Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.509
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1385463, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974580

RESUMEN

Melanocortin 4 receptor (MC4R) mutations are the commonest cause of monogenic obesity through dysregulation of neuronal pathways in the hypothalamus and prefrontal cortex that regulate hunger and satiety. MC4R also regulates neuropathic pain pathways via JNK signaling after nerve injury. We show evidence of corneal small fiber degeneration in 2 siblings carrying a heterozygous missense variant c.508A>G, p.Ille170Val in the MC4R gene. Both children were treated with once weekly semaglutide for 6 months with no change in weight, and only a minor improvement in HbA1c and lipid profile. However, there was evidence of nerve regeneration with an increase in corneal nerve fiber density (CNFD) [child A (13.9%), child B (14.7%)], corneal nerve branch density (CNBD) [child A (110.2%), child B (58.7%)] and corneal nerve fiber length (CNFL) [child A (21.5%), child B (44.0%)].


Asunto(s)
Regeneración Nerviosa , Receptor de Melanocortina Tipo 4 , Humanos , Receptor de Melanocortina Tipo 4/genética , Masculino , Femenino , Niño , Regeneración Nerviosa/efectos de los fármacos , Péptidos Similares al Glucagón/uso terapéutico , Péptidos Similares al Glucagón/farmacología , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/patología , Mutación , Obesidad/tratamiento farmacológico , Obesidad/genética , Córnea/efectos de los fármacos , Córnea/inervación , Córnea/patología , Obesidad Infantil/tratamiento farmacológico , Adolescente
2.
J Nanobiotechnology ; 22(1): 399, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970101

RESUMEN

Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit. To address these challenges, we developed a smart scaffold incorporating enzyme mimicry nanoparticle-ceriumoxide (COPs) into nanofibers (NS@COP), which aims to pioneer a targeted neuroimmune repair strategy, rescuing CGRP receptor on macrophage and concurrently remodeling mitochondrial function. Our findings indicate that the integrated COPs restore the responsiveness of pro-inflammatory macrophages to calcitonin gene-related peptide (CGRP) signal by up-regulating receptor activity modifying protein 1 (RAMP1), a vital component of the CGRP receptor. This promotes macrophage fate commitment to an anti-inflammatory pro-resolution M2 phenotype, then alleviating glial scar formation. In addition, NS@COP implantation also protected neuronal mitochondrial function. Collectively, our results suggest that the strategy of integrating nanozyme COP nanoparticles into a nanofiber scaffold provides a promising therapeutic candidate for spinal cord trauma via rational regulation of neuroimmune communication and mitochondrial function.


Asunto(s)
Axones , Macrófagos , Nanofibras , Regeneración Nerviosa , Traumatismos de la Médula Espinal , Animales , Axones/metabolismo , Nanofibras/química , Regeneración Nerviosa/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratas , Andamios del Tejido/química , Nanopartículas/química , Ratas Sprague-Dawley , Péptido Relacionado con Gen de Calcitonina/metabolismo , Femenino , Ratones Endogámicos C57BL
3.
J Nanobiotechnology ; 22(1): 351, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902789

RESUMEN

Spinal cord injury (SCI) often results in motor and sensory deficits, or even paralysis. Due to the role of the cascade reaction, the effect of excessive reactive oxygen species (ROS) in the early and middle stages of SCI severely damage neurons, and most antioxidants cannot consistently eliminate ROS at non-toxic doses, which leads to a huge compromise in antioxidant treatment of SCI. Selenium nanoparticles (SeNPs) have excellent ROS scavenging bioactivity, but the toxicity control problem limits the therapeutic window. Here, we propose a synergistic therapeutic strategy of SeNPs encapsulated by ZIF-8 (SeNPs@ZIF-8) to obtain synergistic ROS scavenging activity. Three different spatial structures of SeNPs@ZIF-8 were synthesized and coated with ferrostatin-1, a ferroptosis inhibitor (FSZ NPs), to achieve enhanced anti-oxidant and anti-ferroptosis activity without toxicity. FSZ NPs promoted the maintenance of mitochondrial homeostasis, thereby regulating the expression of inflammatory factors and promoting the polarization of macrophages into M2 phenotype. In addition, the FSZ NPs presented strong abilities to promote neuronal maturation and axon growth through activating the WNT4-dependent pathways, while prevented glial scar formation. The current study demonstrates the powerful and versatile bioactive functions of FSZ NPs for SCI treatment and offers inspiration for other neural injury diseases.


Asunto(s)
Antioxidantes , Nanopartículas , Especies Reactivas de Oxígeno , Selenio , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas/química , Ratones , Especies Reactivas de Oxígeno/metabolismo , Selenio/química , Selenio/farmacología , Neuronas/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ratas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Regeneración Nerviosa/efectos de los fármacos
4.
ACS Appl Bio Mater ; 7(6): 4175-4192, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38830774

RESUMEN

Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.


Asunto(s)
Materiales Biocompatibles , Estimulación Eléctrica , Grafito , Hidrogeles , Factor de Crecimiento Nervioso , Regeneración Nerviosa , Hidrogeles/química , Hidrogeles/farmacología , Grafito/química , Grafito/farmacología , Regeneración Nerviosa/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Tamaño de la Partícula , Ensayo de Materiales , Ratas , Células PC12 , Ingeniería de Tejidos
5.
Molecules ; 29(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38792144

RESUMEN

Peripheral nerve injuries (PNI) impact millions of individuals in the United States, prompting thousands of nerve repair procedures annually. Nerve conduits (NC) are commonly utilized to treat nerve injuries under 3 cm but larger gaps still pose a challenge for successful peripheral nerve regeneration (PNR) and functional recovery. This is partly attributed to the absence of bioactive agents such as stem cells or growth factors in FDA-approved conduits due to safety, harvesting, and reproducibility concerns. Therefore, curcumin, a bioactive phytochemical, has emerged as a promising alternative bioactive agent due to its ability to enhance PNR and overcome said challenges. However, its hydrophobicity and rapid degradation in aqueous solutions are considerable limitations. In this work, a nanoscale delivery platform with tannic acid (TA) and polyvinylpyrrolidone (PVP) was developed to encapsulate curcumin for increased colloidal and chemical stability. The curcumin nanoparticles (CurNPs) demonstrate significantly improved stability in water, reduced degradation rates, and controlled release kinetics when compared to free curcumin. Further, cell studies show that the CurNP is biocompatible when introduced to neuronal cells (SH-SY5Y), rat Schwann cells (RSC-S16), and murine macrophages (J774 A.1) at 5 µM, 5 µM, and 10 µM of curcumin, respectively. As a result of these improved physicochemical properties, confocal fluorescence microscopy revealed superior delivery of curcumin into these cells when in the form of CurNPs compared to its free form. A hydrogen peroxide-based oxidative stress study also demonstrated the CurNP's potential to protect J774 A.1 cells against excessive oxidative stress. Overall, this study provides evidence for the suitability of CurNPs to be used as a bioactive agent in NC applications.


Asunto(s)
Curcumina , Nanopartículas , Curcumina/farmacología , Curcumina/química , Animales , Ratas , Nanopartículas/química , Ratones , Humanos , Sistemas de Liberación de Medicamentos , Regeneración Nerviosa/efectos de los fármacos , Polímeros/química , Células de Schwann/efectos de los fármacos , Liberación de Fármacos , Taninos/química , Taninos/farmacología , Línea Celular , Estrés Oxidativo/efectos de los fármacos , Povidona/química
6.
Int Immunopharmacol ; 134: 112188, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728880

RESUMEN

Neuroinflammation is one of the extensive secondary injury processes that aggravate metabolic and cellular dysfunction and tissue loss following spinal cord injury (SCI). Thus, an anti-inflammatory strategy is crucial for modulating structural and functional restoration during the stage of acute and chronic SCI. Recombinant fibroblast growth factor 4 (rFGF4) has eliminated its mitogenic activity and demonstrated a metabolic regulator for alleviating hyperglycemia in type 2 diabetes and liver injury in non-alcoholic steatohepatitis. However, it remains to be explored whether or not rFGF4 has a neuroprotective effect for restoring neurological disorders, such as SCI. Here, we identified that rFGF4 could polarize microglia/macrophages into the restorative M2 subtype, thus exerting an anti-inflammatory effect to promote neurological functional recovery and nerve fiber regeneration after SCI. Importantly, these effects by rFGF4 were related to triggering PI3K/AKT/GSK3ß and attenuating TLR4/NF-κB signaling axes. Conversely, gene silencing of the PI3K/AKT/GSK3ß signaling or pharmacological reactivation of the TLR4/NF-κB axis aggravated inflammatory reaction. Thus, our findings highlight rFGF4 as a potentially therapeutic regulator for repairing SCI, and its outstanding effect is associated with regulating macrophage/microglial polarization.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Macrófagos , Microglía , FN-kappa B , Regeneración Nerviosa , Recuperación de la Función , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Regeneración Nerviosa/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , FN-kappa B/metabolismo , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Masculino , Axones/metabolismo , Axones/efectos de los fármacos , Axones/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fenotipo , Ratas , Humanos , Modelos Animales de Enfermedad , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología
7.
Colloids Surf B Biointerfaces ; 239: 113967, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761494

RESUMEN

The re-bridging of the deficient nerve is the main problem to be solved after the functional impairment of the peripheral nerve. In this study, a directionally aligned polycaprolactone/triiron tetraoxide (PCL/Fe3O4) fiber scaffolds were firstly prepared by electrospinning technique, and further then grafted with IKVAV peptide for regulating DRG growth and axon extension in peripheral nerve regeneration. The results showed that oriented aligned magnetic PCL/Fe3O4 composite scaffolds were successfully prepared by electrospinning technique and possessed good mechanical properties and magnetic responsiveness. The PCL/Fe3O4 scaffolds containing different Fe3O4 concentrations were free of cytotoxicity, indicating the good biocompatibility and low cytotoxicity of the scaffolds. The IKVAV-functionalized PCL/Fe3O4 scaffolds were able to guide and promote the directional extension of axons, the application of external magnetic field and the grafting of IKVAV peptides significantly further promoted the growth of DRGs and axons. The ELISA test results showed that the AP-10 F group scaffolds promoted the secretion of nerve growth factor (NGF) from DRG under a static magnetic field (SMF), thus promoting the growth and extension of axons. Importantly, the IKVAV-functionalized PCL/Fe3O4 scaffolds could significantly up-regulate the expression of Cntn2, PCNA, Sox10 and Isca1 genes related to adhesion, proliferation and magnetic receptor function under the stimulation of SMF. Therefore, IKVAV-functionalized PCL/Fe3O4 composite oriented scaffolds have potential applications in neural tissue engineering.


Asunto(s)
Poliésteres , Andamios del Tejido , Animales , Poliésteres/química , Ratas , Andamios del Tejido/química , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/química , Regeneración Nerviosa/efectos de los fármacos , Campos Magnéticos , Compuestos Férricos/química , Compuestos Férricos/farmacología , Ratas Sprague-Dawley , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células PC12
8.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 598-607, 2024 May 15.
Artículo en Chino | MEDLINE | ID: mdl-38752248

RESUMEN

Objective: To investigate the feasibility of selenium-methylselenocysteine (SMC) to promote peripheral nerve regeneration and its mechanism of action. Methods: Rat Schwann cells RSC96 cells were randomly divided into 5 groups, which were group A (without any treatment, control group), group B (adding 100 µmol/L H 2O 2), group C (adding 100 µmol/L H 2O 2+100 µmol/L SMC), group D (adding 100 µmol/L H 2O 2+200 µmol/L SMC), group E (adding 100 µmol/L H 2O 2+400 µmol/L SMC); the effect of SMC on cell proliferation was detected by MTT method, and the level of oxidative stress was detected by immunofluorescence for free radicals [reactive oxygen species (ROS)] after determining the appropriate dose group. Thirty-six 4-week-old male Sprague Dawley rats were randomly divided into 3 groups, namely, the sham operation group (Sham group), the sciatic nerve injury group (PNI group), and the SMC treatment group (SMC group), with 12 rats in each group; the rats in the PNI group were fed with food and water normally after modelling operation, and the rats in the SMC group were added 0.75 mg/kg SMC to the drinking water every day. At 4 weeks after operation, the sciatic nerves of rats in each group were sampled for neuroelectrophysiological detection of highest potential of compound muscle action potential (CMAP). The levels of inflammatory factors [interleukin 17 (IL-17), IL-6, IL-10 and oxidative stress factors catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA)] were detected by ELISA assay. The luxol fast blue (LFB) staining was used to observe the myelin density, fluorescence intensity of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) was observed by immunofluorescence staining, and myelin morphology was observed by transmission electron microscopy with measurement of axon diameter. Western blot was used to detect the protein expressions of p38 mitogen-activated protein kinases (p38MAPK), phosphorylated p38MAPK (p-p38MAPK), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2-related factor 2 (Nrf2). Results: MTT assay showed that the addition of SMC significantly promoted the proliferation of RSC96 cells, and the low concentration could achieve an effective effect, so the treatment method of group C was selected for the subsequent experiments; ROS immunofluorescence test showed that group B showed a significant increase in the intensity of ROS fluorescence compared with that of group A, and group C showed a significant decrease in the intensity of ROS fluorescence compared with that of group B ( P<0.05). Neuroelectrophysiological tests showed that the highest potential of CMAP in SMC group was significantly higher than that in PNI and Sham groups ( P<0.05). ELISA assay showed that the levels of IL-6, IL-17, and MDA in PNI group were significantly higher than those in Sham group, and the levels of IL-10, SOD, and CAT were significantly lower; the levels of IL-6, IL-17, and MDA in SMC group were significantly lower than those in PNI group, and the levels of IL-10, SOD, and CAT were significantly higher ( P<0.05). LFB staining and transmission electron microscopy showed that the myelin density and the diameter of axons in the SMC group were significantly higher than those of the PNI group and the Sham group ( P<0.05). Immunofluorescence staining showed that the fluorescence intensity of GFAP and MBP in the SMC group were significantly stronger than those in the PNI group and Sham group ( P<0.05). Western blot showed that the relative expressions of Nrf2 and HO-1 proteins in the SMC group were significantly higher than those in the PNI group and Sham group, and the ratio of p-p38MAPK/p38MAPK proteins was significantly higher in the PNI group than that in the SMC group and Sham group ( P<0.05). Conclusion: SMC may inhibit oxidative stress and inflammation after nerve injury by up-regulating the Nrf2/HO-1 pathway, and then inhibit the phosphorylation of p38MAPK pathway to promote the proliferation of Schwann cells, which ultimately promotes the formation of myelin sheaths and accelerates the regeneration of peripheral nerves.


Asunto(s)
Regeneración Nerviosa , Estrés Oxidativo , Ratas Sprague-Dawley , Células de Schwann , Nervio Ciático , Selenio , Selenocisteína , Animales , Regeneración Nerviosa/efectos de los fármacos , Ratas , Masculino , Selenocisteína/análogos & derivados , Selenocisteína/farmacología , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Selenio/farmacología , Proliferación Celular/efectos de los fármacos , Traumatismos de los Nervios Periféricos/metabolismo
9.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735969

RESUMEN

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Asunto(s)
Macrófagos , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Poliuretanos , Ratas Sprague-Dawley , Células de Schwann , Animales , Regeneración Nerviosa/efectos de los fármacos , Poliuretanos/química , Ratas , Macrófagos/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Nanofibras/química , Nervio Ciático/efectos de los fármacos , Regeneración Tisular Dirigida/métodos , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Andamios del Tejido/química , Ratones , Células RAW 264.7
10.
Neurosci Lett ; 833: 137813, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38723761

RESUMEN

A significant public health burden is peripheral nerve damage (PNI), which is frequently brought on by trauma. Macrophages were essential to the effective regeneration of nerves and restoration of function. It is still not entirely understood how macrophages and Schwann cells interact after damage during remyelination. Here, we established an inflammatory model in bone marrow-derived macrophages (BMDMs) and a rat sciatic nerve damage model to investigate the possible relationship between lipopolysaccharides (LPS)-induced exosomes derived from Schwann cells (LPS SCs-Exos) and peripheral nerve repair. The pro-inflammatory macrophage was changed into a pro-regeneration macrophage by LPS SC-Exos. Notably, it was discovered that SC-Exos had a substantial enrichment of OTULIN. OTULIN was a key mediator in the regulatory effects of LPS SC-Exos by deubiquitinating ERBB2 and preventing its degradation. The local injection of SC-Exos into the nerve damage site led in a faster functional recovery, axon regeneration and remyelination, and an increased M2 macrophage polarization, whereas OTULIN knockdown reversed these effects in vivo. Our results indicate that LPS SC-Exos may offer a therapeutic avenue for peripheral nerve regeneration by promoting macrophage polarization toward an M2 phenotype through the shuttling of OTULIN and deubiquitination of ERBB2. SIGNIFICANCE STATEMENT: OTULIN protein from SC-Exos mediated the macrophages polarization and axonal growth in BMDMs through promoting ubiquitination of ERBB2 and triggering the degradation of ERBB2. The findings offered prospective therapeutic hints for PNI therapy approaches that target axonal regrowth.


Asunto(s)
Exosomas , Macrófagos , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Ratas Sprague-Dawley , Células de Schwann , Animales , Células de Schwann/metabolismo , Exosomas/metabolismo , Macrófagos/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Ratas , Regeneración Nerviosa/fisiología , Regeneración Nerviosa/efectos de los fármacos , Receptor ErbB-2/metabolismo , Masculino , Ubiquitinación , Ratones , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Ratones Endogámicos C57BL , Lipopolisacáridos
11.
Tissue Cell ; 88: 102379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678741

RESUMEN

Osteopontin (OPN) is a multifunctional matrix glycoprotein with neuroprotective and immunomodulatory properties. This study explored the potential of OPN-loaded acellular nerve allografts (ANAs) to repair sciatic nerves in male Wistar rats. The research also delved into the impact of OPN on macrophage phenotypes. We reconstructed a 10 mm nerve gap with ANAs containing OPN at 2 nM and 4 nM. The sciatic functional index (SFI) and paw withdrawal reflex latency (WRL) showed the significant efficacy of ANA/OPN (2 nM) in enhancement of target organ reinnervation and subsequent sensorimotor recovery compared to other groups. Electrophysiological and histomorphometric analyses further supported the regenerative properties of ANA/OPN (2 nM). Additionally, ANA/OPN (2 nM) promoted macrophage polarization towards an M2 phenotype and reduced proinflammatory cytokines at the injury site. In conclusion, the study suggested that ANA loaded with 2 nM OPN effectively repaired transected sciatic nerves in rats, potentially through enhancing axonal sprouting and exerting anti-inflammatory effects.


Asunto(s)
Aloinjertos , Macrófagos , Regeneración Nerviosa , Osteopontina , Ratas Wistar , Nervio Ciático , Animales , Osteopontina/metabolismo , Osteopontina/farmacología , Nervio Ciático/lesiones , Regeneración Nerviosa/efectos de los fármacos , Masculino , Macrófagos/metabolismo , Ratas , Polaridad Celular
12.
Int J Biol Macromol ; 268(Pt 1): 131594, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621568

RESUMEN

Treating severe peripheral nerve injuries is difficult. Nerve repair with conduit small gap tubulization is a treatment option but still needs to be improved. This study aimed to assess the use of microgels containing growth factors, along with chitosan-based conduits, for repairing nerves. Using the water-oil emulsion technique, microgels of methacrylic alginate (AlgMA) that contained vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) were prepared. The effects on rat Schwann cells (RSC96) and human umbilical vein endothelial cells (HUVECs) were evaluated. Chitosan-based conduits were fabricated and used in conjunction with microgels containing two growth factors to treat complete neurotmesis in rats. The results showed that the utilization of dual growth factor microgels improved the migration and decreased the apoptosis of RSC96 cells while promoting the growth and formation of tubes in HUVECs. The utilization of dual growth factor microgels and chitosan-based conduits resulted in notable advancements in the regeneration and myelination of nerve fibers, recovery of neurons, alleviation of muscle atrophy and recovery of neuromotor function and nerve conduction. In conclusion, the use of dual growth factor AlgMA microgels in combination with chitosan-based conduits has the potential to significantly improve the effectiveness of nerve repair.


Asunto(s)
Alginatos , Quitosano , Células Endoteliales de la Vena Umbilical Humana , Regeneración Nerviosa , Células de Schwann , Quitosano/química , Quitosano/farmacología , Alginatos/química , Alginatos/farmacología , Animales , Humanos , Ratas , Regeneración Nerviosa/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Microgeles/química , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/terapia , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Andamios del Tejido/química , Metacrilatos/química , Metacrilatos/farmacología , Movimiento Celular/efectos de los fármacos
13.
Acta Biomater ; 180: 323-336, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38561075

RESUMEN

Peripheral nerve injuries (PNIs) can cause neuropathies and significantly affect the patient's quality of life. Autograft transplantation is the gold standard for conventional treatment; however, its application is limited by nerve unavailability, size mismatch, and local tissue adhesion. Tissue engineering, such as nerve guidance conduits, is an alternative and promising strategy to guide nerve regeneration for peripheral nerve repair; however, only a few conduits could reach the high repair efficiency of autografts. The healing process of PNI is frequently accompanied by not only axonal and myelination regeneration but also angiogenesis, which initializes nerve regeneration through vascular endothelial growth factor A (VEGF-A). In this study, a composite nerve conduit with a poly (lactic-co-glycolic acid) (PLGA) hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with VEGF-A transfected Schwann cells (SCs) as the inner layer was established to evaluate its promising ability for peripheral nerve repair. A rat model of peripheral nerve defect was used to examine the efficiency of PLGA/GelMA-SC (VA) conduits, whereas autograft, PLGA, PLGA/GelMA, and PLGA/GelMA-SC (NC) were used as controls. VEGF-A-transfected SCs can provide a stable source for VEGF-A secretion. Furthermore, encapsulation in GelMA cannot only promote proliferation and tube formation of human umbilical vein endothelial cells but also enhance dorsal root ganglia and neuronal cell extension. Previous animal studies have demonstrated that the regenerative effects of PLGA/GelMA-SC (VA) nerve conduit were similar to those of autografts and much better than those of other conduits. These findings indicate that combination of VEGF-A-overexpressing SCs and PLGA/GelMA conduit-guided peripheral nerve repair provides a promising method that enhances angiogenesis and regeneration during nerve repair. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits shows promise for peripheral nerve repair, while achieving the repair efficiency of autografts remains a challenge. In this study, a composite nerve conduit with a PLGA hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with vascular endothelial growth factor A (VEGF-A)-transfected Schwann cells (SCs) as the inner layer was established to evaluate its potential ability for peripheral nerve repair. This approach preserves growth factor bioactivity and enhances material properties. GelMA insertion promotes Schwann cell proliferation and morphology extension. Moreover, transfected SCs serve as a stable VEGF-A source and fostering angiogenesis. This study offers a method preserving growth factor efficacy and safeguarding SCs, providing a comprehensive solution for enhanced angiogenesis and nerve regeneration.


Asunto(s)
Neovascularización Fisiológica , Regeneración Nerviosa , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Células de Schwann , Factor A de Crecimiento Endotelial Vascular , Células de Schwann/metabolismo , Células de Schwann/citología , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Regeneración Nerviosa/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Neovascularización Fisiológica/efectos de los fármacos , Ratas , Transfección , Gelatina/química , Masculino , Andamios del Tejido/química , Humanos , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/patología , Angiogénesis
14.
Tissue Cell ; 88: 102357, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493757

RESUMEN

OBJECTIVE: To investigate the effects of tocilizumab (TCZ), epoetin beta (EPO), and their combination on nerve regeneration in a sciatic nerve injury model. MATERIALS AND METHOD: Male Sprague-Dawley rats were divided into (-) negative control, sham, TCZ, EPO ((+) positive control), and TCZ+EPO groups. The TCZ group received TCZ (8 mg/kg intraperitoneal) immediately after surgery. On day 14th, the EPO group received EPO (5000 IU/kg, intraperitoneal); the TCZ+EPO group received TCZ (8 mg/kg, intraperitoneal), EPO (5000 IU/kg, intraperitoneal), and TCZ (8 mg/kg, intraperitoneal) post-surgery. Motor and sensory functions were assessed pre and post-surgery. Lipid peroxidation and oxidative stress parameters were evaluated biochemically in the serum, and sciatic nerve tissue was evaluated histopathologically using haematoxylin-Eosin and Masson trichrome staining. CONCLUSIONS: TCZ and EPO decreased nerve injury effects by increasing motor and sensory conduction velocities of the sciatic nerve. Biochemically, TCZ and EPO significantly increased Superoxide Dismutase, Catalase, and Glutathione peroxidase 4 levels while decreasing Lipid Peroxidation levels (p=0.001). Histopathologically, neuronal degeneration following nerve injury was decreased in the groups receiving TCZ and EPO (p=0.001). EPO and TCZ attenuate the adverse effects of nerve injury. However, the TCZ+EPO treatment favoured biochemical activities over tissue and functional activities. This has been confirmed functionally, biochemically, and histopathologically.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Modelos Animales de Enfermedad , Eritropoyetina , Ratas Sprague-Dawley , Nervio Ciático , Animales , Eritropoyetina/farmacología , Masculino , Nervio Ciático/lesiones , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología , Ratas , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteínas Recombinantes/farmacología , Regeneración Nerviosa/efectos de los fármacos
15.
Macromol Biosci ; 24(6): e2300534, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547473

RESUMEN

Spinal cord injury, traumatic brain injury, and neurosurgery procedures usually lead to neural tissue damage. Self-assembled peptide (SAP) hydrogels, a type of innovative hierarchical nanofiber-forming peptide sequences serving as hydrogelators, have emerged as a promising solution for repairing tissue defects and promoting neural tissue regeneration. SAPs possess numerous features, such as adaptable morphologies, biocompatibility, injectability, tunable mechanical stability, and mimicking of the native extracellular matrix. This review explores the capacity of neural cell regeneration and examines the critical aspects of SAPs in neuroregeneration, including their biochemical composition, topology, mechanical behavior, conductivity, and degradability. Additionally, it delves into the latest strategies involving SAPs for central or peripheral neural tissue engineering. Finally, the prospects of SAP hydrogel design and development in the realm of neuroregeneration are discussed.


Asunto(s)
Hidrogeles , Regeneración Nerviosa , Péptidos , Ingeniería de Tejidos , Hidrogeles/química , Hidrogeles/farmacología , Ingeniería de Tejidos/métodos , Humanos , Regeneración Nerviosa/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nanofibras/química , Andamios del Tejido/química
16.
Adv Sci (Weinh) ; 11(17): e2306577, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38441409

RESUMEN

Spinal cord injury (SCI) leads to massive cell death, disruption, and demyelination of axons, resulting in permanent motor and sensory dysfunctions. Stem cell transplantation is a promising therapy for SCI. However, owing to the poor microenvironment that develops following SCI, the bioactivities of these grafted stem cells are limited. Cell implantation combined with biomaterial therapies is widely studied for the development of tissue engineering technology. Herein, an insulin-like growth factor-1 (IGF-1)-bioactive supramolecular nanofiber hydrogel (IGF-1 gel) is synthesized that can activate IGF-1 downstream signaling, prevent the apoptosis of neural stem cells (NSCs), improve their proliferation, and induce their differentiation into neurons and oligodendrocytes. Moreover, implantation of NSCs carried out with IGF-1 gels promotes neurite outgrowth and myelin sheath regeneration at lesion sites following SCI. In addition, IGF-1 gels can enrich extracellular vesicles (EVs) derived from NSCs or from nerve cells differentiated from these NSCs via miRNAs related to axonal regeneration and remyelination, even in an inflammatory environment. These EVs are taken up by autologous endogenous NSCs and regulate their differentiation. This study provides adequate evidence that combined treatment with NSCs and IGF-1 gels is a potential therapeutic strategy for treating SCI.


Asunto(s)
Hidrogeles , Factor I del Crecimiento Similar a la Insulina , Nanofibras , Células-Madre Neurales , Traumatismos de la Médula Espinal , Animales , Ratas , Diferenciación Celular , Modelos Animales de Enfermedad , Hidrogeles/química , Factor I del Crecimiento Similar a la Insulina/metabolismo , Nanofibras/química , Nanofibras/uso terapéutico , Regeneración Nerviosa/efectos de los fármacos , Células-Madre Neurales/trasplante , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre/métodos , Femenino
17.
Adv Mater ; 36(19): e2311264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38330187

RESUMEN

Cavernous nerve injury (CNI), resulting in erectile dysfunction (ED), poses a significant threat to the quality of life for men. Strategies utilizing conductive hydrogels have demonstrated promising results for the treatment of peripheral nerves with a large diameter (>2 mm). However, integrating convenient minimally invasive operation, antiswelling and immunomodulatory conductive hydrogels for treating small-diameter injured cavernous nerves remains a great challenge. Here, a sprayable adhesive conductive hydrogel (GACM) composed of gelatin, adenine, carbon nanotubes, and mesaconate designed for cavernous nerve repair is developed. Multiple hydrogen bonds provide GACM with excellent adhesive and antiswelling properties, enabling it to establish a conformal electrical bridge with the damaged nerve and aiding in the regeneration process. Additionally, mesaconate-loaded GACM suppresses the release of inflammatory factors by macrophages and promotes the migration and proliferation of Schwann cells. In vivo tests demonstrate that the GACM hydrogel repairs the cavernous nerve and restores erectile function and fertility. Furthermore, the feasibility of sprayable GACM in minimally invasive robotic surgery in beagles is validated. Given the benefits of therapeutic effectiveness and clinical convenience, the research suggests a promising future for sprayable GACM materials as advanced solutions for minimally invasive nerve repair.


Asunto(s)
Hidrogeles , Hidrogeles/química , Animales , Masculino , Perros , Regeneración Nerviosa/efectos de los fármacos , Conductividad Eléctrica , Pene/inervación , Ratones , Células de Schwann/citología , Adhesivos/química , Nanotubos de Carbono/química , Disfunción Eréctil
18.
Macromol Biosci ; 24(5): e2300453, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38224015

RESUMEN

Spinal cord injuries are very common worldwide, leading to permanent nerve function loss with devastating effects in the affected patients. The challenges and inadequate results in the current clinical treatments are leading scientists to innovative neural regenerative research. Advances in nanoscience and neural tissue engineering have opened new avenues for spinal cord injury (SCI) treatment. In order for designed nerve guidance conduit (NGC) to be functionally useful, it must have ideal scaffold properties and topographic features that promote the linear orientation of damaged axons. In this study, it is aimed to develop channeled polycaprolactone (PCL)/Poly-D,L-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, modify their surfaces by IKVAV pentapeptide/gold nanoparticles (AuNPs) or polypyrrole (PPy) and investigate the behavior of motor neurons on the designed scaffold surfaces in vitro under static/bioreactor conditions. Their potential to promote neural regeneration after implantation into the rat SCI by shaping the film scaffolds modified with neural factors into a tubular form is also examined. It is shown that channeled groups decorated with AuNPs highly promote neurite orientation under bioreactor conditions and also the developed optimal NGC (PCL/PLGA G1-IKVAV/BDNF/NGF-AuNP50) highly regenerates SCI. The results indicate that the designed scaffold can be an ideal candidate for spinal cord regeneration.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Oro , Nanopartículas del Metal , Factor de Crecimiento Nervioso , Traumatismos de la Médula Espinal , Andamios del Tejido , Animales , Ratas , Factor Neurotrófico Derivado del Encéfalo/farmacología , Oro/química , Nanopartículas del Metal/química , Factor de Crecimiento Nervioso/farmacología , Regeneración Nerviosa/efectos de los fármacos , Oligopéptidos/farmacología , Poliésteres/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Andamios del Tejido/química
19.
Small ; 20(23): e2309793, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148305

RESUMEN

The nerve guidance conduits incorporated with stem cells, which can differentiate into the Schwann cells (SCs) to facilitate myelination, shows great promise for repairing the severe peripheral nerve injury. The innovation of advanced hydrogel materials encapsulating stem cells, is highly demanded for generating supportive scaffolds and adaptive microenvironment for nerve regeneration. Herein, this work demonstrates a novel strategy in regulating regenerative microenvironment for peripheral nerve repair with a biodegradable conductive hydrogel scaffold, which can offer multifunctional capabilities in immune regulation, enhancing angiogenesis, driving SCs differentiation, and promoting axon regrowth. The biodegradable conductive hydrogel is constructed by incorporation of polydopamine-modified silicon phosphorus (SiP@PDA) nanosheets into a mixture of methacryloyl gelatin and decellularized extracellular matrix (GelMA/ECM). The biomimetic electrical microenvironment performs an efficacious strategy to facilitate macrophage polarization toward a pro-healing phenotype (M2), meanwhile the conductive hydrogel supports vascularization in regenerated tissue through sustained Si element release. Furthermore, the MSCs 3D-cultured in GelMA/ECM-SiP@PDA conductive hydrogel exhibits significantly increased expression of genes associated with SC-like cell differentiation, thus facilitating the myelination and axonal regeneration. Collectively, both the in vitro and in vivo studies demonstrates that the rationally designed biodegradable multifunctional hydrogel significantly enhances nerve tissues repair.


Asunto(s)
Hidrogeles , Regeneración Nerviosa , Hidrogeles/química , Animales , Regeneración Nerviosa/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Gelatina/química , Polímeros/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Células de Schwann/citología , Células de Schwann/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratones , Andamios del Tejido/química , Células Madre/citología , Conductividad Eléctrica , Indoles/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Metacrilatos
20.
Nature ; 618(7963): 159-168, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225977

RESUMEN

Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.


Asunto(s)
Regeneración Nerviosa , Humanos , Neoplasias/tratamiento farmacológico , Regeneración Nerviosa/efectos de los fármacos , Isoformas de Proteínas/agonistas , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/química , Fosfatidilinositol 3-Quinasa Clase I/efectos de los fármacos , Cardiotónicos/farmacología , Animales , Biocatálisis/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Neuritas/efectos de los fármacos , Daño por Reperfusión/prevención & control , Compresión Nerviosa , Proliferación Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA