on gp130. Then, the OSM binds to the gp130 heterodimer receptor and activates intracellular osteogenic programs in BMSCs. Taken together, this study reveals a novel cross-talk pattern between the skeletal and immune systems under Mg2+ stimulation. This study not only brings new insights into the immunomodulatory properties of Mg-based biomaterials for orthopedic applications but also enriches the miRNA regulatory network and provides a promising target to facilitate bone regeneration in large bone defects.


Asunto(s)
Alginatos , Regeneración Ósea , Hidrogeles , Macrófagos , Magnesio , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Transducción de Señal , Hidrogeles/química , Hidrogeles/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , MicroARNs/metabolismo , MicroARNs/genética , Animales , Regeneración Ósea/efectos de los fármacos , Alginatos/química , Transducción de Señal/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Magnesio/química , Magnesio/farmacología , Ratones , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/genética , Diferenciación Celular/efectos de los fármacos
19.
J Oral Implantol ; 50(3): 141-152, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38839071

RESUMEN

After dental extraction, a physiological phenomenon of reabsorption of the dentoalveolar process is triggered, especially if periradicular lesions are present, which can sometimes be associated with oroantral communication in the upper posterior maxilla. To investigate a minimally invasive approach, 19 patients undergoing tooth extraction in the posterosuperior maxilla were recruited. All cases presented an oroantral communication with a diameter of 2-5 mm after tooth extraction and the alveolar process and, in some cases, with a partial defect of 1 or more bony walls. In these cases, a single surgical procedure was used to preserve the alveolar ridge using an open barrier technique with an exposed dense polytetrafluoroethylene membrane. The bottom of the extraction socket was filled with a collagen fleece. The residual bone process was reconstructed using a biomaterial based on carbonate-apatite derived from porcine cancellous bone. After 6 months, all patients were recalled and subjected to radiographic control associated with an implant-prosthetic rehabilitation plan. Data relating to the sinus health status and the average height and thickness of the regenerated bone were collected. Radiographic evaluation verified the integrity of the maxillary sinus floor with new bone formation, detecting a vertical bone dimension between 3.1 mm and 7.4 mm (average 5.13 ± 1.15 mm) and a horizontal thickness between 4.2 mm and 9.6 mm (average 6.86 ± 1.55 mm). The goal of this study was to highlight the advantage of managing an oroantral communication and, simultaneously, obtain the preservation and regeneration of the alveolar bone crest. The open barrier technique appears to be effective for the minimally invasive management of oroantral communication up to 5 mm in diameter in postextraction sites, with a good regeneration of hard and soft tissue.


Asunto(s)
Membranas Artificiales , Fístula Oroantral , Politetrafluoroetileno , Extracción Dental , Humanos , Estudios Retrospectivos , Fístula Oroantral/cirugía , Persona de Mediana Edad , Masculino , Femenino , Proceso Alveolar/cirugía , Proceso Alveolar/diagnóstico por imagen , Alveolo Dental/cirugía , Anciano , Adulto , Maxilar/cirugía , Regeneración Ósea/fisiología , Aumento de la Cresta Alveolar/métodos , Colágeno/uso terapéutico
20.
BMC Musculoskelet Disord ; 25(1): 455, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851675

RESUMEN

BACKGROUND: Masquelet membrane induction technology is one of the treatment strategies for large bone defect (LBD). However, the angiogenesis ability of induced membrane decreases with time and autologous bone grafting is associated with donor site morbidity. This study investigates if the PRP-FG-nHA/PA66 scaffold can be used as a spacer instead of PMMA to improve the angiogenesis ability of induced membrane and reduce the amount of autologous bone graft. METHODS: Platelet rich plasma (PRP) was prepared and PRP-FG-nHA/PA66 scaffold was synthesized and observed. The sustained release of VEGFA and porosity of the scaffold were analyzed. We established a femur LBD model in male SD rats. 55 rats were randomly divided into four groups depending on the spacer filled in the defect area. "Defect only" group (n = 10), "PMMA" group (n = 15), "PRP-nHA/PA66" group (n = 15) and "PRP-FG-nHA/PA66" group (n = 15 ). At 6 weeks, the spacers were removed and the defects were grafted. The induced membrane and bone were collected and stained. The bone formation was detected by micro-CT and the callus union was scored on a three point system. RESULTS: The PRP-FG-nHA/PA66 scaffold was porosity and could maintain a high concentration of VEGFA after 30 days of preparation. The induced membrane in PRP-FG-nHA/PA66 group was thinner than PMMA, but the vessel density was higher.The weight of autogenous bone grafted in PRP-FG-nHA/PA66 group was significantly smaller than that of PMMA group. In PRP-FG-nHA/PA66 group, the bone defect was morphologically repaired. CONCLUSION: The study showed that PRP-FG-nHA/PA66 scaffold can significantly reduce the amount of autologous bone graft, and can achieve similar bone defect repair effect as PMMA. Our findings provide some reference and theoretical support for the treatment of large segmental bone defects in humans.


Asunto(s)
Fémur , Plasma Rico en Plaquetas , Ratas Sprague-Dawley , Andamios del Tejido , Animales , Masculino , Ratas , Fémur/cirugía , Fémur/patología , Factor A de Crecimiento Endotelial Vascular , Regeneración Ósea/fisiología , Neovascularización Fisiológica , Trasplante Óseo/métodos , Durapatita/química , Modelos Animales de Enfermedad , Osteogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA