Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Anal Chim Acta ; 1317: 342904, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39030024

RESUMEN

BACKGROUND: Resveratrol, a natural polyphenol compound used as an ingredient in dietary supplements, and pharmaceuticals, has gained significant attention due to its potential health benefits. However, the accurate and sensitive determination of resveratrol in complex matrices remains a challenge. In this study, we propose the utilization of bimetallic porous Mn/Co oxide nanosheets (MnCoO-NSs) as catalysts for the colorimetric determination of resveratrol. RESULTS: The bimetallic porous MnCoO-NSs were prepared through a facile one-stone-two-birds strategy. These nanosheets exhibited superior oxidase-mimicking activity, as evidenced by the catalytic oxidation of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB), producing a blue-colored oxTMB species with a prominent absorbance peak at 655 nm. The catalytic activity was promoted through the production of superoxide anion (O2•-), which enhanced the affinity of MnCoO-NSs to the TMB molecules. Upon the addition of resveratrol, the oxidation process was inhibited, resulting in rapid fading of the blue color. This colorimetric sensing platform exhibited a linear response to resveratrol concentrations over the range of 2.2-87.6 µM, with a limit of detection of 0.210 µM. The method was further applied for the determination of resveratrol in different matrices including biological fluids, pharmaceuticals, and environmental water. SIGNIFICANCE: The utilization of these MnCoO-NSs offers a simple and cost-effective alternative to conventional analytical techniques for the determination of resveratrol. Their high sensitivity, selectivity, and stability enable accurate measurements of resveratrol in various complex matrices. This research has implications in areas such as pharmaceutical analysis, biomedical research, and environmental analysis, where the reliable determination of resveratrol is crucial for assessing its therapeutic potential and ensuring product quality.


Asunto(s)
Cobalto , Colorimetría , Óxidos , Resveratrol , Resveratrol/química , Resveratrol/metabolismo , Resveratrol/análisis , Colorimetría/métodos , Cobalto/química , Óxidos/química , Porosidad , Nanoestructuras/química , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Límite de Detección , Compuestos de Manganeso/química , Humanos , Oxidación-Reducción , Catálisis , Manganeso/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Materiales Biomiméticos/química
2.
Eur J Pharm Sci ; 200: 106855, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029716

RESUMEN

Resveratrol (RES) has demonstrated advantages as anti-cancer, anti-inflammatory, blood sugar-lowering agent and as cardioprotective agent, among others. Despite RES therapeutic advantages its use in pharmaceutical applications is limited by its low oral bioavailability, mainly due to its poor water solubility. Formulation of poorly water-soluble compound as solid dispersion (SD) converts a crystalline into a more soluble in water amorphous drug. Lyophilization or freeze-drying is a process in which water, an organic solvent, or a co-solvent system is frozen, followed by its removal from the sample, initially by sublimation (primary drying) and then by desorption (secondary drying). This study aimed the development and optimization of a bulk freeze-drying cycle by critical process parameters assessment in each phase to prepare a RES third-generation SD, containing Eudragit E PO as hydrophilic polymer at 1:2 ratio, and Gelucire 44/14 as surfactant at 16 % (w/w) to RES, using a tert-butanol (TBA)/Acetate buffer pH 4.5 (75:25) co-solvent system. A RES third-generation SD with good appearance, not cracked, collapsed, or melted was prepared by an optimized and robust bulk lyophilization process. A physicochemical characterization confirmed the conversion of RES to the amorphous state in the SD and formulation stability after 1 month at 40 °C/75 % RH. Increased solubility and higher dissolution rate compared with pure RES were also obtained.


Asunto(s)
Liofilización , Resveratrol , Solubilidad , Liofilización/métodos , Resveratrol/química , Resveratrol/administración & dosificación , Estabilidad de Medicamentos , Estilbenos/química , Química Farmacéutica/métodos
3.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893349

RESUMEN

This study aimed to isolate and purify resveratrol and oxyresveratrol from the heartwoods of Maclura cochinchinensis, and to evaluate their inhibitory effects on melanogenesis in B16F10 murine melanoma cells. A methanol maceration process yielded a crude extract comprising 24.86% of the initial mass, which was subsequently analyzed through HPTLC, HPLC, and LC-MS/MS. These analyses revealed the presence of resveratrol and oxyresveratrol at concentrations of 4.32 mg/g and 33.6 mg/g in the extract, respectively. Initial purification employing food-grade silica gel column chromatography separated the extract into two fractions: FA, exhibiting potent inhibition of both tyrosinase activity and melanogenesis, and FM, showing no such inhibitory activity. Further purification processes led to the isolation of fractions Y11 and Gn12 with enhanced concentrations of resveratrol (94.9 and 110.21 mg/g, respectively) and fractions Gn15 and Gn16 with elevated levels of oxyresveratrol (321.93 and 274.59 mg/g, respectively), all of which significantly reduced melanin synthesis. These outcomes affirm the substantial presence of resveratrol and oxyresveratrol in the heartwood of M. cochinchinensis, indicating their promising role as natural agents for skin lightening.


Asunto(s)
Melaninas , Melanoma Experimental , Extractos Vegetales , Resveratrol , Estilbenos , Resveratrol/farmacología , Resveratrol/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Ratones , Melaninas/biosíntesis , Estilbenos/farmacología , Estilbenos/química , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Línea Celular Tumoral , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Melanogénesis
4.
Food Res Int ; 188: 114415, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823855

RESUMEN

Several scientific studies have warned that the ingestion of dietary lipid oxidation products (LOPs) may initiate or exacerbate the development of several chronic non-communicable diseases in humans. Indeed, the constantly increasing consumption of culinary oils by larger global populations indicates the need for scientific techniques to suppress the evolution of LOPs in thermo-oxidised oils. This study employed a 600.13 MHz frequency NMR spectrometer in evaluating the effect of 10, 50, and 100 ppm concentrations of chemical compounds reported to have antioxidant properties in continuously-stirred and thermally stressed polyunsaturated fatty acid (PUFA)-rich hemp seed oil at a frying temperature of 180℃ for 180 min. Research data acquired showed that the antioxidants α- and γ-tocopherol, γ-oryzanol, ß-carotene, eugenol, resveratrol, ascorbyl palmitate, gentisic acid, and L-ascorbic acid all played a vital role in suppressing the evolution of secondary aldehydic lipid oxidation products in hemp seed oil. However, the most ineffective LOP-suppressing agent was L-lysine, an observation which may be accountable by its poor oil solubility. Nonetheless, trends deduced for compounds acting as antioxidants were mainly unique for each class of agent tested. Conversely, the antioxidant capacity of resveratrol was consistently higher, and this effect was found to be independent of its added amounts. This report provides a direct approach in developing scientific methods for the suppression of LOPs in thermo-oxidatively susceptible PUFA-rich cooking oils.


Asunto(s)
Antioxidantes , Cannabis , Calor , Peroxidación de Lípido , Aceites de Plantas , Antioxidantes/química , Aceites de Plantas/química , Cannabis/química , Peroxidación de Lípido/efectos de los fármacos , Culinaria , Semillas/química , Resveratrol/química , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/química , Espectroscopía de Resonancia Magnética , Ácido Ascórbico/química , Extractos Vegetales
5.
Food Res Int ; 189: 114547, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876606

RESUMEN

Phenolic compounds represent natural compounds endowed with diverse biological functionalities. However, their inherent limitations, characterized by poor water solubility and low oral bioavailability, limit their broader applications. Encapsulation delivery systems are emerging as a remedy, able to ameliorate these limitations by enhancing the stability and solubility of phenolic compounds. In this study, a novel, customized pH-driven approach was developed by determining the optimal deprotonation and protonation points of three different types of polyphenols: ferulic acid, resveratrol, and rhein. The polyphenols were successfully encapsulated in a casein carrier. The solubility, stability, LogD, and LogS curves of the three polyphenols at different pH values were analyzed to identify the optimal deprotonation points for ferulic acid (pH 9), resveratrol (pH 11), and rhein (pH 10). Based on these findings, three different nanoparticles were prepared. The encapsulation efficiencies of the three phenolic compounds were 95.86%, 94.62%, and 94.18%, respectively, and the casein nanoparticles remained stable at room temperature for seven days. FTIR spectroscopy, fluorescence spectroscopy, and molecular docking study substantiated the encapsulation of phenolic compounds within the hydrophobic core of casein-based complexes, facilitated by hydrogen bonding interactions and hydrophobic interactions. Furthermore, the analysis of antioxidant activity elucidated that casein nanoparticles heightened both the water solubility and antioxidant efficacy of the phenolic compounds. This customized encapsulation technique, by establishing a transitional pH value, resolves the challenges of chemical instability and facile degradation of polyphenols under alkaline conditions in the application process of pH-driven methods. It presents novel insights for the application of polyphenols in the domains of food and biomedical fields.


Asunto(s)
Caseínas , Ácidos Cumáricos , Simulación del Acoplamiento Molecular , Polifenoles , Solubilidad , Caseínas/química , Concentración de Iones de Hidrógeno , Polifenoles/química , Ácidos Cumáricos/química , Resveratrol/química , Antraquinonas/química , Nanopartículas/química , Composición de Medicamentos , Espectroscopía Infrarroja por Transformada de Fourier , Interacciones Hidrofóbicas e Hidrofílicas , Antioxidantes/química
6.
Ultrason Sonochem ; 108: 106973, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38943848

RESUMEN

This work offered a productive technique for resveratrol extraction from Polygonum Cuspidatum (P. Cuspidatum) using ionic liquids in synergy with ultrasound-enzyme-assisted extraction (UEAE). Firstly, ionic liquids with different carbon chains and anions were evaluated. Subsequently, a comprehensive investigation was carried out to evaluate the effect of seven crucial parameters on the resveratrol yield: pH value, enzyme concentration, extraction temperature, extraction time, ultrasonic power, concentration of ionic liquid (IL concentration) and the liquid-solid ratio. Employing the Plackett-Burman Design (PBD), the critical factors were effectively identified. Building upon this foundation, the process was further optimized through the application of Response Surface Methodology (RSM) and an Artificial Neural Network-Genetic Algorithm (ANN-GA). The following criteria were determined to be the ideal extraction conditions: an enzyme concentration of 2.18%, extraction temperature of 58 °C, a liquid-solid ratio of 29 mL/g, pH value of 5.5, extraction time of 30 min, ultrasonic power of 250 W, and extraction solvent of 0.5 mol/L 1-butyl-3-methylimidazolium bromide. Under these conditions, the resveratrol yield was determined to be 2.90 ± 0.15 mg/g. Comparative analysis revealed that the ANN-GA model provided a better fit to the experimental data of resveratrol yield than the RSM model, suggesting superior predictive capabilities of the ANN-GA approach. The introduction of a novel green solvent system in this experiment not only simplifies the extraction process but also enhances safety and feasibility. This research paves the way for innovative approaches to extracting resveratrol from botanical sources, showcasing its significant potential for a wide range of applications.


Asunto(s)
Fraccionamiento Químico , Fallopia japonica , Líquidos Iónicos , Resveratrol , Resveratrol/aislamiento & purificación , Resveratrol/química , Líquidos Iónicos/química , Fallopia japonica/química , Fraccionamiento Químico/métodos , Temperatura , Ondas Ultrasónicas , Concentración de Iones de Hidrógeno , Estilbenos/aislamiento & purificación , Estilbenos/química , Enzimas/metabolismo
7.
Int J Biol Macromol ; 273(Pt 1): 132835, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838882

RESUMEN

Hyaluronic acid (HA), an endogenous polysaccharide comprising alternating D-glucuronic acid and N-acetylglucosamine units, is renowned for its high hydrophilicity, biocompatibility, and biodegradability. These attributes have rendered HA invaluable across medical and drug delivery fields. HA can be altered through physical, chemical, or enzymatic methods to improve the properties of the modified substances. In this work, we synthesized a derivative via the esterification of HA with poly(glyceryl)10-stearate (PG10-C18), designated as HA-PG10-C18. This novel derivative was employed to fabricate a nano co-delivery system (HA-PG10-C18@Res-NE) for fish oil and resveratrol (Res), aiming to enhance their stability and bioaccessibility. An exhaustive investigation of HA-PG10-C18@Res-NE revealed that the HA-modified system displayed superior physicochemical stability, notably in withstanding oxidation and neutralizing free radicals. Moreover, in vitro simulated digestion underscored the system's enhanced bioaccessibility of Res and more efficient release of free fatty acids. These outcomes underscore the strategic advantage of HA in modifying PG10-C18 for nanoemulsion formulation. Consequently, HA-PG10-C18 stands as a promising emulsifier for encapsulating lipophilic bioactives in functional foods, nutraceuticals, and pharmaceuticals.


Asunto(s)
Antioxidantes , Emulsiones , Aceites de Pescado , Ácido Hialurónico , Resveratrol , Resveratrol/química , Resveratrol/farmacocinética , Aceites de Pescado/química , Ácido Hialurónico/química , Emulsiones/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/farmacocinética , Nanopartículas/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Disponibilidad Biológica
8.
Int J Nanomedicine ; 19: 5397-5418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863647

RESUMEN

Background: The healing of burn wounds is a complicated physiological process that involves several stages, including haemostasis, inflammation, proliferation, and remodelling to rebuild the skin and subcutaneous tissue integrity. Recent advancements in nanomaterials, especially nanofibers, have opened a new way for efficient healing of wounds due to burning or other injuries. Methods: This study aims to develop and characterize collagen-decorated, bilayered electrospun nanofibrous mats composed of PVP and PVA loaded with Resveratrol (RSV) and Ampicillin (AMP) to accelerate burn wound healing and tissue repair. Results: Nanofibers with smooth surfaces and web-like structures with diameters ranging from 200 to 400 nm were successfully produced by electrospinning. These fibres exhibited excellent in vitro properties, including the ability to absorb wound exudates and undergo biodegradation over a two-week period. Additionally, these nanofibers demonstrated sustained and controlled release of encapsulated Resveratrol (RSV) and Ampicillin (AMP) through in vitro release studies. The zone of inhibition (ZOI) of PVP-PVA-RSV-AMP nanofibers against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was found 31±0.09 mm and 12±0.03, respectively, which was significantly higher as compared to positive control. Similarly, the biofilm study confirmed the significant reduction in the formation of biofilms in nanofiber-treated group against both S. aureus and E. coli. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis proved the encapsulation of RSV and AMP successfully into nanofibers and their compatibility. Haemolysis assay (%) showed no significant haemolysis (less than 5%) in nanofiber-treated groups, confirmed their cytocompatibility with red blood cells (RBCs). Cell viability assay and cell adhesion on HaCaT cells showed increased cell proliferation, indicating its biocompatibility as well as non-toxic properties. Results of the in-vivo experiments on a burn wound model demonstrated potential burn wound healing in rats confirmed by H&E-stained images and also improved the collagen synthesis in nanofibers-treated groups evidenced by Masson-trichrome staining. The ELISA assay clearly indicated the efficient downregulation of TNF-alpha and IL-6 inflammatory biomarkers after treatment with nanofibers on day 10. Conclusion: The RSV and AMP-loaded nanofiber mats, developed in this study, expedite burn wound healing through their multifaceted approach.


Asunto(s)
Ampicilina , Quemaduras , Colágeno , Escherichia coli , Nanofibras , Alcohol Polivinílico , Povidona , Resveratrol , Staphylococcus aureus , Cicatrización de Heridas , Resveratrol/farmacología , Resveratrol/química , Resveratrol/administración & dosificación , Resveratrol/farmacocinética , Nanofibras/química , Quemaduras/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Colágeno/química , Povidona/química , Staphylococcus aureus/efectos de los fármacos , Alcohol Polivinílico/química , Humanos , Escherichia coli/efectos de los fármacos , Ampicilina/farmacología , Ampicilina/química , Ampicilina/farmacocinética , Ampicilina/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Ratas , Biopelículas/efectos de los fármacos , Masculino
9.
Int Immunopharmacol ; 136: 112324, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38820967

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, leading to severe inflammatory infiltration and joint damage, accompanied by a decrease in pH of joint microenvironment. Macrophages play an important role in the pathogenesis of RA, with high expression of bovine serum albumin (BSA) receptors on the surface of macrophages. Resveratrol (Res) has strong anti-inflammatory effects, but its application is limited due to its poor water solubility and low bioavailability. Therefore, we constructed pH-sensitive micelles by encapsulating Res and modifying BSA on the surface of the micelles (BSA-Res@Ms), thereby greatly improving the therapeutic effect of RA. Our research results indicated that BSA-Res@Ms had a smooth and uniform appearance, small particle size, high drug encapsulation efficiency, good stability, and pH-sensitive properties. In vitro, BSA-Res@Ms increased the uptake of Res by RAW264.7 cells, reduced the levels of pro-inflammatory cytokines and cleared excess ROS produced by activated RAW264.7 cells, and inhibited the generation of osteoclasts. In vivo, BSA-Res@Ms could target inflamed joint sites, significantly alleviate joint inflammation symptoms, inhibit activated macrophages, improve synovial hyperplasia and inflammatory cell infiltration, and protect cartilage. BSA-Res@Ms provide a very promising method for the treatment of RA, which can effectively improve the inflammatory manifestations of RA.


Asunto(s)
Artritis Reumatoide , Macrófagos , Micelas , Resveratrol , Albúmina Sérica Bovina , Resveratrol/farmacología , Resveratrol/uso terapéutico , Resveratrol/química , Animales , Albúmina Sérica Bovina/química , Ratones , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Artritis Reumatoide/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Citocinas/metabolismo , Humanos , Portadores de Fármacos/química
10.
Food Environ Virol ; 16(2): 241-252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570420

RESUMEN

As a natural nonflavonoid polyphenol compound, resveratrol is the main functional component of Reynoutria japonica and has anti-inflammatory, antioxidant, antiviral, and other physiological activities. In this study, the effect of resveratrol on the viability of RAW264.7 cells was examined, and murine norovirus (MNV-1) was used as a surrogate for human norovirus to evaluate the inhibitory effect of resveratrol. The concentrations of resveratrol resulting in 50% cytotoxicity (CC50) for RAW264.7 cells were 21.32 and 24.97 µg/mL after 24 and 48 h of incubation, respectively, and resveratrol at a concentration lower than the half-effective inhibitory concentration (EC50) could not damage cell DNA. The EC50 of resveratrol on MNV-1 in infected RAW264.7 cells was determined to equal 5.496 µg/mL. After RAW264.7 cells, virus, and a fresh mixture of virus and RAW264.7 cells were treated with resveratrol solution for 1 h (denoted cell pre-treatment, virus pre-treatment, and mixture coprocessing), the RAW264.7 cells obtained after cell pre-treatment exhibited lower virus infection, and MNV-1 obtained after virus pre-treatment and mixture coprocessing showed a decreased infectious capacity. The inhibition ratio of resveratrol on MNV-1 did not significantly differ between the treatments at 4 and 25 °C or among the various pH values except for the lower acidic condition (pH 2). TEM revealed significant changes in the morphology of MNV-1 after treatment with resveratrol, and molecular docking indicated that resveratrol strongly binds to the viral capsid protein of MNV-1. In addition, resveratrol regulated the expression of cytokine that protects against MNV-1 infection. Therefore, at a lower concentration, resveratrol, a natural component from Reynoutria japonica, exerts an inhibitory effect on MNV-1 growth and could be used as a safe additive in food products to improve the nutritional status and control norovirus.


Asunto(s)
Antivirales , Norovirus , Resveratrol , Resveratrol/farmacología , Resveratrol/química , Norovirus/efectos de los fármacos , Norovirus/crecimiento & desarrollo , Norovirus/fisiología , Ratones , Animales , Células RAW 264.7 , Antivirales/farmacología , Antivirales/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Estilbenos/farmacología , Estilbenos/química , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/tratamiento farmacológico , Macrófagos/virología , Macrófagos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
11.
J Sci Food Agric ; 104(9): 4977-4988, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38567804

RESUMEN

BACKGROUND: As the major protein (approximately 36%) in rice bran, globulin exhibits excellent foaming and emulsifying properties, endowing its useful application as a foaming and emulsifying agent in the food industry. However, the low water solubility restricts its commercial potential in industrial applications. The present study aimed to improve this protein's processing and functional properties. RESULTS: A novel covalent complex was fabricated by a combination of the Maillard reaction and alkaline oxidation using rice bran globulin (RBG), chitooligosaccharide (C), quercetin (Que) and resveratrol (Res). The Maillard reaction improved the solubility, emulsifying and foaming properties of RBG. The resultant glycosylated protein was covalently bonded with quercetin and resveratrol to form a (RBG-C)-Que-Res complex. (RBG-C)-Que-Res exhibited higher thermal stability and antioxidant ability than the native protein, binary globulin-chitooligosaccharide or ternary globulin-chitooligosaccharide-polyphenol (only containing quercetin or resveratrol) conjugates. (RBG-C)-Que-Res exerted better cytoprotection against the generation of malondialdehyde and reactive oxygen species in HepG2 cells, which was associated with increased activities of antioxidative enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) through upregulated genes SOD1, CAT, GPX1 (i.e. gene for glutathione peroxidase-1), GCLM (i.e. gene for glutamate cysteine ligase modifier subunit), SLC1A11 (i.e. gene for solute carrier family 7, member 11) and SRXN1 (i.e. gene for sulfiredoxin-1). The anti-apoptotic effect of (RBG-C)-Que-Res was confirmed by the downregulation of caspase-3 and p53 and the upregulation of B-cell lymphoma-2 gene expression. CONCLUSION: The present study highlights the potential of (RBG-C)-Que-Res conjugates as functional ingredients in healthy foods. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Quitosano , Oligosacáridos , Oryza , Quercetina , Resveratrol , Humanos , Quercetina/química , Quercetina/análogos & derivados , Oryza/química , Oligosacáridos/química , Resveratrol/química , Resveratrol/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Quitosano/química , Células Hep G2 , Quitina/química , Quitina/análogos & derivados , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reacción de Maillard , Catalasa/metabolismo , Catalasa/genética , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética
12.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647675

RESUMEN

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Asunto(s)
Resveratrol , Estilbenos , Estilbenos/química , Estilbenos/farmacología , Humanos , Resveratrol/farmacología , Resveratrol/química , Hongos/efectos de los fármacos , Endófitos/química , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología , Medicina Tradicional , Plantas/química
13.
Colloids Surf B Biointerfaces ; 238: 113922, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678790

RESUMEN

The phytoalexin resveratrol has received increasing attention for its potential to prevent oxidative damages in human organism. To shed further light on molecular mechanisms of its interaction with lipid membranes we study resveratrol influence on the organisation and mechanical properties of biomimetic lipid systems composed of synthetic phosphatidylcholines with mixed aliphatic chains and different degree of unsaturation at sn-2 position (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, PDPC). High-sensitivity isothermal titration calorimetric measurements reveal stronger spontaneous resveratrol association to polyunsaturated phosphatidylcholine bilayers compared to the monounsaturated ones resulting from hydrophobic interactions, conformational changes of the interacting species and desolvation of molecular surfaces. The latter is supported by the results from Laurdan spectroscopy of large unilamellar vesicles providing data on hydration at the glycerol backbones of glycerophospholipides. Higher degree of lipid order is reported for POPC membranes compared to PDPC. While resveratrol mostly enhances the hydration of PDPC membranes, increasing POPC dehydration is reported upon treatment with the polyphenol. Dehydration of the polyunsaturated lipid bilayers is measured only at the highest phytoalexin content studied (resveratrol/lipid 0.5 mol/mol) and is less pronounced than the effect reported for POPC membranes. The polyphenol effect on membrane mechanics is probed by thermal shape fluctuation analysis of quasispherical giant unilamellar vesicles. Markedly different trend of the bending elasticity with increasing resveratrol concentration is reported for the two types of phospholipid bilayers studied. POPC membranes become more rigid in the presence of resveratrol, whereas PDPC-containing bilayers exhibit softening at lower concentrations of the polyphenol followed by a slight growth without bilayer stiffening even at the highest resveratrol content explored. The new data on the structural organization and membrane properties of resveratrol-treated phosphatidylcholine membranes may underpin the development of future liposomal applications of the polyphenol in medicinal chemistry.


Asunto(s)
Membrana Dobles de Lípidos , Resveratrol , Resveratrol/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Glicerofosfolípidos/química , Glicerofosfolípidos/metabolismo , Estilbenos/química , Materiales Biomiméticos/química , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
14.
Curr Pharm Des ; 30(14): 1103-1114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38509680

RESUMEN

BACKGROUND: Osteoporosis is a systemic bone disease characterized by progressive reduction of bone mineral density and degradation of trabecular bone microstructure. Iron metabolism plays an important role in bone; its imbalance leads to abnormal lipid oxidation in cells, hence ferroptosis. In osteoporosis, however, the exact mechanism of ferroptosis has not been fully elucidated. OBJECTIVE: The main objective of this project was to identify potential drug target proteins and agents for the treatment of ferroptosis-related osteoporosis. METHODS: In the current study, we investigated the differences in gene expression of bone marrow mesenchymal stem cells between osteoporosis patients and normal individuals using bioinformatics methods to obtain ferroptosis-related genes. We could predict their protein structure based on the artificial intelligence database of AlphaFold, and their target drugs and binding sites with the network pharmacology and molecular docking technology. RESULTS: We identified five genes that were highly associated with osteoporosis, such as TP53, EGFR, TGFB1, SOX2 and MAPK14, which, we believe, can be taken as the potential markers and targets for the diagnosis and treatment of osteoporosis. Furthermore, we observed that these five genes were highly targeted by resveratrol to exert a therapeutic effect on ferroptosis-related osteoporosis. CONCLUSION: We examined the relationship between ferroptosis and osteoporosis based on bioinformatics and network pharmacology, presenting a promising direction to the pursuit of the exact molecular mechanism of osteoporosis so that a new target can be discovered for the treatment of osteoporosis.


Asunto(s)
Ferroptosis , Simulación del Acoplamiento Molecular , Farmacología en Red , Osteoporosis , Ferroptosis/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Biología Computacional , Resveratrol/farmacología , Resveratrol/química
15.
J Pharm Pharmacol ; 76(6): 631-645, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38507715

RESUMEN

PURPOSE: Although resveratrol (RES) is an efficacious molecule, its therapeutic activity is impeded by significant limitations, such as rapid oral absorption, poor oral bioavailability, and low water solubility. Therefore, the preparation of RES in different pharmaceutical carriers represents an important tool to enhance its therapeutic applications. This study aims to potentiate the anti-cancer activity of RES by formulating it into a novel nanocarrier called Smart Lipid. METHODS: RES-loaded Smart Lipids were prepared by high-shear hot homogenization method utilizing a 21 × 32 factorial design with three factors at different levels: the total lipid concentration, the concentration of surfactant, and the type of surfactant. The responses were evaluated based on entrapment efficiency percentages and particle size. RESULTS: Our novel optimized RES-loaded Smart Lipid formula showed small particle size (288.63 ± 5.55 nm), good zeta potential (-16.44 ± 0.99 mV), and an entrapment efficiency of 86.346 ± 3.61% with spherical, clearly distinct, and no signs of fusion by transmission electron microscopy. Further characterization was done using differential scanning calorimetry, which showed no interaction between the drug and other components as the optimum lyophilized formula showed a peak at 54.75°C, which represents the lipid mixture, with an undetectable characteristic peak of the drug, which indicates entrapment of the drug, and the structure of the compounds was confirmed by Fourier transform-infrared spectroscopy, in which the majority of the drug's characteristic peaks disappeared when loaded into Smart Lipid, which may indicate Smart Lipid's ability to reduce the stretching and bending between bonds in RES. In addition, the optimized formula showed a sustained release pattern compared to RES suspension. Finally, the cytotoxic activity of the optimized RES-loaded Smart Lipid on different cell lines (human breast adenocarcinoma (MCF7), human hepatocellular carcinoma (HepG2), and human colon cancer cells (HT29)) was assessed through MTT assay (7-fold reduction in the IC50, from 3.7 ± 0.5 µM for free RES to 0.5 ± 0.033 µM for Smart Lipid loaded formula against MCF7, 3-fold reduction in the IC50 against HepG2 cells, from 10.01 ± 0.35 to 3.16 ± 0.21 µMm, and a more than 10-fold reduction in the IC50 from more than 100 to 10 ± 0.57 µM against HT-29 cells) and its effect on cell cycle progression and apoptosis induction were assessed using flow cytometry and annexin V kit, respectively. Our results showed that RES-loaded Smart Lipid significantly reduced cell viability, induced cell cycle arrest at G0/G1 phase, and apoptosis compared to free formula and free RES suspension. CONCLUSION: Loading RES into this novel kind of nanocarrier enhanced RES absorption, cellular accumulation, and improved its anticancer properties.


Asunto(s)
Portadores de Fármacos , Lípidos , Tamaño de la Partícula , Resveratrol , Resveratrol/farmacología , Resveratrol/administración & dosificación , Resveratrol/química , Humanos , Lípidos/química , Portadores de Fármacos/química , Células Hep G2 , Nanopartículas/química , Composición de Medicamentos/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Solubilidad , Rastreo Diferencial de Calorimetría , Tensoactivos/química , Tensoactivos/farmacología , Línea Celular Tumoral , Química Farmacéutica/métodos , Liberación de Fármacos , Diseño de Fármacos/métodos , Células MCF-7 , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Estilbenos/farmacología , Estilbenos/química , Estilbenos/administración & dosificación
16.
Biomed Mater Eng ; 35(3): 279-292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38461500

RESUMEN

BACKGROUND:  Glioblastoma is the most aggressive brain tumor with poor prognosis. Although Resveratrol (Rsv) is known to have therapeutic effects on glioma, the effects of gold-conjugated resveratrol nanoparticles (Rsv-AuNPs) on glioma cells are rarely reported. OBJECTIVE: We aimed to investigate the effects of Rsv-AuNPs on glioma cells and its underlying mechanism. METHOD: Human glioma cell line U87 was treated with different concentrations of Rsv-AuNPs. CCK-8, transwell, and wound healing assay were performed to measure the effects of Rsv-AuNPs on cell proliferation, invasion, and migration ability, respectively. Flow cytometry assay was used to detect the effects of Rsv-AuNPs on apoptosis. Changes of protein expressions related to proliferation, invasion, migration, and apoptosis were measured by Western blot assay. In addition, the inhibitory role of Rsv-AuNPs in the PI3K/AKT/mTOR signaling pathway was verified by using PI3K inhibitor LY294002. RESULTS: Rsv-AuNPs treatment significantly suppressed proliferation, migration, and invasion of U87 cells (all P < 0.05) and increased the apoptosis rate (P < 0.05). The changes of proteins related to proliferation, migration, invasion and apoptosis were consistent (all P < 0.05). Moreover, Rsv-AuNPs treatment significantly inhibited the phosphorylation of PI3K, AKT and mTOR proteins in U87 cells (P < 0.05). CONCLUSION: The present study found that Rsv-AuNPs inhibited the proliferation, migration, and invasion of U87 cells and induced apoptosis by inhibiting the activation of PI3K/AKT/mTOR signaling pathway. In the future, Rsv-AuNPs might be applied to the clinical treatment of glioma through more in-depth animal and clinical research.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Glioma , Oro , Nanopartículas del Metal , Resveratrol , Resveratrol/farmacología , Resveratrol/química , Humanos , Oro/química , Oro/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo
17.
FEBS Lett ; 598(9): 995-1007, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38413095

RESUMEN

Resveratrol prevents various neurodegenerative diseases in animal models despite reaching only low nanomolar concentrations in the brain after oral administration. In this study, based on the quenching of intrinsic tryptophan fluorescence and molecular docking, we found that trans-resveratrol, its conjugates (glucuronide and sulfate), and dihydro-resveratrol (intestinal microbial metabolite) bind with high affinities (Kd, 0.2-2 nm) to the peptide G palindromic sequence (near glycosaminoglycan-binding motif) of the 67-kDa laminin receptor (67LR). Preconditioning with low concentrations (0.01-10 nm) of these polyphenols, especially resveratrol-glucuronide, protected neuronal cells from death induced by serum withdrawal via activation of cAMP-mediated signaling pathways. This protection was prevented by a 67LR-blocking antibody, suggesting a role for this cell-surface receptor in neuroprotection by resveratrol metabolites.


Asunto(s)
Fármacos Neuroprotectores , Receptores de Laminina , Resveratrol , Resveratrol/farmacología , Resveratrol/metabolismo , Resveratrol/química , Receptores de Laminina/metabolismo , Receptores de Laminina/genética , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Simulación del Acoplamiento Molecular , Animales , Unión Proteica , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Estilbenos/farmacología , Estilbenos/metabolismo , Estilbenos/química , Neuroprotección/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sitios de Unión , Glucurónidos/metabolismo , Glucurónidos/química , Proteínas Ribosómicas
18.
Curr Med Chem ; 31(27): 4340-4361, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38303533

RESUMEN

Lung cancer is a leading cause of mortality and morbidity worldwide. Due to significant advances in therapeutic strategies, patients' survival and life quality have been improved, however there is still an urgent requirement for developing more effective therapeutic methods. Resveratrol, a natural polyphenol with numerous biological potentials, has been widely studied. It has shown therapeutic potetial in various diseases including neurodegenerative diseases, cardiovascular disorders, and cancers through the regulation of key cellular signaling such as apoptosis, as well as molecular pathways such as microRNA modulation. It has been reported that resveratrol acts as an anticancer agent against lung cancer in vivo and in vitro. Resveratrol could combat against lung cancer by modulating various molecular targets and signaling pathways involved in oxidative stress, inflammation, apoptosis and autoghagy and also microRNAs expression. Moreover, novel delivery systems and analogs have recently been introduced to promote the anticancer impacts of resveratrol. In this article, we review current evidence on the anticancer effects of resveratrol and its novel formulations in the treatment of lung cancer with a focus on underlying mechanisms.


Asunto(s)
Neoplasias Pulmonares , Resveratrol , Resveratrol/farmacología , Resveratrol/química , Resveratrol/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Transducción de Señal/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Estilbenos/uso terapéutico , Estilbenos/farmacología , Estilbenos/química
19.
Curr Rev Clin Exp Pharmacol ; 19(4): 327-354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38192151

RESUMEN

Resveratrol (3, 5, 4'-trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age-related diseases, antiviral, and anticancer in experimental and clinical conditions. Recently, the antioxidant and anti-inflammatory activities of Resveratrol have been observed, and it has been shown that Resveratrol reduces inflammatory biomarkers, such as tissue degradation factor, cyclooxygenase 2, nitric oxide synthase, and interleukins. All of these activities appear to be dependent on its structural properties, such as the number and position of the hydroxyl group, which regulates oxidative stress, cell death, and inflammation. Resveratrol is well tolerated and safe even at higher pharmacological doses and desirably affects cardiovascular, neurological, and diabetic diseases. Consequently, it is plausible that Resveratrol can be regarded as a beneficial nutritional additive and a complementary drug, particularly for therapeutic applications. The present review provides an overview of currently available investigations on preventive and therapeutic characteristics and the main molecular mechanisms of Resveratrol and its potent derivatives in various diseases. Thus, this review would enhance knowledge and information about Resveratrol and encourage researchers worldwide to consider it as a pharmaceutical drug to struggle with future health crises against different human disorders.


Asunto(s)
Antioxidantes , Suplementos Dietéticos , Polifenoles , Resveratrol , Humanos , Resveratrol/farmacología , Resveratrol/uso terapéutico , Resveratrol/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/química , Animales , Polifenoles/farmacología , Polifenoles/uso terapéutico , Polifenoles/química , Promoción de la Salud/métodos , Estilbenos/farmacología , Estilbenos/uso terapéutico , Estilbenos/química , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química
20.
J Biomol Struct Dyn ; 42(2): 1088-1097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37011009

RESUMEN

Resveratrol is a natural compound with a wide range of biological functions that generate health benefits under normal conditions and in multiple diseases. This has attracted the attention of the scientific community, which has revealed that this compound exerts these effects through its action on different proteins. Despite the great efforts made, due to the challenges involved, not all the proteins with which resveratrol interacts have yet been identified. In this work, using protein target prediction bioinformatics systems, RNA sequencing analysis and protein-protein interaction networks, 16 proteins were identified as potential targets of resveratrol. Due to its biological relevance, the interaction of resveratrol with the predicted target CDK5 was further investigated. A docking analysis found that resveratrol can interact with CDK5 and be positioned in its ATP-binding pocket. Resveratrol forms hydrogen bonds between its three hydroxyl groups (-OH) and CDK5 residues C83, D86, K89 and D144. Molecular dynamics analysis showed that these bonds allow resveratrol to remain in the pocket and suggest inhibition of CDK5 activity. All this allows us to better understand how resveratrol acts and to consider CDK5 inhibition within its biological actions, mainly in neurodegenerative diseases where this protein has been shown to be relevant.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación de Dinámica Molecular , Resveratrol/farmacología , Resveratrol/química , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA