Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.372
Filtrar
1.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822833

RESUMEN

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Asunto(s)
Ciclopentanos , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Saccharum , Ácido Salicílico , Transducción de Señal , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Saccharum/genética , Saccharum/microbiología , Transducción de Señal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Nicotiana/genética , Nicotiana/microbiología , Especies Reactivas de Oxígeno/metabolismo , Acetatos/farmacología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Ácido Abscísico/metabolismo , Ralstonia solanacearum/fisiología , Ralstonia solanacearum/patogenicidad
2.
BMC Plant Biol ; 24(1): 473, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811869

RESUMEN

BACKGROUND: Carbon nano sol (CNS) can markedly affect the plant growth and development. However, few systematic analyses have been conducted on the underlying regulatory mechanisms in plants, including tobacco (Nicotiana tabacum L.). RESULTS: Integrated analyses of phenome, ionome, transcriptome, and metabolome were performed in this study to elucidate the physiological and molecular mechanisms underlying the CNS-promoting growth of tobacco plants. We found that 0.3% CNS, facilitating the shoot and root growth of tobacco plants, significantly increased shoot potassium concentrations. Antioxidant, metabolite, and phytohormone profiles showed that 0.3% CNS obviously reduced reactive oxygen species production and increased antioxidant enzyme activity and auxin accumulation. Comparative transcriptomics revealed that the GO and KEGG terms involving responses to oxidative stress, DNA binding, and photosynthesis were highly enriched in response to exogenous CNS application. Differential expression profiling showed that NtNPF7.3/NtNRT1.5, potentially involved in potassium/auxin transport, was significantly upregulated under the 0.3% CNS treatment. High-resolution metabolic fingerprints showed that 141 and 163 metabolites, some of which were proposed as growth regulators, were differentially accumulated in the roots and shoots under the 0.3% CNS treatment, respectively. CONCLUSIONS: Taken together, this study revealed the physiological and molecular mechanism underlying CNS-mediated growth promotion in tobacco plants, and these findings provide potential support for improving plant growth through the use of CNS.


Asunto(s)
Carbono , Metabolómica , Nicotiana , Reguladores del Crecimiento de las Plantas , Transcriptoma , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Carbono/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Metaboloma , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/genética
3.
BMC Plant Biol ; 24(1): 470, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811892

RESUMEN

Ring rot, caused by Botryosphaeria dothidea, is an important fungal disease of pear fruit during postharvest storage. Melatonin, as a plant growth regulator, plays an important role in enhancing the stress resistance of pear fruits. It enhances the resistance of pear fruits to ring rot by enhancing their antioxidant capacity. However, the underlying mechanism remains unclear. In this study, we examined the effect of melatonin on the growth of B. dothidea. Results showed that melatonin did not limit the growth of B. dothidea during in vitro culture. However, metabolomics and transcriptomics analyses of 'Whangkeumbae' pear (Pyrus pyrifolia) revealed that melatonin increased the activity of antioxidant enzymes, including peroxidase (POD), superoxide dismutase (SOD), and polyphenol oxidase (PPO), in the fruit and activated the phenylpropanoid metabolic pathway to improve fruit resistance. Furthermore, melatonin treatment significantly increased the contents of jasmonic acid and phlorizin in pear fruit, both of which could improve disease resistance. Jasmonic acid regulates melatonin synthesis and can also promote phlorizin synthesis, ultimately improving the resistance of pear fruit to ring rot. In summary, the interaction between melatonin and jasmonic acid and phlorizin enhances the antioxidant defense response and phenylpropanoid metabolism pathway of pear fruit, thereby enhancing the resistance of pear fruit to ring rot disease. Our results provide new insights into the application of melatonin in the resistance to pear fruit ring rot.


Asunto(s)
Ascomicetos , Ciclopentanos , Resistencia a la Enfermedad , Frutas , Melatonina , Oxilipinas , Florizina , Enfermedades de las Plantas , Pyrus , Pyrus/microbiología , Pyrus/metabolismo , Pyrus/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/metabolismo , Ascomicetos/fisiología , Melatonina/farmacología , Melatonina/metabolismo , Resistencia a la Enfermedad/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Frutas/microbiología , Frutas/metabolismo , Florizina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Antioxidantes/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
4.
BMC Plant Biol ; 24(1): 418, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760720

RESUMEN

BACKGROUND: Blueberry fruit exhibit atypical climacteric ripening with a non-auto-catalytic increase in ethylene coincident with initiation of ripening. Further, application of ethephon, an ethylene-releasing plant growth regulator, accelerates ripening by increasing the proportion of ripe (blue) fruit as compared to the control treatment. To investigate the mechanistic role of ethylene in regulating blueberry ripening, we performed transcriptome analysis on fruit treated with ethephon, an ethylene-releasing plant growth regulator. RESULTS: RNA-Sequencing was performed on two sets of rabbiteye blueberry ('Powderblue') fruit: (1) fruit from divergent developmental stages; and (2) fruit treated with ethephon, an ethylene-releasing compound. Differentially expressed genes (DEGs) from divergent developmental stages clustered into nine groups, among which cluster 1 displayed reduction in expression during ripening initiation and was enriched with photosynthesis related genes, while cluster 7 displayed increased expression during ripening and was enriched with aromatic-amino acid family catabolism genes, suggesting stimulation of anthocyanin biosynthesis. More DEGs were apparent at 1 day after ethephon treatment suggesting its early influence during ripening initiation. Overall, a higher number of genes were downregulated in response to ethylene. Many of these overlapped with cluster 1 genes, indicating that ethylene-mediated downregulation of photosynthesis is an important developmental event during the ripening transition. Analyses of DEGs in response to ethylene also indicated interplay among phytohormones. Ethylene positively regulated abscisic acid (ABA), negatively regulated jasmonates (JAs), and influenced auxin (IAA) metabolism and signaling genes. Phytohormone quantification supported these effects of ethylene, indicating coordination of blueberry fruit ripening by ethylene. CONCLUSION: This study provides insights into the role of ethylene in blueberry fruit ripening. Ethylene initiates blueberry ripening by downregulating photosynthesis-related genes. Also, ethylene regulates phytohormone-metabolism and signaling related genes, increases ABA, and decreases JA concentrations. Together, these results indicate that interplay among multiple phytohormones regulates the progression of ripening, and that ethylene is an important coordinator of such interactions during blueberry fruit ripening.


Asunto(s)
Ácido Abscísico , Arándanos Azules (Planta) , Ciclopentanos , Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Fotosíntesis , Reguladores del Crecimiento de las Plantas , Etilenos/metabolismo , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Arándanos Azules (Planta)/genética , Arándanos Azules (Planta)/crecimiento & desarrollo , Arándanos Azules (Planta)/metabolismo , Arándanos Azules (Planta)/fisiología , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/efectos de los fármacos , Oxilipinas/metabolismo , Regulación hacia Abajo , Compuestos Organofosforados/farmacología , Perfilación de la Expresión Génica
5.
Bioessays ; 46(6): e2400043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571390

RESUMEN

Volatile compounds, such as nitric oxide and ethylene gas, play a vital role as signaling molecules in organisms. Ethylene is a plant hormone that regulates a wide range of plant growth, development, and responses to stress and is perceived by a family of ethylene receptors that localize in the endoplasmic reticulum. Constitutive Triple Response 1 (CTR1), a Raf-like protein kinase and a key negative regulator for ethylene responses, tethers to the ethylene receptors, but undergoes nuclear translocation upon activation of ethylene signaling. This ER-to-nucleus trafficking transforms CTR1 into a positive regulator for ethylene responses, significantly enhancing stress resilience to drought and salinity. The nuclear trafficking of CTR1 demonstrates that the spatiotemporal control of ethylene signaling is essential for stress adaptation. Understanding the mechanisms governing the spatiotemporal control of ethylene signaling elements is crucial for unraveling the system-level regulatory mechanisms that collectively fine-tune ethylene responses to optimize plant growth, development, and stress adaptation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Transducción de Señal , Estrés Fisiológico , Etilenos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Retículo Endoplásmico/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Quinasas
6.
Plant Sci ; 344: 112091, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38615719

RESUMEN

Procedural abscission of outer reproductive organs during flower and fruit development occurs in most plant lineages. Undesired abscission, such as fruitlet shedding causes considerable yield loss in many fruit-producing species. Ethylene is one of the key factors regulating organ abscission. However, the participants involved in the ethylene-mediated abscission pathway remains largely unidentified. In this study, we focused on the ethylene response transcription factors (ERFs) regulating fruitlet abscission in an industrial tree species, A. catechu. A total of 165 ERF genes have been found in the A. catechu genome and eight of these showed distinct expression between the "about-to-abscise" and "non-abscised" samples. An AcERF116 gene with high expression level in the fruit abscission zone (FAZ) was selected for further study. Overexpression of the AcERF116 gene accelerated cell separation in the abscission zone (AZ) and promoted pedicel abscission in transgenic tomato lines. The PG (ploygalacturonase) activity was enhanced in the FAZs of A. catechu fruitlets during ethylene-induced fruitlet abscission, while the PME (pectin methylesterase) activity was suppressed. In addition, cytosolic alkalization was observed in the AZs during abscission in both tomato and A. catechu. Our results suggest that AcERF116 plays a critical role in the crosstalk of ethylene and fruitlet abscission in A. catechu.


Asunto(s)
Etilenos , Frutas , Proteínas de Plantas , Etilenos/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo
7.
J Plant Physiol ; 296: 154237, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583194

RESUMEN

Selenium (Se) is an essential micronutrient for both human and animals. Plants serve as the primary source of Se in the food chain. Se concentration and availability in plants is influenced by soil properties and environmental conditions. Optimal Se levels promote plant growth and enhance stress tolerance, while excessive Se concentration can result in toxicity. Se enhances plants ROS scavenging ability by promoting antioxidant compound synthesis. The ability of Se to maintain redox balance depends upon ROS compounds, stress conditions and Se application rate. Furthermore, Se-dependent antioxidant compound synthesis is critically reliant on plant macro and micro nutritional status. As these nutrients are fundamental for different co-factors and amino acid synthesis. Additionally, phytohormones also interact with Se to promote plant growth. Hence, utilization of phytohormones and modified crop nutrition can improve Se-dependent crop growth and plant stress tolerance. This review aims to explore the assimilation of Se into plant proteins, its intricate effect on plant redox status, and the specific interactions between Se and phytohormones. Furthermore, we highlight the proposed physiological and genetic mechanisms underlying Se-mediated phytohormone-dependent plant growth modulation and identified research opportunities that could contribute to sustainable agricultural production in the future.


Asunto(s)
Antioxidantes , Selenio , Animales , Humanos , Antioxidantes/metabolismo , Selenio/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantas/metabolismo
8.
Physiol Plant ; 176(3): e14313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666351

RESUMEN

Bipolaris setariae is known to cause brown stripe disease in sugarcane, resulting in significant yield losses. Silicon (Si) has the potential to enhance plant growth and biotic resistance. In this study, the impact of Si on brown stripe disease was investigated across susceptible and resistant sugarcane varieties, utilizing four Si concentrations (0, 15, 30, and 45 g per barrel of Na2SiO3·5H2O). Si significantly reduced the incidence of brown stripe disease (7.41-59.23%) and alleviated damage to sugarcane growth parameters, photosynthetic parameters, and photosynthetic pigments. Submicroscopic observations revealed that Si induced the accumulation of silicified cells in leaves, reduced spore accumulation, decreased stomatal size, and protected organelles from B. setariae damage. In addition, Si increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), reduced reactive oxygen species production (malondialdehyde and hydrogen peroxide) and modulated the expression of genes associated with hormone signalling (PR1, TGA, AOS, AOC, LOX, PYL8, and SnRK2), leading to the accumulation of abscisic acid and jasmonic acid and inhibiting SA synthesis. Si also activated the activity of metabolism-related enzymes (polyphenol oxidase and phenylalanine ammonia lyase) and the gene expression of PAL-dependent genes (PAL, C4H, and 4CL), regulating the accumulation of metabolites, such as chlorogenic acid and lignin. The antifungal test showed that chlorogenic acid (15ug µL-1) had a significant inhibitory effect on the growth of B. setariae. This study is the first to demonstrate the inhibitory effect of Si on B. setariae in sugarcane, highlighting Si as a promising and environmentally friendly strategy for managing brown stripe disease.


Asunto(s)
Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Especies Reactivas de Oxígeno , Saccharum , Silicio , Saccharum/efectos de los fármacos , Saccharum/metabolismo , Saccharum/microbiología , Saccharum/genética , Saccharum/crecimiento & desarrollo , Silicio/farmacología , Silicio/metabolismo , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Ascomicetos/fisiología , Ascomicetos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Depuradores de Radicales Libres/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-38668631

RESUMEN

Two Gram-negative bacterial strains designated MMS20-SJTN17T and MMS20-SJTR3T were isolated from a grassland soil sample, and taxonomically characterized using a polyphasic approach. The 16S rRNA gene sequence analysis indicates that both strains belong to the genus Paraburkholderia of the class Betaproteobacteria, with strain MMS20-SJTN17T being mostly related to Paraburkholderia sprentiae WSM5005T (96.45 % sequence similarity) and strain MMS20-SJTR3T to Paraburkholderia tuberum STM678T (98.59 % sequence similarity). MMS20-SJTN17T could grow at 15-40 °C (optimum, 25-30 °C) and at pH 6.0-8.0 (optimum, pH 6.0-7.0), whereas MMS20-SJTR3T could grow at 10-40 °C (optimum, 30-37 °C) and at pH 6.0-8.0 (optimum, pH 6.0). Both strains tolerated up to 1 % (w/v) NaCl (optimum, 0 %). The major fatty acids of MMS20-SJTN17T were C16 : 0 and C19 : 0 cyclo ω8c, and those of MMS20-SJTR3T were C17 : 0 cyclo and a summed feature comprising C18 : 1 ω7c and/or C18 : 1 ω6c. The major isoprenoid quinone of both strains was ubiquinone-8 and the diagnostic polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Regarding plant growth promoting potential, both strains were capable of producing indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylic acid deaminase, and also showed phosphate-solubilizing activity. A genome-based comparison using orthologous average nucleotide identity and digital DNA-DNA hybridization values indicates that strain MMS20-SJTN17T shares highest relatedness with Paraburkholderia monticola JC2948T and MMS20-SJTR3T with Paraburkholderia antibiotica G-4-1-8T, with values clearly below the cutoffs for species distinction. Examination of biosynthetic gene clusters responsible for secondary metabolite production reveals unique characteristics distinguishing each strain from closely related Paraburkholderia species. On the basis of genotypic, phenotypic, chemotaxonomic and phylogenomic data, each strain should be classified as a novel species of the genus Paraburkholderia, for which the names Paraburkholderia translucens sp. nov. (=MMS20-SJTN17T=LMG 32366T=KCTC 82783T) and Paraburkholderia sejongensis sp. nov. (=MMS20-SJTR3T=LMG 32367T=KCTC 82784T) are proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Pradera , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Fosfolípidos , Burkholderiaceae/aislamiento & purificación , Burkholderiaceae/genética , Burkholderiaceae/clasificación , Ubiquinona , Reguladores del Crecimiento de las Plantas/metabolismo
10.
J Hazard Mater ; 470: 134228, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626683

RESUMEN

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Asunto(s)
Arsénico , Cadmio , Regulación de la Expresión Génica de las Plantas , Lolium , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico , Cadmio/toxicidad , Lolium/efectos de los fármacos , Lolium/metabolismo , Lolium/genética , Arsénico/toxicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
11.
BMC Plant Biol ; 24(1): 351, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684962

RESUMEN

BACKGROUND: Rose (Rosa hybrida) is a globally recognized ornamental plant whose growth and distribution are strongly limited by drought stress. The role of Mediator, a multiprotein complex crucial for RNA polymerase II-driven transcription, has been elucidated in drought stress responses in plants. However, its physiological function and regulatory mechanism in horticultural crop species remain elusive. RESULTS: In this study, we identified a Tail module subunit of Mediator, RhMED15a-like, in rose. Drought stress, as well as treatment with methyl jasmonate (MeJA) and abscisic acid (ABA), significantly suppressed the transcript level of RhMED15a-like. Overexpressing RhMED15a-like markedly bolstered the osmotic stress tolerance of Arabidopsis, as evidenced by increased germination rate, root length, and fresh weight. In contrast, the silencing of RhMED15a-like through virus induced gene silencing in rose resulted in elevated malondialdehyde accumulation, exacerbated leaf wilting, reduced survival rate, and downregulated expression of drought-responsive genes during drought stress. Additionally, using RNA-seq, we identified 972 differentially expressed genes (DEGs) between tobacco rattle virus (TRV)-RhMED15a-like plants and TRV controls. Gene Ontology (GO) analysis revealed that some DEGs were predominantly associated with terms related to the oxidative stress response, such as 'response to reactive oxygen species' and 'peroxisome'. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment highlighted pathways related to 'plant hormone signal transduction', in which the majority of DEGs in the jasmonate (JA) and ABA signalling pathways were induced in TRV-RhMED15a-like plants. CONCLUSION: Our findings underscore the pivotal role of the Mediator subunit RhMED15a-like in the ability of rose to withstand drought stress, probably by controlling the transcript levels of drought-responsive genes and signalling pathway elements of stress-related hormones, providing a solid foundation for future research into the molecular mechanisms underlying drought tolerance in rose.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Virus de Plantas , Rosa , Rosa/genética , Rosa/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Estrés Fisiológico/genética , Arabidopsis/genética , Arabidopsis/fisiología , Acetatos/farmacología , Plantas Modificadas Genéticamente
12.
Cells ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38667301

RESUMEN

Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.


Asunto(s)
Antioxidantes , Cadmio , Chlorophyta , Zeatina , Cadmio/toxicidad , Zeatina/metabolismo , Zeatina/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Chlorophyta/efectos de los fármacos , Chlorophyta/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Fitoquelatinas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo
13.
PeerJ ; 12: e17304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680887

RESUMEN

The MYB gene family exerts significant influence over various biological processes and stress responses in plants. Despite this, a comprehensive analysis of this gene family in pumpkin remains absent. In this study, the MYB genes of Cucurbita moschata were identified and clustered into 33 groups (C1-33), with members of each group being highly conserved in terms of their motif composition. Furthermore, the distribution of 175 CmoMYB genes across all 20 chromosomes was found to be non-uniform. Examination of the promoter regions of these genes revealed the presence of cis-acting elements associated with phytohormone responses and abiotic/biotic stress. Utilizing quantitative real-time polymerase chain reaction (qRT-PCR), the expression patterns of 13 selected CmoMYB genes were validated, particularly in response to exogenous phytohormone exposure and various abiotic stressors, including ABA, SA, MeJA, and drought treatments. Expression analysis in different tissues showed that CmoMYB genes are expressed at different levels in different tissues, suggesting that they are functionally divergent in regulating growth and abiotic stresses. These results provide a basis for future studies to characterize the function of the MYB gene family under abiotic stresses in pumpkins.


Asunto(s)
Cucurbita , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Estrés Fisiológico , Cucurbita/genética , Familia de Multigenes/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genes myb , Regiones Promotoras Genéticas/genética , Filogenia , Estudio de Asociación del Genoma Completo , Genoma de Planta/genética
14.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38676919

RESUMEN

Studying the response of physiological and xylem anatomical traits under cadmium stress is helpful to understand plants' response to heavy metal stress. Here, seedlings of Pinus thunbergii Parl. were treated with 50, 100 and 150 mg kg-1 Cd2+ for 28 days. Cadmium and nonstructural carbohydrate content of leaves, stems and roots, root Cd2+ flux, cadmium distribution pattern in stem xylem and phloem, stem xylem hydraulic traits, cell wall component fractions of stems and roots, phytohormonal content such as abscisic acid, gibberellic acid 3, molecule -indole-3-acetic acid, and jasmonic acid from both leaves and roots, as well as xylem anatomical traits from both stems and roots were measured. Root Cd2+ flux increased from 50 to 100 mmol L-1 Cd2+ stress, however it decreased at 150 mmol L-1 Cd2+. Cellulose and hemicellulose in leaves, stems and roots did not change significantly under cadmium stress, while pectin decreased significantly. The nonstructural carbohydrate content of both leaves and stems showed significant changes under cadmium stress while the root nonstructural carbohydrate content was not affected. In both leaves and roots, the abscisic acid content significantly increased under cadmium stress, while the gibberellic acid 3, indole-3-acetic acid and jasmonic acid methylester content significantly decreased. Both xylem specific hydraulic conductivity and xylem water potential decreased with cadmium stress, however tracheid diameter and double wall thickness of the stems and roots were not affected. High cadmium intensity was found in both the stem xylem and phloem in all cadmium stressed treatments. Our study highlighted the in situ observation of cadmium distribution in both the xylem and phloem, and demonstrated the instant response of physiological traits such as xylem water potential, xylem specific hydraulic conductivity, root Cd2+ flux, nonstructural carbohydrate content, as well as phytohormonal content under cadmium stress, and the less affected traits such as xylem anatomical traits, cellulose and hemicellulose.


Asunto(s)
Cadmio , Pinus , Plantones , Xilema , Cadmio/metabolismo , Xilema/metabolismo , Xilema/fisiología , Pinus/fisiología , Pinus/anatomía & histología , Pinus/metabolismo , Pinus/efectos de los fármacos , Plantones/fisiología , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/anatomía & histología , Reguladores del Crecimiento de las Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/anatomía & histología , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Estrés Fisiológico , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos
15.
Food Chem ; 450: 139349, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38631205

RESUMEN

Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.


Asunto(s)
Brassica , Homeostasis , Microplásticos , Oxidación-Reducción , Fotosíntesis , Reguladores del Crecimiento de las Plantas , Metabolismo Secundario , Selenio , Fotosíntesis/efectos de los fármacos , Brassica/metabolismo , Brassica/química , Brassica/crecimiento & desarrollo , Brassica/efectos de los fármacos , Microplásticos/metabolismo , Selenio/metabolismo , Selenio/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Homeostasis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Contaminantes del Suelo/metabolismo
16.
Plant Sci ; 344: 112084, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614360

RESUMEN

Mulberry (Morus alba L.) is a climacteric and highly perishable fruit. Ethylene has been considered to be an important trigger of fruit ripening process. However, the role of ethylene in the mulberry fruit ripening process remains unclear. In this study, we performed a comprehensive analysis of metabolomic and transcriptomic data of mulberry fruit and the physiological changes accompanying the fruit ripening process. Our study revealed that changes in the accumulation of specific metabolites at different stages of fruit development and ripening were closely correlated to transcriptional changes as well as underlying physiological changes and the development of taste biomolecules. The ripening of mulberry fruits was highly associated with the production of endogenous ethylene, and further application of exogenous ethylene assisted the ripening process. Transcriptomic analysis revealed that differential expression of diverse ripening-related genes was involved in sugar metabolism, anthocyanin biosynthesis, and cell wall modification pathways. Network analysis of transcriptomics and metabolomics data revealed that many transcription factors and ripening-related genes were involved, among which ethylene-responsive transcription factor 3 (MaERF3) plays a crucial role in the ripening process. The role of MaERF3 in ripening was experimentally proven in a transient overexpression assay in apples. Our study indicates that ethylene plays a vital role in modulating mulberry fruit ripening. The results provide a basis for guiding the genetic manipulation of mulberry fruits towards sustainable agricultural practices and improve post-harvest management, potentially enhancing the quality and shelf life of mulberry fruits for sustainable agriculture and forestry.


Asunto(s)
Etilenos , Frutas , Morus , Transcriptoma , Etilenos/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Morus/genética , Morus/metabolismo , Morus/fisiología , Morus/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Metabolómica , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma
17.
J Basic Microbiol ; 64(6): e2400023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558182

RESUMEN

P0 proteins encoded by the pepper vein yellow virus (PeVYV) are pathogenic factors that cause hypersensitive response (HR). However, the host gene expression related to PeVYV P0-induced HR has not been thoroughly studied. Transcriptomic technology was used to investigate the host pathways mediated by the PeVYV P0 protein to explore the molecular mechanisms underlying its function. We found 12,638 differentially expressed genes (DEGs); 6784 and 5854 genes were significantly upregulated and downregulated, respectively. Transcriptomic and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses revealed that salicylic acid (SA) and jasmonic acid (JA) synthesis-related gene expression was upregulated, and ethylene synthesis-related gene expression was downregulated. Ultrahigh performance liquid chromatography-tandem mass spectrometry was used to quantify SA and JA concentrations in Nicotiana benthamiana, and the P0 protein induced SA and JA biosynthesis. We then hypothesized that the pathogenic activity of the P0 protein might be owing to proteins related to host hormones in the SA and JA pathways, modulating host resistance at different times. Viral gene silencing suppression technology was used in N. benthamiana to characterize candidate proteins, and downregulating NbHERC3 (Homologous to E6-AP carboxy-terminus domain and regulator of choromosome condensation-1 dmain protein 3) accelerated cell necrosis in the host. The downregulation of NbCRR reduced cell death, while that of NbBax induced necrosis and curled heart leaves. Our findings indicate that NbHERC3, NbBax, and NbCRR are involved in P0 protein-driven cell necrosis.


Asunto(s)
Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Nicotiana , Oxilipinas , Enfermedades de las Plantas , Proteínas de Plantas , Ácido Salicílico , Proteínas Virales , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/virología , Ácido Salicílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Nicotiana/virología , Nicotiana/genética , Potyvirus/patogenicidad , Potyvirus/genética , Hojas de la Planta/virología , Hojas de la Planta/metabolismo , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno , Perfilación de la Expresión Génica , Capsicum/virología , Capsicum/genética , Capsicum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
18.
Biochem Biophys Res Commun ; 711: 149934, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38626621

RESUMEN

C-terminally encoded peptides (CEPs) are peptide hormones that function as mobile signals coordinating crucial developmental programs in plants. Previous studies have revealed that CEPs exert negative regulation on root development through interaction with CEP receptors (CEPRs), CEP DOWNSTREAMs (CEPDs), the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE (AHKs) and the transcriptional repressor Auxin/Indole-3-Acetic Acid (AUX/IAA). However, the precise molecular mechanisms underlying CEPs-mediated regulation of root development via auxin and cytokinin signaling pathways still necessitate further detailed investigation. In this study, we examined prior research and elucidated the underlying molecular mechanisms. The results showed that both synthetic AtCEPs and overexpression of AtCEP5 markedly supressed primary root elongation and lateral root (LR) formation in Arabidopsis. Molecular biology and genetics elucidated how CEPs inhibit root growth by suppressing auxin signaling while promoting cytokinin signaling. In summary, this study elucidated the inhibitory effects of AtCEPs on Arabidopsis root growth and provided insights into their potential molecular mechanisms, thus enhancing our comprehension of CEP-mediated regulation of plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/genética , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/genética
19.
J Hazard Mater ; 469: 134086, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38521034

RESUMEN

In this study, nanoplastic (NPs) at environmentally relevant concentration (0.001% w/w) had no effect on the growth of rice, while significantly elevated the phytotoxicity of As (III) by 9.4-22.8% based on the endpoints of biomass and photosynthesis. Mechanistically, NPs at 0.001% w/w enhanced As accumulation in the rice shoots and roots by 70.9% and 24.5%, respectively. Reasons of this finding can was that (1) the co-exposure with As and NPs significantly decreased abscisic acid content by 16.0% in rice, with subsequent increasing the expression of aquaporin related genes by 2.1- to 2.7-folds as compared with As alone treatment; (2) the presence of NPs significantly inhibited iron plaque formation on rice root surface by 22.5%. We firstly demonstrated that "Trojan horse effect" had no contribution to the enhancement of As accumulation by NPs exposure. Additionally, NPs disrupted the salicylic acid, jasmonic acid, and glutathione metabolism, which subsequently enhancing the oxidation (7.0%) and translocation (37.0%) of in planta As, and reducing arsenic detoxification pathways (e.g., antioxidative system (28.6-37.1%), As vacuolar sequestration (36.1%), and As efflux (18.7%)). Our findings reveal that the combined toxicity of NPs and traditional contaminations should be considered for realistic evaluations of NPs.


Asunto(s)
Arsénico , Oryza , Arsénico/toxicidad , Arsénico/metabolismo , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Microplásticos/metabolismo , Plantones , Glutatión/metabolismo , Raíces de Plantas/metabolismo
20.
Plant Physiol Biochem ; 210: 108543, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554534

RESUMEN

Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.


Asunto(s)
Frutas , Giberelinas , Reguladores del Crecimiento de las Plantas , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Giberelinas/metabolismo , Giberelinas/farmacología , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA