Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 826
Filtrar
1.
PLoS Biol ; 22(7): e3002687, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991663

RESUMEN

Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.


Asunto(s)
Astrocitos , Disfunción Cognitiva , Hipocampo , Lipocalina 2 , Potenciación a Largo Plazo , Enfermedades Neuroinflamatorias , Neuronas , Animales , Astrocitos/metabolismo , Astrocitos/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Lipocalina 2/metabolismo , Lipocalina 2/genética , Ratones , Hipocampo/metabolismo , Hipocampo/patología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo , Neuronas/metabolismo , Neuronas/patología , Ratones Noqueados , Masculino , Ratones Endogámicos C57BL , Receptores de N-Metil-D-Aspartato/metabolismo , Optogenética , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/metabolismo , Modelos Animales de Enfermedad
2.
Behav Brain Res ; 470: 115094, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38844057

RESUMEN

Estrogen receptor (ER) activation by 17-ß estradiol (E2) can attenuate neuronal injury and behavioral impairments following global cerebral ischemia (GCI) in rodents. This study sought to further examine the discrete roles of ERs through characterization of the effects of selective ER activation on post-ischemic pro-inflammatory microglial activation, hippocampal neuronal injury, and anxiety-like behaviors. Forty-six ovariectomized (OVX) adult female Wistar rats received daily s.c injections (100 µg/kg/day) of propylpyrazole triol (PPT; ERα agonist), diarylpropionitrile (DPN; ERß agonist), G-1 (G-protein coupled ER agonist; GPER), E2 (activating all receptors), or vehicle solution (VEH) for 21 days. After final injection, rats underwent GCI via 4-vessel occlusion (n=8 per group) or sham surgery (n=6, vehicle injections). The Open Field Test (OFT), Elevated Plus Maze (EPM), and Hole Board Test (HBT) assessed anxiety-like behaviors. Microglial activation (Iba1, CD68, CD86) in the basolateral amygdala (BLA), CA1 of the hippocampus, and paraventricular nucleus of the hypothalamus (PVN) was determined 8 days post-ischemia. Compared to sham rats, Iba1 activation and CA1 neuronal injury were increased in all ischemic groups except DPN-treated rats, with PPT-treated ischemic rats also showing increased PVN Iba1-ir expression. Behaviorally, VEH ischemic rats showed slightly elevated anxiety in the EPM compared to sham counterparts, with no significant effects of agonists. While no changes were observed in the OFT, emotion regulation via grooming in the HBT was increased in G-1 rats compared to E2 rats. Our findings support selective ER activation to regulate post-ischemic microglial activation and coping strategies in the HBT, despite minimal impact on hippocampal injury.


Asunto(s)
Ansiedad , Isquemia Encefálica , Región CA1 Hipocampal , Microglía , Fenoles , Pirazoles , Ratas Wistar , Animales , Femenino , Microglía/metabolismo , Microglía/efectos de los fármacos , Ratas , Ansiedad/metabolismo , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Isquemia Encefálica/metabolismo , Pirazoles/farmacología , Fenoles/farmacología , Ovariectomía , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Propionatos/farmacología , Propionatos/administración & dosificación , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Estradiol/farmacología , Modelos Animales de Enfermedad , Receptores de Estrógenos/metabolismo , Nitrilos/farmacología
3.
Nat Commun ; 15(1): 4531, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866749

RESUMEN

Individuals with autism spectrum disorder (ASD) have a higher prevalence of social memory impairment. A series of our previous studies revealed that hippocampal ventral CA1 (vCA1) neurons possess social memory engram and that the neurophysiological representation of social memory in the vCA1 neurons is disrupted in ASD-associated Shank3 knockout mice. However, whether the dysfunction of Shank3 in vCA1 causes the social memory impairment observed in ASD remains unclear. In this study, we found that vCA1-specific Shank3 conditional knockout (cKO) by the adeno-associated virus (AAV)- or specialized extracellular vesicle (EV)- mediated in vivo gene editing was sufficient to recapitulate the social memory impairment in male mice. Furthermore, the utilization of EV-mediated Shank3-cKO allowed us to quantitatively examine the role of Shank3 in social memory. Our results suggested that there is a certain threshold for the proportion of Shank3-cKO neurons required for social memory disruption. Thus, our study provides insight into the population coding of social memory in vCA1, as well as the pathological mechanisms underlying social memory impairment in ASD.


Asunto(s)
Trastorno del Espectro Autista , Región CA1 Hipocampal , Edición Génica , Memoria , Ratones Noqueados , Proteínas del Tejido Nervioso , Conducta Social , Animales , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Región CA1 Hipocampal/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Ratones , Memoria/fisiología , Neuronas/metabolismo , Dependovirus/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Ratones Endogámicos C57BL
4.
Neuroscience ; 551: 323-332, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38821241

RESUMEN

Spreading depolarization (SD) is a slowly propagating wave of prolonged activation followed by a period of synaptic suppression. Some prior reports have shown potentiation of synaptic transmission after recovery from synaptic suppression and noted similarities with the phenomenon of long-term potentiation (LTP). Since SD is increasingly recognized as participating in diverse neurological disorders, it is of interest to determine whether SD indeed leads to a generalized and sustained long-term strengthening of synaptic connections. We performed a characterization of SD-induced potentiation, and tested whether distinctive features of SD, including adenosine accumulation and swelling, contribute to reports of SD-induced plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the hippocampal CA1 subregion of murine brain slices, and SD elicited using focal microinjection of KCl. A single SD was sufficient to induce a consistent potentiation of slope and amplitude of fEPSPs. Both AMPA- and NMDA-receptor mediated components were enhanced. Potentiation peaked ∼20 min after SD recovery and was sustained for ∼30 min. However, fEPSP amplitude and slope decayed over an extended 2-hour recording period and was estimated to reach baseline after ∼3 h. Potentiation was saturated after a single SD and adenosine A1 receptor activation did not mask additional potentiation. Induction of LTP with theta-burst stimulation was not altered by prior induction of SD and molecular mediators known to block LTP induction did not block SD-induced potentiation. Together, these results indicate an intermediate duration potentiation that is distinct from hippocampal LTP and may have implications for circuit function for 1-2 h following SD.


Asunto(s)
Potenciales Postsinápticos Excitadores , Ratones Endogámicos C57BL , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Potenciación a Largo Plazo/fisiología , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Adenosina/metabolismo , Adenosina/farmacología , Ratones , Depresión de Propagación Cortical/fisiología , Depresión de Propagación Cortical/efectos de los fármacos , Cloruro de Potasio/farmacología , Hipocampo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores AMPA/metabolismo
5.
Cell Mol Biol Lett ; 29(1): 79, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783169

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS: Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS: The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS: The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Región CA1 Hipocampal , Regulación hacia Abajo , Plasticidad Neuronal , Neuronas , Complicaciones Cognitivas Postoperatorias , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Neuronas/metabolismo , Complicaciones Cognitivas Postoperatorias/metabolismo , Complicaciones Cognitivas Postoperatorias/etiología , Región CA1 Hipocampal/metabolismo , Masculino , Ratones Endogámicos C57BL , Potenciación a Largo Plazo , Ácido Glutámico/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología
6.
PLoS Comput Biol ; 20(5): e1012085, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709845

RESUMEN

Alzheimer's Disease (AD) is characterized by a range of behavioral alterations, including memory loss and psychiatric symptoms. While there is evidence that molecular pathologies, such as amyloid beta (Aß), contribute to AD, it remains unclear how this histopathology gives rise to such disparate behavioral deficits. One hypothesis is that Aß exerts differential effects on neuronal circuits across brain regions, depending on the neurophysiology and connectivity of different areas. To test this, we recorded from large neuronal populations in dorsal CA1 (dCA1) and ventral CA1 (vCA1), two hippocampal areas known to be structurally and functionally diverse, in the APP/PS1 mouse model of amyloidosis. Despite similar levels of Aß pathology, dCA1 and vCA1 showed distinct disruptions in neuronal population activity as animals navigated a virtual reality environment. In dCA1, pairwise correlations and entropy, a measure of the diversity of activity patterns, were decreased in APP/PS1 mice relative to age-matched C57BL/6 controls. However, in vCA1, APP/PS1 mice had increased pair-wise correlations and entropy as compared to age matched controls. Finally, using maximum entropy models, we connected the microscopic features of population activity (correlations) to the macroscopic features of the population code (entropy). We found that the models' performance increased in predicting dCA1 activity, but decreased in predicting vCA1 activity, in APP/PS1 mice relative to the controls. Taken together, we found that Aß exerts distinct effects across different hippocampal regions, suggesting that the various behavioral deficits of AD may reflect underlying heterogeneities in neuronal circuits and the different disruptions that Aß pathology causes in those circuits.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Región CA1 Hipocampal , Animales , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiopatología , Región CA1 Hipocampal/patología , Biología Computacional , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Presenilina-1/genética , Presenilina-1/metabolismo
7.
Cell Rep ; 43(4): 114115, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607918

RESUMEN

In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.


Asunto(s)
Región CA1 Hipocampal , Interneuronas , Reconocimiento en Psicología , Péptido Intestinal Vasoactivo , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/citología , Ratones , Masculino , Reconocimiento en Psicología/fisiología , Células Piramidales/metabolismo , Células Piramidales/fisiología , Ratones Endogámicos C57BL , Memoria/fisiología , Parvalbúminas/metabolismo , Conducta Exploratoria/fisiología , Somatostatina/metabolismo
8.
Brain Res Bull ; 211: 110945, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608544

RESUMEN

Sleep fragmentation (SF) is a common sleep problem experienced during the perioperative period by older adults, and is associated with postoperative cognitive dysfunction (POCD). Increasing evidence indicates that delta-wave activity during non-rapid eye movement (NREM) sleep is involved in sleep-dependent memory consolidation and that hippocampal theta oscillations are related to spatial exploratory memory. Recovery sleep (RS), a self-regulated state of sleep homeostasis, enhances delta-wave power and memory performance in sleep-deprived older mice. However, it remains unclear whether RS therapy has a positive effect on cognitive changes following SF in older mouse models. Therefore, this study aimed to explore whether preoperative RS can alleviate cognitive deficits in aged mice with SF. A model of preoperative 24-h SF combined with exploratory laparotomy-induced POCD was established in 18-month-old mice. Aged mice were treated with preoperative 6-h RS following SF and postoperative 6-h RS following surgery, respectively. The changes in hippocampus-dependent cognitive function were investigated using behavioral tests, electroencephalography (EEG), local field potential (LFP), magnetic resonance imaging, and neuromorphology. Mice that underwent 24-h SF combined with surgery exhibited severe spatial memory impairment; impaired cognitive performance could be alleviated by preoperative RS treatment. In addition, preoperative RS increased NREM sleep; enhanced EEG delta-wave activity and LFP theta oscillation in the hippocampal CA1; and improved hippocampal perfusion, microstructural integrity, and neuronal damage. Taken together, these results provide evidence that preoperative RS may ameliorate the severity of POCD aggravated by SF by enhancing delta slow-wave activity and hippocampal theta oscillation, and by ameliorating the reduction in regional cerebral blood flow and white matter microstructure integrity in the hippocampus.


Asunto(s)
Región CA1 Hipocampal , Ritmo Delta , Complicaciones Cognitivas Postoperatorias , Privación de Sueño , Ritmo Teta , Animales , Privación de Sueño/fisiopatología , Privación de Sueño/complicaciones , Ratones , Ritmo Teta/fisiología , Masculino , Ritmo Delta/fisiología , Región CA1 Hipocampal/fisiopatología , Ratones Endogámicos C57BL , Electroencefalografía/métodos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Sueño/fisiología , Envejecimiento/fisiología
9.
Life Sci ; 346: 122618, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614306

RESUMEN

AIMS: This study was designed to investigate the role of growth arrest and DNA damage-inducible ß (GADD45B) in modulating fear memory acquisition and elucidate its underlying mechanisms. MAIN METHODS: Adeno-associated virus (AAV) that knockdown or overexpression GADD45B were injected into ventral hippocampal CA1 (vCA1) by stereotactic, and verified by fluorescence and Western blot. The contextual fear conditioning paradigm was employed to examine the involvement of GADD45B in modulating aversive memory acquisition. The Y-maze and novel location recognition (NLR) tests were used to examine non-aversive cognition. The synaptic plasticity and electrophysiological properties of neurons were measured by slice patch clamp. KEY FINDINGS: Knockdown of GADD45B in the vCA1 significantly enhanced fear memory acquisition, accompanied by an upregulation of long-term potentiation (LTP) expression and intrinsic excitability of vCA1 pyramidal neurons (PNs). Conversely, overexpression of GADD45B produced the opposite effects. Notably, silencing the activity of vCA1 neurons abolished the impact of GADD45B knockdown on fear memory development. Moreover, mice with vCA1 GADD45B overexpression exhibited impaired spatial cognition, whereas mice with GADD45B knockdown did not display such impairment. SIGNIFICANCE: These results provided compelling evidence for the crucial involvement of GADD45B in the formation of aversive memory and spatial cognition.


Asunto(s)
Región CA1 Hipocampal , Miedo , Proteinas GADD45 , Ratones Endogámicos C57BL , Animales , Masculino , Miedo/fisiología , Ratones , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Cognición/fisiología , Memoria/fisiología , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Plasticidad Neuronal/fisiología , Antígenos de Diferenciación/metabolismo , Antígenos de Diferenciación/genética , Técnicas de Silenciamiento del Gen
10.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656542

RESUMEN

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Asunto(s)
Conducta Exploratoria , Hipocampo , Plasticidad Neuronal , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo , Péptido Intestinal Vasoactivo , Animales , Masculino , Ratas , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Conducta Exploratoria/fisiología , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Ratas Wistar , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
11.
Toxicol Sci ; 200(1): 199-212, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38579196

RESUMEN

Cadmium (Cd) is a ubiquitous toxic heavy metal and a potential neurotoxicant due to its wide use in industrial manufacturing processes and commercial products, including fertilizers. The general population is exposed to Cd through food and smoking due to high transfer rates of Cd from contaminated soil. Cd has been shown to mimic calcium ions (Ca2+) and interfere with intracellular Ca2+ levels and Ca2+ signaling in in vitro studies. However, nothing is known about Cd's effects on Ca2+ activity in neurons in live animals. This study aimed to determine if Cd disrupts Ca2+ transients of neurons in CA1 region of the hippocampus during an associative learning paradigm. We utilized in vivo Ca2+ imaging in awake, freely moving C57BL/6 mice to measure Ca2+ activity in CA1 excitatory neurons expressing genetically encoded Ca2+ sensor GCaMP6 during an associative learning paradigm. We found that a smaller proportion of neurons are activated in Cd-treated groups compared with control during fear conditioning, suggesting that Cd may contribute to learning and memory deficit by reducing the activity of neurons. We observed these effects at Cd exposure levels that result in blood Cd levels comparable with the general U.S. population levels. This provides a possible molecular mechanism for Cd interference of learning and memory at exposure levels relevant to U.S. adults. To our knowledge, our study is the first to describe Cd effects on brain Ca2+ activity in vivo in freely behaving mice. This study provides evidence for impairment of neuronal calcium activity in hippocampal CA1 excitatory neurons in freely moving mice following cadmium exposure.


Asunto(s)
Región CA1 Hipocampal , Ratones Endogámicos C57BL , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Calcio/metabolismo , Masculino , Cadmio/toxicidad , Ratones , Señalización del Calcio/efectos de los fármacos , Miedo/efectos de los fármacos , Cloruro de Cadmio/toxicidad
12.
Brain Res Bull ; 208: 110890, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302069

RESUMEN

Cognitive impairment is a major complication of cerebral ischemia-reperfusion (CIR) injury and has an important impact on the quality of life of patients. However, the precise mechanisms underlying cognitive impairment after CIR injury remain elusive. In the current study, we investigated the role of interleukin 17 A (IL-17A) on CIR injury-induced cognitive impairment in wild-type and IL-17A knockout mice using RNA sequencing analysis, neurological assessments, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay, and western blot analysis. RNA sequencing identified 195 CIR-induced differentially expressed genes (83 upregulated and 112 downregulated), highlighting several enriched biological processes (negative regulation of phosphorylation, transcription regulator complex, and receptor ligand activity) and signaling pathways (mitogen-activated protein kinase [MAPK], tumor necrosis factor, and IL-17 signaling pathways). We also injected adeno-associated virus into the bilateral hippocampal CA1 regions of CIR mice to upregulate or downregulate cyclic AMP response element-binding protein. IL-17A knockout activated the extracellular signal-regulated kinase (ERK)/MAPK signaling pathway and further improved synaptic plasticity, structure, and function in CIR mice. Together, our findings suggest that IL-17A deficiency alleviates CIR injury by activating the ERK/MAPK signaling pathway and enhancing hippocampal synaptic plasticity.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Humanos , Animales , Ratones , Región CA1 Hipocampal/metabolismo , Interleucina-17/metabolismo , Calidad de Vida , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Daño por Reperfusión/metabolismo
13.
CNS Neurosci Ther ; 30(4): e14508, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37864452

RESUMEN

AIMS: Exposure to crystalline silica (CS) in occupational settings induces chronic inflammation in the respiratory system and, potentially, the brain. Some workers are frequently concurrently exposed to both CS and nicotine. Here, we explored the impact of nicotine on CS-induced neuroinflammation in the mouse hippocampus. METHODS: In this study, we established double-exposed models of CS and nicotine in C57BL/6 mice. To assess depression-like behavior, experiments were conducted at 3, 6, and 9 weeks. Serum inflammatory factors were analyzed by ELISA. Hippocampus was collected for RNA sequencing analysis and examining the gene expression patterns linked to inflammation and cell death. Microglia and astrocyte activation and hippocampal neuronal death were assessed using immunohistochemistry and immunofluorescence staining. Western blotting was used to analyze the NF-κB expression level. RESULTS: Mice exposed to CS for 3 weeks showed signs of depression. This was accompanied by elevated IL-6 in blood, destruction of the blood-brain barrier, and activation of astrocytes caused by an increased NF-κB expression in the CA1 area of the hippocampus. The elevated levels of astrocyte-derived Lcn2 and upregulated genes related to inflammation led to higher neuronal mortality. Moreover, nicotine mitigated the NF-κB expression, astrocyte activation, and neuronal death, thereby ameliorating the associated symptoms. CONCLUSION: Silica exposure induces neuroinflammation and neuronal death in the mouse hippocampal CA1 region and depressive behavior. However, nicotine inhibits CS-induced neuroinflammation and neuronal apoptosis, alleviating depressive-like behaviors in mice.


Asunto(s)
FN-kappa B , Nicotina , Ratones , Animales , FN-kappa B/metabolismo , Nicotina/farmacología , Nicotina/metabolismo , Astrocitos/metabolismo , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Región CA1 Hipocampal/metabolismo , Inflamación/metabolismo , Apoptosis , Microglía/metabolismo
14.
Clinics (Sao Paulo) ; 78: 100312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38016196

RESUMEN

INTRODUCTION: The CA1 region of the hippocampus has an important role in learning and memory. It has been shown that estrogen deficiency may reduce the synaptic density in the region and that hormone replacement therapy may attenuate the reduction. OBJECTIVES: This study aimed to evaluate the effects of estrogen and raloxifene on the synaptic density profile in the CA1 region of the hippocampus in ovariectomized rats. METHODS: Sixty ovariectomized three-month-old virgin rats were randomized into six groups (n = 10). Treatments started either three days (early treatment) or sixty days (late treatment) after ovariectomy. The groups received propylene glycol vehicle (0.5 mL/animal/day), equine conjugated estrogens (50 µg/animal/day), or raloxifene (3 mg/kg/day) either early or late after ovariectomy. The drugs were administered orally by gavage for 30 days. At the end of the treatments, the animals were anesthetized and transcardially perfused with ether and saline solution. The brains were removed and prepared for analysis under transmission electron microscopy and later fixed. RESULTS: Results showed a significant increase in the synaptic density profile of the hippocampal CA1 region in both the early estrogen (0.534 ± 0.026 µ/m2) and the early raloxifene (0.437 ± 0.012 µ/m2) treatment groups compared to the early or late vehicle-treated control groups (0.338 ± 0.038 µ/m2 and 0.277 ± 0.015 µ/m2 respectively). CONCLUSIONS: The present data suggest that the raloxifene effect may be lower than that of estrogen, even early or late treatment, on synaptic density in the hippocampus.


Asunto(s)
Región CA1 Hipocampal , Clorhidrato de Raloxifeno , Animales , Femenino , Ratas , Estrógenos/farmacología , Estrógenos Conjugados (USP)/farmacología , Hipocampo , Ovariectomía , Clorhidrato de Raloxifeno/farmacología
15.
Learn Mem ; 30(10): 260-270, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37802547

RESUMEN

To date, there is insufficient evidence to explain the role of adenosinergic receptors in the reconsolidation of long-term spatial memory. In this work, the role of the adenosinergic receptor family (A1, A2A, A2B, and A3) in this process has been elucidated. It was demonstrated that when infused bilaterally into the hippocampal CA1 region immediately after an early nonreinforced test session performed 24 h posttraining in the Morris water maze task, adenosine can cause anterograde amnesia for recent and late long-term spatial memory. This effect on spatial memory reconsolidation was blocked by A1 or A3 receptor antagonists and mimicked by A1 plus A3 receptor agonists, showing that this effect occurs through A1 and A3 receptors simultaneously. The A3 receptor alone participates only in the reconsolidation of late long-term spatial memory. When the memory to be reconsolidated was delayed (reactivation 5 d posttraining), the amnesic effect of adenosine became transient and did not occur in a test performed 5 d after the reactivation of the mnemonic trace. Finally, it has been shown that the amnesic effect of adenosine on spatial memory reconsolidation depends on the occurrence of protein degradation and that the amnesic effect of inhibition of protein synthesis on spatial memory reconsolidation is dependent on the activation of A3 receptors.


Asunto(s)
Hipocampo , Memoria a Largo Plazo , Ratas , Masculino , Animales , Hipocampo/fisiología , Memoria a Largo Plazo/fisiología , Memoria/fisiología , Región CA1 Hipocampal , Adenosina/metabolismo , Adenosina/farmacología
16.
Mol Brain ; 16(1): 73, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848907

RESUMEN

Calcium ions (Ca2+) play pivotal roles in regulating diverse brain functions, including cognition, emotion, locomotion, and learning and memory. These functions are intricately regulated by a variety of Ca2+-dependent cellular processes, encompassing synaptic plasticity, neuro/gliotransmitter release, and gene expression. In our previous work, we developed 'monster OptoSTIM1' (monSTIM1), an improved OptoSTIM1 that selectively activates Ca2+-release-activated Ca2+ (CRAC) channels in the plasma membrane through blue light, allowing precise control over intracellular Ca2+ signaling and specific brain functions. However, the large size of the coding sequence of monSTIM1 poses a limitation for its widespread use, as it exceeds the packaging capacity of adeno-associated virus (AAV). To address this constraint, we have introduced monSTIM1 variants with reduced coding sequence sizes and established AAV-based systems for expressing them in neurons and glial cells in the mouse brain. Upon expression by AAVs, these monSTIM1 variants significantly increased the expression levels of cFos in neurons and astrocytes in the hippocampal CA1 region following non-invasive light illumination. The use of monSTIM1 variants offers a promising avenue for investigating the spatiotemporal roles of Ca2+-mediated cellular activities in various brain functions. Furthermore, this toolkit holds potential as a therapeutic strategy for addressing brain disorders associated with aberrant Ca2+ signaling.


Asunto(s)
Canales de Calcio , Dependovirus , Ratones , Animales , Dependovirus/metabolismo , Optogenética , Región CA1 Hipocampal/metabolismo , Aprendizaje , Calcio/metabolismo , Señalización del Calcio/fisiología
17.
Aging (Albany NY) ; 15(20): 11227-11243, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857016

RESUMEN

Effective preventive measures against postoperative cognitive dysfunction in older adults are urgently needed. In this study, we investigated the effect of electroacupuncture (EA) on anesthesia and surgery-induced cognitive decline in aged rats by RNA-seq analysis, behavioral testing, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay and western blot analysis. EA ameliorated anesthesia and surgery induced-cognitive decline. RNA-seq analysis identified numerous differentially-expressed genes, including 353 upregulated genes and 563 downregulated genes, after pretreatment with EA in aged rats with postoperative cognitive dysfunction. To examine the role of CREB in EA, we injected adeno-associated virus (AAV) into the CA1 region of the hippocampus bilaterally into the aged rats to downregulate the transcription factor. EA improved synaptic plasticity, structurally and functionally, by activating the MAPK/ERK/CREB signaling pathway in aged rats. Together, our findings suggest that EA protects against anesthesia and surgery-induced cognitive decline in aged rats by activating the MAPK/ERK/CREB signaling pathway and enhancing hippocampal synaptic plasticity.


Asunto(s)
Disfunción Cognitiva , Electroacupuntura , Complicaciones Cognitivas Postoperatorias , Ratas , Animales , Región CA1 Hipocampal/metabolismo , Ratas Sprague-Dawley , Complicaciones Cognitivas Postoperatorias/metabolismo , Hipocampo/metabolismo , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/metabolismo
18.
Exp Brain Res ; 241(11-12): 2807-2816, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37878109

RESUMEN

This study aims to summarize the changes of functional diffusion kurtosis imaging (DKI) parameters in the bilateral hippocampal CA1 region of the hemorrhagic shock reperfusion (HSR) model of rats and their correlation with cognitive dysfunction. Adult male Sprague-Dawley rats (9-10 weeks of age, weighing 350-400 g) were randomized into the HSR group (n = 30) and the sham-operated group (Sham) (n = 30). Rats in the HSR group and the Sham group were subdivided into five time points (1, 2, 4, 8, and 12 weeks) for examination. Diffusion kurtosis imaging (DKI) was performed. Cognitive dysfunction was analyzed by the Morris Water Maze. The correlation between the DKI parameters and cognitive dysfunction was analyzed by the Spearman correlation. In the HSR group, the values of axial kurtosis (Ka), radial kurtosis (Kr), and mean kurtosis (MK) in the bilateral hippocampal CA1 of rats at 1, 2, 4, 8 and 12 weeks after the surgery were significantly higher. The rats in the HSR group had significantly longer escape latency than in the Sham group. The rats in the HSR group had significantly shorter time and shorter distance in target quadrant than those in the Sham group. The escape latency had positive correlation with MK, Ka, and Kr. The distance and the time in target quadrant had negative correlation with MK, Ka, and Kr. The parameters get from the DKI could accurately evaluate the abnormal blood perfusion and microstructure changes in hippocampal CA1 area of the incomplete cerebral ischemia reperfusion rats induced by HSR. MK, Ka, and Kr values could reflect the decreased learning and memory ability in HSR rat model.


Asunto(s)
Isquemia Encefálica , Disfunción Cognitiva , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Reperfusión , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Región CA1 Hipocampal/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética
19.
Zhen Ci Yan Jiu ; 48(9): 843-51, 2023 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-37730254

RESUMEN

OBJECTIVE: To observe the effect of electroacupuncture on brain-derived neurotrophin factor (BDNF) / tyrosine kinase receptor B (TRKB) / cyclic adenosine monophosphate response element binding protein (CREB) pathway, synaptic plasticity marker protein and synaptic ultrastructure in the hippocampus of rats with learning and memory impairment induced by cerebral ischemia reperfusion (IR), so as to explore its mechanisms underlying improvement of cognitive impairment after stroke. METHODS: SD rats were randomly divided into blank, sham operation, model, and EA groups, with 12 rats in each group. The model of IR was established by occlusion of the middle cerebral artery. EA (2 Hz/10 Hz, 1-3 mA) was applied to "Shenting" (GV24) and "Baihui" (GV20) for 30 min, once daily for 14 days. The neurological function was evaluated according to the Zea Longa's score criteria. Morris water maze test was used to detect the learning and memory function of the rats. Nissl staining was used to observe the pathological morphology of the hippocampus. Transmission electron microscopy was used to observe the ultrastructure of the syna-pse in the hippocampus, the synaptic gap width and postsynaptic dense substance (PSD) thickness were measured. Immunofluorescence staining was used to observe the positive expression levels of BDNF, PSD-95 and synaptophysin (SYN) in hippocampal CA1 region. The protein expression levels of BDNF, TRKB, CREB, PSD-95, and SYN in hippocampal tissue were detected by Western blot. RESULTS: Compared with the sham operation group, the neurological function score and escape latency (EL) were significantly increased (P<0.01), the times of crossing the original platform were decreased (P<0.01), the number of neurons in the CA1 area of the hippocampus was reduced, with incomplete morphology, widened synaptic gaps and significantly decreased PSD thickness (P<0.01), the positive expressions of BDNF, PSD-95, SYN and the protein expression levels of BDNF, TRKB, CREB, PSD-95, SYN were significantly decreased (P<0.01) in the model group. Compared with the model group, the neurological function scores and EL on the 12th and 13th day were decreased (P<0.01, P<0.05), the times of crossing the original platform were increased (P<0.01), the morphology of hippocampal CA1 neurons improved, the synaptic gaps was decreased (P<0.01), the PSD thickness was significantly increased (P<0.01), the positive expressions of BDNF, PSD-95, SYN, and the protein expression levels of BDNF, TRKB, CREB, PSD-95, SYN were increased (P<0.05, P<0.01) in the EA group. CONCLUSION: EA can alleviate cognitive impairment in IR rats, which may be related to its function in up-regulating the proteins of BDNF/TRKB/CREB pathway, promoting the expressions of synaptic plasticity marker proteins PSD-95 and SYN, thus improving the synaptic plasticity.


Asunto(s)
Electroacupuntura , Daño por Reperfusión , Animales , Ratas , Ratas Sprague-Dawley , Factor Neurotrófico Derivado del Encéfalo/genética , Infarto Cerebral , Hipocampo , Daño por Reperfusión/genética , Daño por Reperfusión/terapia , Plasticidad Neuronal/genética , Región CA1 Hipocampal , Transducción de Señal
20.
Zhen Ci Yan Jiu ; 48(8): 746-53, 2023 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-37614132

RESUMEN

OBJECTIVE: To observe the effect of moxibustion at Governor Vessel acupoints on inositol requiring enzyme 1 (IRE1) / X-box binding protein 1 (XBP1) pathway in hippocampal CA1 region of rats with vascular dementia (VD), so as to explore its mechanisms in the treatment of VD. METHODS: Male SD rats were randomly divided into normal, sham operation, model, moxibustion (Moxi) and medication groups (n=12). The VD model was established by permanent ligation of bilateral common carotid arteries. For rats of the Moxi group, mild moxibustion was given to "Baihui" (GV20), "Dazhui" (GV14) and "Fengfu" (GV16) for 20 min each point, once a day for consecutive 6 days per week, for a total of 4 weeks. For rats of the medication group, intragastric perfusion of nimodipine was given 3 times each day with total dose of 2 mg•kg-1•d-1 for 4 weeks. Morris water maze test was used to detect the learning and memory ability of rats before and after modeling as well as after intervention. The apoptosis rate of nerve cells in hippocampal CA1 region was detected by TUNEL staining. The proteins and mRNA expression levels of IRE1, XBP1, B-cell lymphoma/leukemia-2 (Bcl-2), Bcl-2 associated X protein (Bax) in hippocampal CA1 region were detected by Western blot and real-time quantitative PCR, respectively. RESULTS: Compared with the sham operation group, the average escape latency was significantly prolonged (P<0.01), the number of times crossing the original platform was significantly reduced (P<0.01), the apoptosis rate of nerve cells in hippocampal CA1 region was significantly increased (P<0.01), the proteins and mRNA expression levels of IRE1, XBP1 and Bax were significantly increased (P<0.01), and the expression levels of Bcl-2 protein and mRNA were significantly decreased (P<0.01) in rats of the model group. After treatment, compared with the model group, the average escape latency was significantly shortened (P<0.01), the number of times crossing the original platform was increased (P<0.05), the apoptosis rate of nerve cells in hippocampal CA1 region was significantly decreased (P<0.01), the protein and mRNA expression levels of IRE1, XBP1 and Bax were decreased (P<0.05, P<0.01), and the expression levels of Bcl-2 protein and mRNA were increased (P<0.05, P<0.01) in rats of the Moxi group and medication group. There was no significant difference in the above indexes between the Moxi group and the medication group. CONCLUSION: Moxibustion at the acupoints of Governor Vessel can improve the cognitive function of VD rats, and its mechanism may be related to regulating IRE1/XBP1 pathway, inhibiting the release of pro-apoptotic protein Bax, increasing the expression of anti-apoptotic protein Bcl-2, and thus inhibiting the apoptosis of hippocampal nerve cells.


Asunto(s)
Demencia Vascular , Moxibustión , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Región CA1 Hipocampal , Proteína X Asociada a bcl-2/genética , Proteína 1 de Unión a la X-Box , Demencia Vascular/genética , Demencia Vascular/terapia , Proteínas Proto-Oncogénicas c-bcl-2 , Inositol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA