Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 937
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2320835121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900797

RESUMEN

Upper aerodigestive squamous cell carcinoma (UASCC) is a common and aggressive malignancy with few effective therapeutic options. Here, we investigate amino acid metabolism in this cancer, surprisingly noting that UASCC exhibits the highest methionine level across all human cancers, driven by its transporter LAT1. We show that LAT1 is also expressed at the highest level in UASCC, transcriptionally activated by UASCC-specific promoter and enhancers, which are directly coregulated by SCC master regulators TP63/KLF5/SREBF1. Unexpectedly, unbiased bioinformatic screen identifies EZH2 as the most significant target downstream of the LAT1-methionine pathway, directly linking methionine metabolism to epigenomic reprogramming. Importantly, this cascade is indispensable for the survival and proliferation of UASCC patient-derived tumor organoids. In addition, LAT1 expression is closely associated with cellular sensitivity to inhibition of the LAT1-methionine-EZH2 axis. Notably, this unique LAT1-methionine-EZH2 cascade can be targeted effectively by either pharmacological approaches or dietary intervention in vivo. In summary, this work maps a unique mechanistic cross talk between epigenomic reprogramming with methionine metabolism, establishes its biological significance in the biology of UASCC, and identifies a unique tumor-specific vulnerability which can be exploited both pharmacologically and dietarily.


Asunto(s)
Carcinoma de Células Escamosas , Regulación Neoplásica de la Expresión Génica , Transportador de Aminoácidos Neutros Grandes 1 , Metionina , Metionina/metabolismo , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Línea Celular Tumoral , Epigénesis Genética , Epigenómica/métodos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Animales , Proliferación Celular , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Reprogramación Celular/genética
2.
Cells ; 13(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38920635

RESUMEN

Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives).


Asunto(s)
Reprogramación Celular , Neoplasias de la Próstata , Humanos , Neoplasias de la Próstata/patología , Masculino , Reprogramación Celular/genética , Animales
3.
Cells ; 13(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38891103

RESUMEN

Patients with chronic hypoxia show a higher tumor incidence; however, no primary common cause has been recognized. Given the similarities between cellular reprogramming and oncogenic transformation, we directly compared these processes in human cells subjected to hypoxia. Mouse embryonic fibroblasts were employed as controls to compare transfection and reprogramming efficiency; human adipose-derived mesenchymal stem cells were employed as controls in human cells. Easily obtainable human peripheral blood mononuclear cells (PBMCs) were chosen to establish a standard protocol to compare cell reprogramming (into induced pluripotent stem cells (iPSCs)) and oncogenic focus formation efficiency. Cell reprogramming was achieved for all three cell types, generating actual pluripotent cells capable for differentiating into the three germ layers. The efficiencies of the cell reprogramming and oncogenic transformation were similar. Hypoxia slightly increased the reprogramming efficiency in all the cell types but with no statistical significance for PBMCs. Various PBMC types can respond to hypoxia differently; lymphocytes and monocytes were, therefore, reprogrammed separately, finding a significant difference between normoxia and hypoxia in monocytes in vitro. These differences were then searched for in vivo. The iPSCs and oncogenic foci were generated from healthy volunteers and patients with chronic obstructive pulmonary disease (COPD). Although higher iPSC generation efficiency in the patients with COPD was found for lymphocytes, this increase was not statistically significant for oncogenic foci. Remarkably, a higher statistically significant efficiency in COPD monocytes was demonstrated for both processes, suggesting that physiological hypoxia exerts an effect on cell reprogramming and oncogenic transformation in vivo in at least some cell types.


Asunto(s)
Transformación Celular Neoplásica , Reprogramación Celular , Células Madre Pluripotentes Inducidas , Humanos , Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Animales , Ratones , Hipoxia de la Célula , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/citología , Masculino , Femenino , Persona de Mediana Edad , Fibroblastos/metabolismo , Fibroblastos/patología , Diferenciación Celular/genética , Anciano
4.
Nat Commun ; 15(1): 4914, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851846

RESUMEN

FOXA family proteins act as pioneer factors by remodeling compact chromatin structures. FOXA1 is crucial for the chromatin binding of the androgen receptor (AR) in both normal prostate epithelial cells and the luminal subtype of prostate cancer (PCa). Recent studies have highlighted the emergence of FOXA2 as an adaptive response to AR signaling inhibition treatments. However, the role of the FOXA1 to FOXA2 transition in regulating cancer lineage plasticity remains unclear. Our study demonstrates that FOXA2 binds to distinct classes of developmental enhancers in multiple AR-independent PCa subtypes, with its binding depending on LSD1. Moreover, we reveal that FOXA2 collaborates with JUN at chromatin and promotes transcriptional reprogramming of AP-1 in lineage-plastic cancer cells, thereby facilitating cell state transitions to multiple lineages. Overall, our findings underscore the pivotal role of FOXA2 as a pan-plasticity driver that rewires AP-1 to induce the differential transcriptional reprogramming necessary for cancer cell lineage plasticity.


Asunto(s)
Linaje de la Célula , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito , Neoplasias de la Próstata , Factor de Transcripción AP-1 , Masculino , Humanos , Factor Nuclear 3-beta del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/genética , Línea Celular Tumoral , Linaje de la Célula/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Animales , Cromatina/metabolismo , Cromatina/genética , Plasticidad de la Célula/genética , Reprogramación Celular/genética , Ratones , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Elementos de Facilitación Genéticos/genética , Transcripción Genética
5.
BMC Cancer ; 24(1): 698, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849760

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) constitute a substantial part of human hepatocellular carcinoma (HCC). The present study was devised to explore TAM diversity and their roles in HCC progression. METHODS: Through the integration of multiple 10 × single-cell transcriptomic data derived from HCC samples and the use of consensus nonnegative matrix factorization (an unsupervised clustering algorithm), TAM molecular subtypes and expression programs were evaluated in detail. The roles played by these TAM subtypes in HCC were further probed through pseudotime, enrichment, and intercellular communication analyses. Lastly, vitro experiments were performed to validate the relationship between CD63, which is an inflammatory TAM expression program marker, and tumor cell lines. RESULTS: We found that the inflammatory expression program in TAMs had a more obvious interaction with HCC cells, and CD63, as a marker gene of the inflammatory expression program, was associated with poor prognosis of HCC patients. Both bulk RNA-seq and vitro experiments confirmed that higher TAM CD63 expression was associated with the growth of HCC cells as well as their epithelial-mesenchymal transition, metastasis, invasion, and the reprogramming of lipid metabolism. CONCLUSIONS: These analyses revealed that the TAM inflammatory expression program in HCC is closely associated with malignant tumor cells, with the hub gene CD63 thus representing an ideal target for therapeutic intervention in this cancer type.


Asunto(s)
Carcinoma Hepatocelular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas , Tetraspanina 30 , Macrófagos Asociados a Tumores , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transición Epitelial-Mesenquimal/genética , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/patología , Tetraspanina 30/metabolismo , Tetraspanina 30/genética , Metabolismo de los Lípidos/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Pronóstico , Reprogramación Celular/genética
6.
Cells ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891074

RESUMEN

Glioblastoma (GBM) is the most common yet uniformly fatal adult brain cancer. Intra-tumoral molecular and cellular heterogeneities are major contributory factors to therapeutic refractoriness and futility in GBM. Molecular heterogeneity is represented through molecular subtype clusters whereby the proneural (PN) subtype is associated with significantly increased long-term survival compared to the highly resistant mesenchymal (MES) subtype. Furthermore, it is universally recognized that a small subset of GBM cells known as GBM stem cells (GSCs) serve as reservoirs for tumor recurrence and progression. The clonal evolution of GSC molecular subtypes in response to therapy drives intra-tumoral heterogeneity and remains a critical determinant of GBM outcomes. In particular, the intra-tumoral MES reprogramming of GSCs using current GBM therapies has emerged as a leading hypothesis for therapeutic refractoriness. Preventing the intra-tumoral divergent evolution of GBM toward the MES subtype via new treatments would dramatically improve long-term survival for GBM patients and have a significant impact on GBM outcomes. In this review, we examine the challenges of the role of MES reprogramming in the malignant clonal evolution of glioblastoma and provide future perspectives for addressing the unmet therapeutic need to overcome resistance in GBM.


Asunto(s)
Neoplasias Encefálicas , Reprogramación Celular , Evolución Clonal , Glioblastoma , Humanos , Glioblastoma/patología , Glioblastoma/genética , Evolución Clonal/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Reprogramación Celular/genética , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología
7.
J Cell Mol Med ; 28(11): e18406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822457

RESUMEN

Increasing evidence has shown that homologous recombination (HR) and metabolic reprogramming are essential for cellular homeostasis. These two processes are independent as well as closely intertwined. Nevertheless, they have rarely been reported in lung adenocarcinoma (LUAD). We analysed the genomic, immune microenvironment and metabolic microenvironment features under different HR activity states. Using cell cycle, EDU and cell invasion assays, we determined the impacts of si-SHFM1 on the LUAD cell cycle, proliferation and invasion. The levels of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) were determined by ELISA in the NC and si-SHFM1 groups of A549 cells. Finally, cell samples were used to extract metabolites for HPIC-MS/MS to analyse central carbon metabolism. We found that high HR activity was associated with a poor prognosis in LUAD, and HR was an independent prognostic factor for TCGA-LUAD patients. Moreover, LUAD samples with a high HR activity presented low immune infiltration levels, a high degree of genomic instability, a good response status to immune checkpoint blockade therapy and a high degree of drug sensitivity. The si-SHFM1 group presented a significantly higher proportion of cells in the G0/G1 phase, lower levels of DNA replication, and significantly lower levels of cell migration and both TCA enzymes. Our current results indicated that there is a strong correlation between HR and the TCA cycle in LUAD. The TCA cycle can promote SHFM1-mediated HR in LUAD, raising their activities, which can finally result in a poor prognosis and impair immunotherapeutic efficacy.


Asunto(s)
Adenocarcinoma del Pulmón , Ciclo del Ácido Cítrico , Recombinación Homóloga , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Pronóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Proliferación Celular , Microambiente Tumoral , Línea Celular Tumoral , Ciclo Celular/genética , Reprogramación Celular/genética , Femenino , Células A549 , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Movimiento Celular , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/genética , Masculino , Regulación Neoplásica de la Expresión Génica , Reprogramación Metabólica
8.
Signal Transduct Target Ther ; 9(1): 151, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910148

RESUMEN

Pancreatic cancer is one of the deadly malignancies with a significant mortality rate and there are currently few therapeutic options for it. The tumor microenvironment (TME) in pancreatic cancer, distinguished by fibrosis and the existence of cancer-associated fibroblasts (CAFs), exerts a pivotal influence on both tumor advancement and resistance to therapy. Recent advancements in the field of engineered extracellular vesicles (EVs) offer novel avenues for targeted therapy in pancreatic cancer. This study aimed to develop engineered EVs for the targeted reprogramming of CAFs and modulating the TME in pancreatic cancer. EVs obtained from bone marrow mesenchymal stem cells (BMSCs) were loaded with miR-138-5p and the anti-fibrotic agent pirfenidone (PFD) and subjected to surface modification with integrin α5-targeting peptides (named IEVs-PFD/138) to reprogram CAFs and suppress their pro-tumorigenic effects. Integrin α5-targeting peptide modification enhanced the CAF-targeting ability of EVs. miR-138-5p directly inhibited the formation of the FERMT2-TGFBR1 complex, inhibiting TGF-ß signaling pathway activation. In addition, miR-138-5p inhibited proline-mediated collagen synthesis by directly targeting the FERMT2-PYCR1 complex. The combination of miR-138-5p and PFD in EVs synergistically promoted CAF reprogramming and suppressed the pro-cancer effects of CAFs. Preclinical experiments using the orthotopic stroma-rich and patient-derived xenograft mouse models yielded promising results. In particular, IEVs-PFD/138 effectively reprogrammed CAFs and remodeled TME, which resulted in decreased tumor pressure, enhanced gemcitabine perfusion, tumor hypoxia amelioration, and greater sensitivity of cancer cells to chemotherapy. Thus, the strategy developed in this study can improve chemotherapy outcomes. Utilizing IEVs-PFD/138 as a targeted therapeutic agent to modulate CAFs and the TME represents a promising therapeutic approach for pancreatic cancer.


Asunto(s)
Fibroblastos Asociados al Cáncer , Vesículas Extracelulares , MicroARNs , Neoplasias Pancreáticas , Microambiente Tumoral , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/patología , Ratones , MicroARNs/genética , Animales , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Reprogramación Celular/genética , Reprogramación Celular/efectos de los fármacos , Línea Celular Tumoral , Células Madre Mesenquimatosas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Gemcitabina
9.
Chin Med J (Engl) ; 137(11): 1351-1359, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38721807

RESUMEN

BACKGROUND: The ability to generate functional hepatocytes without relying on donor liver organs holds significant therapeutic promise in the fields of regenerative medicine and potential liver disease treatments. Clustered regularly interspaced short palindromic repeats (CRISPR) activator (CRISPRa) is a powerful tool that can conveniently and efficiently activate the expression of multiple endogenous genes simultaneously, providing a new strategy for cell fate determination. The main purpose of this study is to explore the feasibility of applying CRISPRa for hepatocyte reprogramming and its application in the treatment of mouse liver fibrosis. METHOD: The differentiation of mouse embryonic fibroblasts (MEFs) into functional induced hepatocyte-like cells (iHeps) was achieved by utilizing the CRISPRa synergistic activation mediator (SAM) system, which drove the combined expression of three endogenous transcription factors- Gata4, Foxa3 , and Hnf1a -or alternatively, the expression of two transcription factors, Gata4 and Foxa3 . In vivo , we injected adeno-associated virus serotype 6 (AAV6) carrying the CRISPRa SAM system into liver fibrotic Col1a1-CreER ; Cas9fl/fl mice, effectively activating the expression of endogenous Gata4 and Foxa3 in fibroblasts. The endogenous transcriptional activation of genes was confirmed using real-time quantitative polymerase chain reaction (RT-qPCR) and RNA-seq, and the morphology and characteristics of the induced hepatocytes were observed through microscopy. The level of hepatocyte reprogramming in vivo is detected by immunofluorescence staining, while the improvement of liver fibrosis is evaluated through Sirius red staining, alpha-smooth muscle actin (α-SMA) immunofluorescence staining, and blood alanine aminotransferase (ALT) examination. RESULTS: Activation of only two factors, Gata4 and Foxa3 , via CRISPRa was sufficient to successfully induce the transformation of MEFs into iHeps. These iHeps could be expanded in vitro and displayed functional characteristics similar to those of mature hepatocytes, such as drug metabolism and glycogen storage. Additionally, AAV6-based delivery of the CRISPRa SAM system effectively induced the hepatic reprogramming from fibroblasts in mice with live fibrosis. After 8 weeks of induction, the reprogrammed hepatocytes comprised 0.87% of the total hepatocyte population in the mice, significantly reducing liver fibrosis. CONCLUSION: CRISPRa-induced hepatocyte reprogramming may be a promising strategy for generating functional hepatocytes and treating liver fibrosis caused by hepatic diseases.


Asunto(s)
Fibroblastos , Factor de Transcripción GATA4 , Factor Nuclear 3-gamma del Hepatocito , Hepatocitos , Animales , Ratones , Factor Nuclear 3-gamma del Hepatocito/metabolismo , Factor Nuclear 3-gamma del Hepatocito/genética , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA4/genética , Fibroblastos/metabolismo , Hepatocitos/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Reprogramación Celular/fisiología , Reprogramación Celular/genética , Diferenciación Celular/fisiología , Diferenciación Celular/genética , Células Cultivadas
10.
Nature ; 631(8019): 170-178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768632

RESUMEN

Epigenetic reprogramming resets parental epigenetic memories and differentiates primordial germ cells (PGCs) into mitotic pro-spermatogonia or oogonia. This process ensures sexually dimorphic germ cell development for totipotency1. In vitro reconstitution of epigenetic reprogramming in humans remains a fundamental challenge. Here we establish a strategy for inducing epigenetic reprogramming and differentiation of pluripotent stem-cell-derived human PGC-like cells (hPGCLCs) into mitotic pro-spermatogonia or oogonia, coupled with their extensive amplification (about >1010-fold). Bone morphogenetic protein (BMP) signalling is a key driver of these processes. BMP-driven hPGCLC differentiation involves attenuation of the MAPK (ERK) pathway and both de novo and maintenance DNA methyltransferase activities, which probably promote replication-coupled, passive DNA demethylation. hPGCLCs deficient in TET1, an active DNA demethylase abundant in human germ cells2,3, differentiate into extraembryonic cells, including amnion, with de-repression of key genes that bear bivalent promoters. These cells fail to fully activate genes vital for spermatogenesis and oogenesis, and their promoters remain methylated. Our study provides a framework for epigenetic reprogramming in humans and an important advance in human biology. Through the generation of abundant mitotic pro-spermatogonia and oogonia-like cells, our results also represent a milestone for human in vitro gametogenesis research and its potential translation into reproductive medicine.


Asunto(s)
Reprogramación Celular , Metilación de ADN , Epigénesis Genética , Células Germinativas , Proteínas Proto-Oncogénicas , Humanos , Masculino , Reprogramación Celular/genética , Metilación de ADN/genética , Células Germinativas/metabolismo , Células Germinativas/citología , Femenino , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/deficiencia , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Espermatogonias/citología , Espermatogonias/metabolismo , Espermatogénesis/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Sistema de Señalización de MAP Quinasas , Regiones Promotoras Genéticas/genética , Oogénesis/genética , Mitosis/genética , Oxigenasas de Función Mixta
11.
Genes (Basel) ; 15(5)2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38790204

RESUMEN

Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for a sufficient time. iPSCs are typically generated using viruses or virus-based methods, which have drawbacks such as vector persistence, risk of insertional mutagenesis, and oncogenesis. The application of less harmful nonviral vectors is limited as conventional plasmids cannot deliver the levels or duration of the factors necessary from a single transfection. Hence, plasmids that are most often used for reprogramming employ the potentially oncogenic Epstein-Barr nuclear antigen 1 (EBNA-1) system to ensure adequate levels and persistence of expression. In this study, we explored the use of nonviral SMAR DNA vectors to reprogram human fibroblasts into iPSCs. We show for the first time that iPSCs can be generated using nonviral plasmids without the use of EBNA-1 and that these DNA vectors can provide sufficient expression to induce pluripotency. We describe an optimised reprogramming protocol using these vectors that can produce high-quality iPSCs with comparable pluripotency and cellular function to those generated with viruses or EBNA-1 vectors.


Asunto(s)
Reprogramación Celular , Fibroblastos , Vectores Genéticos , Células Madre Pluripotentes Inducidas , Plásmidos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Vectores Genéticos/genética , Reprogramación Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Plásmidos/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Células Cultivadas , Transfección/métodos
12.
Genes Dev ; 38(7-8): 308-321, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38719541

RESUMEN

The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we used domain swapping and mutagenesis to study Oct4's reprogramming ability, identifying a redox-sensitive DNA binding domain, cysteine residue (Cys48), as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1 C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs) but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression, and aberrant differentiation. Pou5f1 C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1 C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Factor 3 de Transcripción de Unión a Octámeros , Oxidación-Reducción , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Animales , Ratones , Diferenciación Celular/genética , Reprogramación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos
13.
Cell Rep ; 43(5): 114176, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38691454

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis due to therapeutic resistance. We show that PDAC cells undergo global epigenetic reprogramming to acquire chemoresistance, a process that is driven at least in part by protein arginine methyltransferase 1 (PRMT1). Genetic or pharmacological PRMT1 inhibition impairs adaptive epigenetic reprogramming and delays acquired resistance to gemcitabine and other common chemo drugs. Mechanistically, gemcitabine treatment induces translocation of PRMT1 into the nucleus, where its enzymatic activity limits the assembly of chromatin-bound MAFF/BACH1 transcriptional complexes. Cut&Tag chromatin profiling of H3K27Ac, MAFF, and BACH1 suggests a pivotal role for MAFF/BACH1 in global epigenetic response to gemcitabine, which is confirmed by genetically silencing MAFF. PRMT1 and MAFF/BACH1 signature genes identified by Cut&Tag analysis distinguish gemcitabine-resistant from gemcitabine-sensitive patient-derived xenografts of PDAC, supporting the PRMT1-MAFF/BACH1 epigenetic regulatory axis as a potential therapeutic avenue for improving the efficacy and durability of chemotherapies in patients of PDAC.


Asunto(s)
Desoxicitidina , Resistencia a Antineoplásicos , Epigénesis Genética , Gemcitabina , Neoplasias Pancreáticas , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Línea Celular Tumoral , Animales , Ratones , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/genética
14.
Front Immunol ; 15: 1383358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779657

RESUMEN

Introduction: Immune cells that contribute to the pathogenesis of systemic lupus erythematosus (SLE) derive from adult hematopoietic stem and progenitor cells (HSPCs) within the bone marrow (BM). For this reason, we reasoned that fundamental abnormalities in SLE can be traced to a BM-derived HSPC inflammatory signature. Methods: BM samples from four SLE patients, six healthy controls, and two umbilical cord blood (CB) samples were used. CD34+ cells were isolated from BM and CB samples, and single-cell RNA-sequencing was performed. Results: A total of 426 cells and 24,473 genes were used in the analysis. Clustering analysis resulted in seven distinct clusters of cell types. Mutually exclusive markers, which were characteristic of each cell type, were identified. We identified three HSPC subpopulations, one of which consisted of proliferating cells (MKI67 expressing cells), one T-like, one B-like, and two myeloid-like progenitor subpopulations. Differential expression analysis revealed i) cell cycle-associated signatures, in healthy BM of HSPC clusters 3 and 4 when compared with CB, and ii) interferon (IFN) signatures in SLE BM of HSPC clusters 3 and 4 and myeloid-like progenitor cluster 5 when compared with healthy controls. The IFN signature in SLE appeared to be deregulated following TF regulatory network analysis and differential alternative splicing analysis between SLE and healthy controls in HSPC subpopulations. Discussion: This study revealed both quantitative-as evidenced by decreased numbers of non-proliferating early progenitors-and qualitative differences-characterized by an IFN signature in SLE, which is known to drive loss of function and depletion of HSPCs. Chronic IFN exposure affects early hematopoietic progenitors in SLE, which may account for the immune aberrancies and the cytopenias in SLE.


Asunto(s)
Perfilación de la Expresión Génica , Células Madre Hematopoyéticas , Interferones , Lupus Eritematoso Sistémico , Análisis de la Célula Individual , Transcriptoma , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Células Madre Hematopoyéticas/metabolismo , Interferones/metabolismo , Interferones/genética , Femenino , Adulto , Reprogramación Celular/genética , Masculino
15.
Signal Transduct Target Ther ; 9(1): 112, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670977

RESUMEN

The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.


Asunto(s)
COVID-19 , Reprogramación Celular , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/citología , Reprogramación Celular/genética , SARS-CoV-2/genética , Diferenciación Celular/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patología , Medicina Regenerativa , Enfermedades del Sistema Nervioso/terapia , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología
16.
Dev Cell ; 59(8): 1010-1027.e8, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38569549

RESUMEN

Ten-eleven translocation (TET) enzymes iteratively oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during mammalian germline reprogramming remains unresolved due to the inability to decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 (Tet1-HxD) and TET1 that stalls oxidation at 5hmC (Tet1-V). Tet1 knockout and catalytic mutant primordial germ cells (PGCs) fail to erase methylation at select imprinting control regions and promoters of meiosis-associated genes, validating the requirement for the iterative oxidation of 5mC for complete germline reprogramming. TET1V and TET1HxD rescue most hypermethylation of Tet1-/- sperm, suggesting the role of TET1 beyond its oxidative capability. We additionally identify a broader class of hypermethylated regions in Tet1 mutant mouse sperm that depend on TET oxidation for reprogramming. Our study demonstrates the link between TET1-mediated germline reprogramming and sperm methylome patterning.


Asunto(s)
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Metilación de ADN , Proteínas de Unión al ADN , Impresión Genómica , Oxidación-Reducción , Proteínas Proto-Oncogénicas , Espermatozoides , Animales , Masculino , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Espermatozoides/metabolismo , 5-Metilcitosina/metabolismo , Reprogramación Celular/genética , Ratones Noqueados , Ratones Endogámicos C57BL
17.
Elife ; 122024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517750

RESUMEN

Partial reprogramming by cyclic short-term expression of Yamanaka factors holds promise for shifting cells to younger states and consequently delaying the onset of many diseases of aging. However, the delivery of transgenes and potential risk of teratoma formation present challenges for in vivo applications. Recent advances include the use of cocktails of compounds to reprogram somatic cells, but the characteristics and mechanisms of partial cellular reprogramming by chemicals remain unclear. Here, we report a multi-omics characterization of partial chemical reprogramming in fibroblasts from young and aged mice. We measured the effects of partial chemical reprogramming on the epigenome, transcriptome, proteome, phosphoproteome, and metabolome. At the transcriptome, proteome, and phosphoproteome levels, we saw widescale changes induced by this treatment, with the most notable signature being an upregulation of mitochondrial oxidative phosphorylation. Furthermore, at the metabolome level, we observed a reduction in the accumulation of aging-related metabolites. Using both transcriptomic and epigenetic clock-based analyses, we show that partial chemical reprogramming reduces the biological age of mouse fibroblasts. We demonstrate that these changes have functional impacts, as evidenced by changes in cellular respiration and mitochondrial membrane potential. Taken together, these results illuminate the potential for chemical reprogramming reagents to rejuvenate aged biological systems and warrant further investigation into adapting these approaches for in vivo age reversal.


Asunto(s)
Células Madre Pluripotentes Inducidas , Rejuvenecimiento , Animales , Ratones , Rejuvenecimiento/fisiología , Proteoma/metabolismo , Multiómica , Reprogramación Celular/genética , Envejecimiento/fisiología , Células Madre Pluripotentes Inducidas/metabolismo
18.
Nat Commun ; 15(1): 1761, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409161

RESUMEN

Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that SOX4 is sufficient to initiate hepatobiliary metaplasia in the adult mouse liver, closely mimicking metaplasia initiated by toxic damage to the liver. In lineage-traced cells, we assessed the timing of SOX4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, SOX4 directly binds to and closes hepatocyte regulatory sequences via an overlapping motif with HNF4A, a hepatocyte master regulatory transcription factor. Subsequently, SOX4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.


Asunto(s)
Reprogramación Celular , Cromatina , Animales , Ratones , Diferenciación Celular/genética , Reprogramación Celular/genética , Metaplasia , Factores de Transcripción/metabolismo
19.
Nat Commun ; 15(1): 476, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216587

RESUMEN

Mechanisms specifying cancer cell states and response to therapy are incompletely understood. Here we show epigenetic reprogramming shapes the cellular landscape of schwannomas, the most common tumors of the peripheral nervous system. We find schwannomas are comprised of 2 molecular groups that are distinguished by activation of neural crest or nerve injury pathways that specify tumor cell states and the architecture of the tumor immune microenvironment. Moreover, we find radiotherapy is sufficient for interconversion of neural crest schwannomas to immune-enriched schwannomas through epigenetic and metabolic reprogramming. To define mechanisms underlying schwannoma groups, we develop a technique for simultaneous interrogation of chromatin accessibility and gene expression coupled with genetic and therapeutic perturbations in single-nuclei. Our results elucidate a framework for understanding epigenetic drivers of tumor evolution and establish a paradigm of epigenetic and metabolic reprograming of cancer cells that shapes the immune microenvironment in response to radiotherapy.


Asunto(s)
Neurilemoma , Humanos , Neurilemoma/genética , Neurilemoma/patología , Epigénesis Genética , Reprogramación Celular/genética , Microambiente Tumoral/genética
20.
Nucleic Acids Res ; 52(7): 3607-3622, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38281186

RESUMEN

Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer. Here, we determine the roles of CHD4 in enhancer licensing and maintenance in breast cancer cells and during cellular reprogramming. In unchallenged basal breast cancer cells, CHD4 modulates chromatin accessibility. Its depletion leads to redistribution of transcription factors to previously unoccupied sites. During cellular reprogramming induced by the pioneer factor GATA3, CHD4 activity is necessary to prevent inappropriate chromatin opening. Mechanistically, CHD4 promotes nucleosome positioning over GATA3 binding motifs to compete with transcription factor-DNA interaction. We propose that CHD4 acts as a chromatin proof-reading enzyme that prevents unnecessary gene expression by editing chromatin binding activities of transcription factors.


Asunto(s)
Cromatina , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Femenino , Humanos , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Reprogramación Celular/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Unión Proteica , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA