Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.610
Filtrar
1.
Reprod Fertil Dev ; 362024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38753959

RESUMEN

Context Melatonin may have a heat-stress-alleviating role during pregnancy. Aims To investigate the effects of melatonin administration during the first half of pregnancy on heat-tolerance capacity and pregnancy outputs of naturally heat-stressed rabbits. Methods Forty female rabbits were stratified equally into two experimental groups and daily received 1mg melatonin/kg body weight or not (control) for 15 consecutive days post-insemination. Heat tolerance indices, hormone profile, ovarian structures, and fetal loss were determined. Key results Treatment with melatonin significantly decreased respiration rate and rectal temperature, improved concentrations of nitric oxide, and tended to decrease malondialdehyde concentrations (P =0.064) compared to control. Melatonin treatment significantly increased concentrations of high-density lipoprotein, oestradiol, and progesterone compared to control. No significant differences in the numbers of visible ovarian follicles, corpora lutea, and total implantation sites on day 18 of pregnancy were observed between experimental groups. However, melatonin treatment significantly reduced the number of absorbed implantation sites and significantly improved amniotic fluid volume and conception rate compared to control. Conclusions Melatonin administration during the first half of pregnancy can improve reproductive performance of heat-stressed female rabbits. Implications Melatonin can improve fetal survivability via improving heat-tolerance capacity of does and steroidogenesis.


Asunto(s)
Respuesta al Choque Térmico , Melatonina , Reproducción , Animales , Femenino , Melatonina/farmacología , Melatonina/administración & dosificación , Conejos , Embarazo , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/fisiología , Reproducción/efectos de los fármacos , Reproducción/fisiología , Progesterona/farmacología , Trastornos de Estrés por Calor/veterinaria , Trastornos de Estrés por Calor/tratamiento farmacológico , Trastornos de Estrés por Calor/metabolismo , Ovario/efectos de los fármacos , Estradiol/farmacología , Estradiol/administración & dosificación , Termotolerancia/efectos de los fármacos
2.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732033

RESUMEN

Extreme temperature during summer may lead to heat stress in cattle and compromise their productivity. It also poses detrimental impacts on the developmental capacity of bovine budding oocytes, which halt their fertility. To mitigate the adverse effects of heat stress, it is necessary to investigate the mechanisms through which it affects the developmental capacity of oocytes. The primary goal of this study was to investigate the impact of heat stress on the epigenetic modifications in bovine oocytes and embryos, as well as on oocyte developmental capacity, reactive oxygen species, mitochondrial membrane potential, apoptosis, transzonal projections, and gene expression levels. Our results showed that heat stress significantly reduced the expression levels of the epigenetic modifications from histone H1, histone H2A, histone H2B, histone H4, DNA methylation, and DNA hydroxymethylation at all stages of the oocyte and embryo. Similarly, heat stress significantly reduced cleavage rate, blastocyst rate, oocyte mitochondrial-membrane potential level, adenosine-triphosphate (ATP) level, mitochondrial DNA copy number, and transzonal projection level. It was also found that heat stress affected mitochondrial distribution in oocytes and significantly increased reactive oxygen species, apoptosis levels and mitochondrial autophagy levels. Our findings suggest that heat stress significantly impacts the expression levels of genes related to oocyte developmental ability, the cytoskeleton, mitochondrial function, and epigenetic modification, lowering their competence during the summer season.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Respuesta al Choque Térmico , Potencial de la Membrana Mitocondrial , Oocitos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Animales , Bovinos , Oocitos/metabolismo , Respuesta al Choque Térmico/genética , Especies Reactivas de Oxígeno/metabolismo , Femenino , Histonas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Apoptosis/genética , Desarrollo Embrionario/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
3.
Plant Cell Rep ; 43(6): 137, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713285

RESUMEN

KEY MESSAGE: cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.


Asunto(s)
AMP Cíclico , Respuesta al Choque Térmico , Nicotiana , Proteínas de Plantas , Fosforilación , Nicotiana/genética , Nicotiana/metabolismo , Respuesta al Choque Térmico/fisiología , AMP Cíclico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
4.
BMC Vet Res ; 20(1): 205, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760749

RESUMEN

BACKGROUND: Gut microbes play a significant role in digestion, developing immunity, and intestinal health. Therefore, direct-fed microbials are used to modify gut microbiota, maintain a healthy digestive system, enhance immunity, and promote the broilers' performance. In addition, it has a role in improving the utilization of unconventional feed ingredients (olive pulp, OP). This study provides the potential role of Aspergillus awamori in enhancing gut microbial content, nutrient utilization, growth performance, and antioxidative status in heat-stressed broiler chickens fed diets containing olive pulp. METHODS: Three hundred chicks (Ross 308; one day old) were divided into four treatment groups (75 chick/ group) randomly, as follows; CON: chicks fed a basal diet based on corn and soybean meal, OP10: chicks fed a diet containing 10% OP, OA1: chicks fed a diet containing OP with A. awamori at 100 mg per kg, OA2: chicks fed a diet containing OP with A. awamori at 200 mg per kg. RESULTS: Adding A. awamori to the broiler diet that contains OP had a positive effect on productive performance via enhancing nutrition digestibility, body weight gain, feed conversion ratio, and carcass characteristics. A. awamori supplementation had a positive impact on immune responses by increasing serum immunoglobulin G and the relative weight of bursa of Fabricius (P < 0.05) compared to the other groups. Chickens fed A. awamori showed a noticeable improvement in the oxidative status through the increase in the level of serum superoxide dismutase, and glutathione peroxidase, and the decrease in the level of malondialdehyde. Feeding A. awamori also modified the intestinal microbial content by increasing the population of Lactobacillus (P < 0.05). CONCLUSIONS: Our study indicated that adding 200 mg A. awamori reduced the negative effect of heat stress by modifying the microbial content of the intestine, immune response, and enhancing feed utilization, thus improving broiler performance, as well as, improving the nutritional value of the olive pulp. Therefore, adding A. awamori to the OP diet can be effectively used in heat-stressed broiler diets.


Asunto(s)
Alimentación Animal , Antioxidantes , Aspergillus , Pollos , Dieta , Digestión , Microbioma Gastrointestinal , Olea , Animales , Pollos/crecimiento & desarrollo , Pollos/inmunología , Alimentación Animal/análisis , Dieta/veterinaria , Microbioma Gastrointestinal/efectos de los fármacos , Antioxidantes/metabolismo , Digestión/efectos de los fármacos , Olea/química , Suplementos Dietéticos , Fenómenos Fisiológicos Nutricionales de los Animales , Calor , Masculino , Respuesta al Choque Térmico/efectos de los fármacos
5.
PeerJ ; 12: e17370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737737

RESUMEN

Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Infertilidad Vegetal , Triticum , Triticum/genética , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética , Calor/efectos adversos , Familia de Multigenes , Cromosomas de las Plantas/genética , Respuesta al Choque Térmico/genética , Perfilación de la Expresión Génica
6.
Commun Biol ; 7(1): 532, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710927

RESUMEN

Golgin tethers are known to mediate vesicular transport in the secretory pathway, whereas it is relatively unknown whether they may mediate cellular stress response within the cell. Here, we describe a cellular stress response during heat shock stress via SUMOylation of a Golgin tether, Golgin45. We found that Golgin45 is a SUMOylated Golgin via SUMO1 under steady state condition. Upon heat shock stress, the Golgin enters the nucleus by interacting with Importin-ß2 and gets further modified by SUMO3. Importantly, SUMOylated Golgin45 appears to interact with PML and SUMO-deficient Golgin45 mutant functions as a dominant negative for PML-NB formation during heat shock stress, suppressing transcription of lipid metabolism genes. These results indicate that Golgin45 may play a role in heat stress response by transcriptional regulation of lipid metabolism genes in SUMOylation-dependent fashion.


Asunto(s)
Respuesta al Choque Térmico , Metabolismo de los Lípidos , Sumoilación , Ubiquitinas , Humanos , Metabolismo de los Lípidos/genética , Respuesta al Choque Térmico/genética , Regulación de la Expresión Génica , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Células HeLa , Proteína SUMO-1/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Células HEK293 , Transcripción Genética , beta Carioferinas/metabolismo , beta Carioferinas/genética
7.
PLoS One ; 19(5): e0302847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709796

RESUMEN

Heat exposure exceeding the ISO7243:1989 standard limit can contribute to health problems among employees in a variety of workplaces. Ignoring heat standard requirements in hot working conditions such as bakeries results in physiologic and health problems, as well as an elevated risk of later illnesses. In this analytical case-control study, the serum levels of four inflammatory factors (interleukin-1 beta, interleukin-6, tumor necrosis factor-α, and C-reactive protein) were assessed using an enzyme-linked immunosorbent assay. 105 male artisan bakers (in four job classifications in bakeries and staff) were compared based on demographic characteristics and inflammatory factors. The findings of the study showed correlations between serum interleukin-1ß, interleukin-6, and C-reactive protein levels and thermal exposure in the occupational environment and employment type. Moreover, some differences in serum level of interleukin-1ß and job type were observed. Heat overexposure affected the increase of interleukin-1ß and C-reactive protein secretion. As a result of years of working in high-temperature conditions, inflammation can lead to subsequent diseases in workers. To protect their health from this occupational hazard, additional safeguards are needed. Our recommendations could also be applied to overly hot work environments that may cause heat stress in workers.


Asunto(s)
Proteína C-Reactiva , Citocinas , Exposición Profesional , Humanos , Masculino , Irán/epidemiología , Adulto , Exposición Profesional/efectos adversos , Estudios de Casos y Controles , Citocinas/sangre , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Interleucina-1beta/sangre , Persona de Mediana Edad , Calor , Trastornos de Estrés por Calor/sangre , Trastornos de Estrés por Calor/epidemiología , Interleucina-6/sangre , Inflamación/sangre , Enfermedades Profesionales/sangre , Enfermedades Profesionales/epidemiología , Respuesta al Choque Térmico
8.
Trop Anim Health Prod ; 56(5): 176, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795263

RESUMEN

The impact of heat stress on dairy cattle leads to significant economic losses and a negative impact on the welfare of the animals. The objective of this research was to evaluate the effect of the nutritional additive (Thermoplus®) in dairy cows under postpartum heat stress conditions, and its effects on the metabolic profile, production and quality of milk. Eighteen lactating Holstein cows (8 multiparous and ten primiparous), in a free-stall system, with a mean body condition score (BCS) of 3.14 ± 0.05, live weight of 624.55 ± 18, 61 kg, with initial mean days in milk (DIM) of 90 ± 10.11, were selected. The animals were grouped into a control (CG, n = 9) and a treatment (TG, n = 9). Both groups underwent 14 days of diet adaptation, the TG received the basal diet supplemented with 50 g of the additive, once a day, individually, while the control group received only the total diet. Data collection of metabolic and productive parameters were evaluated on days -14 (before adaptation), 1 (after the diet adaptation period), 16, 30, and 44. Milk, blood, and body condition score (BCS) were collected once a day, and heart rate, respiratory rate, and rectal temperature were collected twice a day. Serum concentrations of albumin, calcium, magnesium, glucose, gamma-glutamyl transferase (GGT), beta-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFAs), and paraoxonase-1 (PON-1) were evaluated. In the milk, the percentage of fat, protein, lactose, and total solids were determined in each sampling. Milk yield was measured daily. Humidity and ambient temperature values were collected on the days of the collection every 30 min, from 5:30 am to 5:00 pm, to calculate the temperature-humidity index (THI). Statistical analyzes were performed using the SAS software (version 9.3, SAS Institute Inc., Cary, NC, USA). The THI ranged from 62.22 to 79.47. Our findings showed that when the THI was greater than 72, the animals in the TG were able to maintain milk yield (Odds ratio (OD) = -0.0577,), and the animals in the CG had a greater chance of reducing it (OD = -0.2301). Multiparous cows in the TG had higher milk yield than CG (32.57 ± 0.34 vs 30.50 ± 0.36 kg per day; P = 0.0078) and lower SCC (34.110 ± 6,940 vs 665.50 ± 214.41 cells per ml; P = 0.03), with the same percentages of total solids (P > 0.05). In multiparous metabolic markers, TG when compared CG had higher albumin concentrations (2.50 ± 0.07 vs 2.12 ± 0.07 g/dl; < 0.001), equal PON-1 (P > 0.05), and higher BHBA levels (0.49 ± 0.03 vs 0.39 ± 0.04 mmol/l). Primiparous from the CG had higher concentrations of NEFA (0.18 ± 0.02 mmol/l) than multiparous from the same group (0.09 ± 0.02 mmol/l) P = 0.0265. The use of the plant polyphenol extract in postpartum Holstein cows challenged by heat stress had beneficial effects on the production and health of the mammary gland in multiparous cows without decreasing milk solids. The non-reduction of the activities of the acute phase proteins indicates an immunomodulatory and inflammatory-reducing effect of the product used.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Lactancia , Leche , Polifenoles , Animales , Bovinos/fisiología , Femenino , Lactancia/efectos de los fármacos , Suplementos Dietéticos/análisis , Leche/química , Alimentación Animal/análisis , Dieta/veterinaria , Polifenoles/administración & dosificación , Polifenoles/farmacología , Polifenoles/análisis , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Respuesta al Choque Térmico/efectos de los fármacos , Calor
9.
Food Chem ; 453: 139539, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38788638

RESUMEN

The aim of this study was to investigate the effects of dietary Allium mongolicum Regel powder (AMRP) supplementation on the growth performance, meat quality, antioxidant capacity and muscle fibre characteristics of fattening Angus calves. Growth performance data and longissimus thoracis (LT) samples were collected from four groups of fattening Angus, which were fed either a basal diet (CON) or a basal diet supplemented with an AMRP dose of 10 (LAMR), 15 (MAMR), or 20 g/animal/day AMRP (HAMR) for 120 days before slaughter. AMRP addition to the feed improved growth performance and meat quality and altered muscle fibre type. Some responses to AMRP supplementation were dose dependent, whereas others were not. Together, the results of this study demonstrated that dietary supplementation with 10 g/animal/day AMRP was the optimal dose in terms of fattening calf growth performance, while 20 g/animal/day AMRP supplementation was the optimal dose in terms of meat quality.


Asunto(s)
Alimentación Animal , Antioxidantes , Suplementos Dietéticos , Carne , Animales , Bovinos/metabolismo , Bovinos/crecimiento & desarrollo , Antioxidantes/metabolismo , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Carne/análisis , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Polvos/química , Masculino , Respuesta al Choque Térmico/efectos de los fármacos , Allium/química , Allium/crecimiento & desarrollo , Allium/metabolismo , Calor
10.
J Therm Biol ; 121: 103861, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38714146

RESUMEN

The study investigated the impact of Mistletoe Leaf Powder (MLP) supplementation on some parameters in heat-stressed broiler chickens. The standard baseline diets, comprising four different formulations, were provided during the starter and finisher stages. Chickens were randomly assigned to the 4 dietary groups: a negative control (CON) with no supplementation, a positive control (VTC) with 200 mg/kg vitamin C, and 2 experimental treatment groups with 2500 mg/kg (MLP2) and 5000 mg/kg (MLP5) MLP supplementation. The Body Weight Gain (BWG) in MLP2 and MLP5 treatment groups was comparable (P > 0.05) to those in VTC, while the CON group exhibited significantly (P < 0.05) lower BWG. Feed consumption was significantly (P < 0.05) lower broiler chickens in the CON group compared to those VTC, MLP2, and MLP5. Heat shock protein 70 (HSP70) levels were lower in broiler chickens belonging to VTC, MLP2, and MLP5 groups compared to those in CON, and MLP2 showed no difference (P > 0.05) from MLP5 and VTC. Serum glutathione peroxidase and catalase concentrations were higher (P < 0.05) in birds belonging to MLP5, MLP2, and VTC groups compared to CON. The 8-hydroxy-2'-deoxyguanosine concentration was lower (P < 0.05) in birds of VTC, MLP2, and MLP5 compared to the CON, with VTC showing the least concentration. Serum insulin levels were higher (P < 0.05) in MLP5 compared to those in CON, while serum triiodothyronine and leptin concentrations were lower (P < 0.05) in CON compared to birds in VTC, MLP2, and MLP5. Microbiota analysis revealed that the Coliform bacteria population was higher (P < 0.05) in birds belonging to CON compared to those in VTC, MLP2, and MLP5 groups, whereas lactic acid-producing bacteria were significantly (P < 0.05) lower in birds of CON and highest in MLP2 and MLP5 groups. In conclusion, dietary supplementation of MLP at 5000 mg/kg enhanced performance, oxidative status, influenced metabolic hormones, and gut microbiota in broiler chickens raised under high ambient temperature.


Asunto(s)
Alimentación Animal , Pollos , Daño del ADN , Suplementos Dietéticos , Microbioma Gastrointestinal , Proteínas HSP70 de Choque Térmico , Hojas de la Planta , Animales , Masculino , Alimentación Animal/análisis , Antioxidantes/metabolismo , Biomarcadores/sangre , Pollos/metabolismo , Pollos/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Respuesta al Choque Térmico/efectos de los fármacos , Calor , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Femenino
11.
Sci Rep ; 14(1): 11375, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762524

RESUMEN

Coldwater species are challenged with increasing water temperatures and fluctuations over their upper thermal limits. This study evaluated the potential of acclimation to higher temperature and dietary antioxidants capacity to mitigate the adverse effects of heat shocks in rainbow trout. To this end, rainbow trout fingerlings were acclimated at optimal (14 °C) and high (20 °C) temperatures and fed on selenium (5 mg/kg) and polyphenol (2 g/kg) supplemented diets for 60 days and then were exposed to heat shocks by increasing water temperature up to 30 °C. Growth performance, survival rate, haemato-immunological parameters, and expression of HSP70α, HSP70ß, HSP90ß, and IL-1ß genes were measured to evaluate the hypothesises. The rainbow trout acclimated to 20 °C and fed on antioxidants supplemented diets showed a significantly higher aftershock survival rate. Moreover, fish acclimated to higher temperature showed higher red blood cell counts as well as serum total protein and albumin during the acclimation trial and heat shocks phase. Acclimation to higher temperature and feeding on antioxidants remarkably enhanced fish immune and antioxidant capacity in comparison to fish adapted to cold water and fed on the basal diet measured by improved respiratory burst and lysozyme activities and upregulation of IL-1ß expression during exposure of fish to heat shocks. Furthermore, fish acclimated to higher temperature, especially those fed on antioxidant supplemented diets, showed lower expression levels of HSPs genes during the heat shock phase, indicating that high heat shocks were less stressful for these fish in comparison to cold water acclimated fish. This finding was also supported by lower cortisol levels during heat shocks in fish acclimated to higher temperature. In conclusion, the results of this study indicated that acclimation to higher temperature and/or fed on diets supplemented by selenium and polyphenol, can help to mitigate the adverse effects of the heat shock in rainbow trout.


Asunto(s)
Aclimatación , Antioxidantes , Suplementos Dietéticos , Calor , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/fisiología , Antioxidantes/metabolismo , Respuesta al Choque Térmico , Alimentación Animal , Dieta/veterinaria , Interleucina-1beta/sangre , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Selenio/farmacología , Selenio/administración & dosificación , Polifenoles/farmacología , Polifenoles/administración & dosificación
12.
Sci Rep ; 14(1): 8241, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589452

RESUMEN

Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.


Asunto(s)
Aminopiridinas , Hipertermia Inducida , Indazoles , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Femenino , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , ARN Mensajero , Factores de Transcripción del Choque Térmico/genética
13.
Biochemistry ; 63(10): 1307-1321, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688031

RESUMEN

In this study, we investigated the trimerization mechanism and structure of heat shock factor 1 (HSF1) using western blotting, tryptophan (Trp) fluorescence spectroscopy, and molecular modeling. First, we examined the DNA-binding domains of human (Homo sapiens), goldfish (Carassius auratus), and walleye pollock (Gadus chalcogrammus) HSF1s by mutating key residues (36 and 103) that are thought to directly affect trimer formation. Human, goldfish, and walleye pollock HSF1s contain cysteine at residue 36 but cysteine (C), tyrosine (Y), and phenylalanine (F), respectively, at residue 103. The optimal trimerization temperatures for the wild-type HSF1s of each species were found to be 42, 37, and 20 °C, respectively. Interestingly, a mutation experiment revealed that trimerization occurred at 42 °C when residue 103 was cysteine, at 37 °C when it was tyrosine, and at 20 °C when it was phenylalanine, regardless of the species. In addition, it was confirmed that when residue 103 of the three species was mutated to alanine, trimerization did not occur. This suggests that in addition to trimerization via disulfide bond formation between the cysteine residues in human HSF1, trimerization can also occur via the formation of a different type of bond between cysteine and aromatic ring residues such as tyrosine and phenylalanine. We also confirmed that at least one cysteine is required for the trimerization of HSF1s, regardless of its position (residue 36 or 103). Additionally, it was shown that the trimer formation temperature is related to growth and survival in fish.


Asunto(s)
Aminoácidos Aromáticos , Cisteína , Factores de Transcripción del Choque Térmico , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/química , Factores de Transcripción del Choque Térmico/genética , Cisteína/química , Cisteína/metabolismo , Humanos , Animales , Aminoácidos Aromáticos/metabolismo , Aminoácidos Aromáticos/química , Multimerización de Proteína , Respuesta al Choque Térmico , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Carpa Dorada/metabolismo , Modelos Moleculares , Dominios Proteicos
14.
Open Vet J ; 14(3): 830-839, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38682150

RESUMEN

Background: Heat stress (HS) is a main abiotic stress factor for the health and welfare of animals. Recently, the use of nano-emulsion essential oils exhibited a promising approach to mitigate the detrimental impacts of abiotic and biotic stresses, ultimately contributing to the global aim of sustainable livestock production. Aim: The current study was piloted to assess the impact of eugenol nano-emulsion (EUGN) supplementation on growth performance, serum metabolites, redox homeostasis, immune response, and pro-inflammatory reactions in growing rabbits exposed to HS. Methods: A total of 100 male weaning rabbits aged 35 days were divided into 4 treatments. Rabbits were fed the diet with EUGN at different concentrations: 0 (control group; EUGN0), 50 (EUGN50), 100 (EUGN100), and 150 (EUGN150) mg/kg diet for 8 weeks under summer conditions. Results: Dietary EUGN levels significantly improved (p < 0.05) the body weight, body weight gain, carcass weights, and improved feed conversion ratio of rabbits. EUGN supplementation significantly increased Hb, platelets, and red blood cells , while the mean corpuscular hemoglobin and eosinophils were significantly decreased compared to the control one. Compared with EUGN0 stressed rabbits, all EUGN-experimental groups had a reduction in levels of total glycerides (p < 0.01), uric acid, total bilirubin, direct bilirubin, and gamma-glutamyl transpeptidase (p < 0.01). Total antioxidant capacity and glutathione peroxidase were significantly improved by EUGN treatment when compared to the control one (p < 0.01), while the EUGN100 exhibited the greatest levels of catalase. Lipid peroxidation (malondialdehyde) was significantly decreased in EUGN-treated groups. All pro-inflammatory cytokines serum interleukin 4, Interleukin 1ß, and tumor necrosis factor alpha were considerably decreased after dietary EUGN supplementation (p < 0.05). The serum concentrations of immunoglobulins (IgG and IgM) were significantly improved in rabbits of the EUGN150 group. Conclusion: This study shows that EUGN can be used as a novel feed additive to enhance the growth performance, immune variables, and antioxidants, and reduce the inflammatory response of growing rabbits exposed to thermal stress.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Eugenol , Homeostasis , Animales , Conejos , Eugenol/administración & dosificación , Eugenol/farmacología , Masculino , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Homeostasis/efectos de los fármacos , Dieta/veterinaria , Oxidación-Reducción/efectos de los fármacos , Emulsiones , Inflamación/veterinaria , Respuesta al Choque Térmico/efectos de los fármacos
15.
Biophys Chem ; 309: 107235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608617

RESUMEN

The misfolding and aggregation of human islet amyloid polypeptide (hIAPP), also known as amylin, have been implicated in the pathogenesis of type 2 diabetes (T2D). Heat shock proteins, specifically, heat shock cognate 70 (Hsc70), are molecular chaperones that protect against hIAPP misfolding and inhibits its aggregation. Nevertheless, there is an incomplete understanding of the mechanistic interactions between Hsc70 domains and hIAPP, thus limiting their potential therapeutic role in diabetes. This study investigates the inhibitory capacities of different Hsc70 variants, aiming to identify the structural determinants that strike a balance between efficacy and cytotoxicity. Our experimental findings demonstrate that the ATPase activity of Hsc70 is not a pivotal factor for inhibiting hIAPP misfolding. We underscore the significance of the C-terminal substrate-binding domain of Hsc70 in inhibiting hIAPP aggregation, emphasizing that the removal of the lid subdomain diminishes the inhibitory effect of Hsc70. Additionally, we employed atomistic discrete molecular dynamics simulations to gain deeper insights into the interaction between Hsc70 variants and hIAPP. Integrating both experimental and computational findings, we propose a mechanism by which Hsc70's interaction with hIAPP monomers disrupts protein-protein connections, primarily by shielding the ß-sheet edges of the Hsc70-ß-sandwich. The distinctive conformational dynamics of the alpha helices of Hsc70 potentially enhance hIAPP binding by obstructing the exposed edges of the ß-sandwich, particularly at the ß5-ß8 region along the alpha helix interface. This, in turn, inhibits fibril growth, and similar results were observed following hIAPP dimerization. Overall, this study elucidates the structural intricacies of Hsc70 crucial for impeding hIAPP aggregation, improving our understanding of the potential anti-aggregative properties of molecular chaperones in diabetes treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas del Choque Térmico HSC70 , Polipéptido Amiloide de los Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Respuesta al Choque Térmico , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Chaperonas Moleculares/metabolismo , Simulación de Dinámica Molecular , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSC70/metabolismo , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo
16.
Dev Comp Immunol ; 156: 105176, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38582249

RESUMEN

Due to the ongoing global warming, the risk of heatwaves in the oceans is continuously increasing while our understanding of the physiological response of Litopenaeus vannamei under extreme temperature conditions remains limited. Therefore, this study aimed to evaluate the physiological responses of L. vannamei under heat stress. Our results indicated that as temperature rose, the structure of intestinal and hepatopancreatic tissues was damaged sequentially. Activity of immune-related enzymes (acid phosphatase/alkaline phosphatase) initially increased before decreased, while antioxidant enzymes (superoxide dismutase and glutathione-S transferase) activity and malondialdehyde content increased with rising temperature. In addition, the total antioxidant capacity decreased with rising temperature. With the rising temperature, there was a significant increase in the expression of caspase-3, heat shock protein 70, lipopolysaccharide-induced tumor necrosis factor-α, transcriptional enhanced associate domain and yorkie in intestinal and hepatopancreatic tissues. Following heat stress, the number of potentially beneficial bacteria (Rhodobacteraceae and Gemmonbacter) increased which maintain balance and promote vitamin synthesis. Intestinal transcriptome analysis revealed 852 differentially expressed genes in the heat stress group compared with the control group. KEGG functional annotation results showed that the endocrine system was the most abundant in Organismal systems followed by the immune system. These results indicated that heat stress leads to tissue damage in shrimp, however the shrimp may respond to stress through a coordinated interaction strategy of the endocrine system, immune system and gut microbiota. This study revealed the response mechanism of L. vannamei to acute heat stress and potentially provided a theoretical foundation for future research on shrimp environmental adaptations.


Asunto(s)
Microbioma Gastrointestinal , Respuesta al Choque Térmico , Penaeidae , Transcriptoma , Animales , Penaeidae/inmunología , Penaeidae/microbiología , Penaeidae/genética , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/inmunología , Microbioma Gastrointestinal/inmunología , Intestinos/inmunología , Intestinos/microbiología , Sistema Inmunológico/metabolismo , Sistema Inmunológico/inmunología , Perfilación de la Expresión Génica , Hepatopáncreas/inmunología , Hepatopáncreas/metabolismo , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética , Antioxidantes/metabolismo
17.
Biomacromolecules ; 25(5): 2965-2972, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38682378

RESUMEN

Nucleic acid therapeutics have attracted recent attention as promising preventative solutions for a broad range of diseases. Nonviral delivery vectors, such as cationic polymers, improve the cellular uptake of nucleic acids without suffering the drawbacks of viral delivery vectors. However, these delivery systems are faced with a major challenge for worldwide deployment, as their poor thermal stability elicits the need for cold chain transportation. Here, we demonstrate a biomaterial strategy to drastically improve the thermal stability of DNA polyplexes. Importantly, we demonstrate long-term room temperature storage with a transfection efficiency maintained for at least 9 months. Additionally, extreme heat shock studies show retained luciferase expression after heat treatment at 70 °C. We therefore provide a proof of concept for a platform biotechnology that could provide long-term room temperature storage for temperature-sensitive nucleic acid therapeutics, eliminating the need for the cold chain, which in turn would reduce the cost of distributing life-saving therapeutics worldwide.


Asunto(s)
ADN , Humanos , ADN/química , Transfección/métodos , Polímeros/química , Respuesta al Choque Térmico/efectos de los fármacos , Temperatura , Calor
18.
Theriogenology ; 223: 1-10, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642435

RESUMEN

Heat stress reduces the number of Sertoli cells, which is closely related to an imbalanced redox status. Glutamate functions to maintain the equilibrium of redox homeostasis. However, the role of glutamate in heat treated Sertoli cells remains unclear. Herein, Sertoli cells from 3-week-old piglets were treated at 44 °C for 30 min (heat stress). Glutamate levels increased significantly following heat stress treatment, followed by a gradual decrease during recovery, while glutathione (GSH) showed a gradual increase. The addition of exogenous glutamate (700 µM) to Sertoli cells before heat stress significantly reduced the heat stress-induced apoptosis rate, mediated by enhanced levels of antioxidant substances (superoxide dismutase (SOD), total antioxidant capacity (TAC), and GSH) and reduced levels of oxidative substances (reactive oxygen species (ROS) and malondialdehyde (MDA)). Glutamate addition to Sertoli cells before heat stress upregulated the levels of glutamate-cysteine ligase, modifier subunit (Gclm), glutathione synthetase (Gss), thioredoxin (Trx1) and B-cell leukemia/lymphoma 2 (Bcl-2), and the ratio of phosphorylated Akt (protein kinase B)/total Akt. However, it decreased the levels of Bcl2-associated X protein (Bax) and cleaved-caspase 3. Addition of the inhibitor of glutaminase (Gls1), Bptes (Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, 30 µM)to Sertoli cells before heat stress reversed these effects. These results inferred that glutamate rescued heat stress-induced apoptosis in Sertoli cells by enhancing activity of antioxidant enzymes and activating the Trx1-Akt pathway. Thus, glutamate supplementation might represent a novel strategy to alleviate the negative effect of heat stress.


Asunto(s)
Antioxidantes , Apoptosis , Ácido Glutámico , Respuesta al Choque Térmico , Proteínas Proto-Oncogénicas c-akt , Células de Sertoli , Transducción de Señal , Animales , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Masculino , Apoptosis/efectos de los fármacos , Ácido Glutámico/metabolismo , Antioxidantes/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Porcinos , Tiorredoxinas/metabolismo , Células Cultivadas
19.
Poult Sci ; 103(6): 103696, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593549

RESUMEN

Zinc (Zn) could alleviate the adverse effect of high temperature (HT) on intestinal integrity and barrier function of broilers, but the underlying mechanisms remain unclear. We aimed to investigate the possible protective mechanisms of Zn on primary cultured broiler jejunal epithelial cells exposed to thermal stress (TS). In Exp.1, jejunal epithelial cells were exposed to 40℃ (normal temperature, NT) and 44℃ (HT) for 1, 2, 4, 6, or 8 h. Cells incubated for 8 h had the lowest transepithelial resistance (TEER) and the highest phenol red permeability under HT. In Exp.2, the cells were preincubated with different Zn sources (Zn sulfate as iZn and Zn proteinate with the moderate chelation strength as oZn) and Zn supplemental levels (50 and 100 µmol/L) under NT for 24 h, and then continuously incubated under HT for another 8 h. TS increased phenol red permeability, lactate dehydrogenase (LDH) activity and p-PKC/PKC level, and decreased TEER, cell proliferation, mRNA levels of claudin-1, occludin, zona occludens-1 (ZO-1), PI3K, AKT and mTOR, protein levels of claudin-1, ZO-1 and junctional adhesion molecule-A (JAM-A), and the levels of p-ERK/ERK, p-PI3K/PI3K and p-AKT/AKT. Under HT, oZn was more effective than iZn in increasing TEER, occludin, ZO-1, PI3K, and AKT mRNA levels, ZO-1 protein level, and p-AKT/AKT level; supplementation with 50 µmol Zn/L was more effective than 100 µmol Zn/L in increasing cell proliferation, JAM-A, PI3K, AKT, and PKC mRNA levels, JAM-A protein level, and the levels of p-ERK/ERK and p-PI3K/PI3K; furthermore, supplementation with 50 µmol Zn/L as oZn had the lowest LDH activity, and the highest ERK, JNK-1, and mTOR mRNA levels. Therefore, supplemental Zn, especially 50 µmol Zn/L as oZn, could alleviate the TS-induced integrity and barrier function damage of broiler jejunal epithelial cells possibly by promoting cell proliferation and tight junction protein expression via the MAPK and PI3K/AKT/mTOR signaling pathways.


Asunto(s)
Células Epiteliales , Yeyuno , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Yeyuno/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Embrión de Pollo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Zinc/administración & dosificación , Zinc/farmacología , Pollos , Proteínas Aviares/metabolismo , Proteínas Aviares/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Células Cultivadas , Respuesta al Choque Térmico/efectos de los fármacos , Calor/efectos adversos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
20.
Poult Sci ; 103(6): 103695, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626693

RESUMEN

This research assessed the impacts of dietary nano-propolis liposomes (NPRL) inclusion on the growth, blood biochemical components, immune function, and oxidative status of broilers exposed to cyclic heat stress (HS). Birds were fed with a basal diet supplemented with various levels of NPRL at 0 (HS), 100 (NPRL100), 250 (NPRL250) and 400 (NPRL400) mg/kg diets. Diets supplemented with NPRL significantly improved the growth indices and feed utilization, hemoglobin and red blood cells (P < 0.01). White blood cells, lymphocytes and monocytes were significantly decreased by NPRL inclusion (P < 0.001). Dietary supplementation of 250 or 400 mg of NPRL /kg reduced the pathogenic bacteria counts (Salmonella, E. coli and Enterococci) (P < 0.01). The birds fed diets with NPRL (400 mg/kg diet) significantly downregulated the mRNA IFNγ gene (p < 0.001), while both groups (NPRL100 and NPRL250) had similar results (P > 0.05). The iNOS gene was significantly decreased by the dietary NPRL inclusion in a dose-dependent manner. Birds in NRPL groups had inferior levels of the mRNA of interleukin-4 and tumor necrosis factor genes. The lysosome activity was significantly reduced by dietary 250 or 400 mg of NPRL inclusion (P < 0.001). Birds in NPRL250 and NPRL100 had greater IgG (P < 0.05) than the other groups. Regarding oxidative-related biomarkers, dietary NPRL inclusion decreased myeloperoxidase and malondialdehyde levels significantly compared to those with the HS group (P < 0.001). Broilers in the NPRL400 group had the lowest levels of total bilirubin and gamma-glutamyl transferase. NPRL250 had the lowest values of urea compared with other groups (P < 0.001). Dietary NPRL inclusion improved the broiler's hepatic and intestinal architecture exposed to cyclic heat stress. These results indicate that employing NPRL in the diets of stressed broilers can enhance heat resistance by enhancing blood metabolites and immunity, reducing inflammation and oxidative stress.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Liposomas , Animales , Pollos/fisiología , Pollos/crecimiento & desarrollo , Alimentación Animal/análisis , Liposomas/administración & dosificación , Liposomas/química , Dieta/veterinaria , Suplementos Dietéticos/análisis , Masculino , Distribución Aleatoria , Respuesta al Choque Térmico/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , Relación Dosis-Respuesta a Droga , Enfermedades de las Aves de Corral/prevención & control , Trastornos de Estrés por Calor/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA