Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361939

RESUMEN

Friedreich's ataxia is a neurodegenerative disease caused by mutations in the frataxin gene. Frataxin homologues, including bacterial CyaY proteins, can be found in most species and play a fundamental role in mitochondrial iron homeostasis, either promoting iron assembly into metaloproteins or contributing to iron detoxification. While several lines of evidence suggest that eukaryotic frataxins are more effective than bacterial ones in iron detoxification, the residues involved in this gain of function are unknown. In this work, we analyze conservation of amino acid sequence and protein structure among frataxins and CyaY proteins to identify four highly conserved residue clusters and group them into potential functional clusters. Clusters 1, 2, and 4 are present in eukaryotic frataxins and bacterial CyaY proteins. Cluster 3, containing two serines, a tyrosine, and a glutamate, is only present in eukaryotic frataxins and on CyaY proteins from the Rickettsia genus. Residues from cluster 3 are blocking a small cavity of about 40 Å present in E. coli's CyaY. The function of this cluster is unknown, but we hypothesize that its tyrosine may contribute to prevent formation of reactive oxygen species during iron detoxification. This cluster provides an example of gain of function during evolution in a protein involved in iron homeostasis, as our results suggests that Cluster 3 was present in the endosymbiont ancestor of mitochondria and was conserved in eukaryotic frataxins.


Asunto(s)
Proteínas de Unión a Hierro , Enfermedades Neurodegenerativas , Rickettsia , Humanos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Eucariontes/metabolismo , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Hierro/metabolismo , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Rickettsia/metabolismo , Tirosina/metabolismo , Mitocondrias/metabolismo , Mitocondrias/microbiología , Frataxina
2.
BMC Infect Dis ; 19(1): 796, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31510926

RESUMEN

BACKGROUND: The number of new rickettsial species are rapidly increasing, and increasing numbers of Rickettsia raoultii (R. raoultii) infection cases have been detected in humans. However, neurological abnormalities caused by R. raoultii are rarely reported, especially in northwestern China. CASE PRESENTATION: A 36-year-old Kazakh shepherd with an attached tick on part temporalis, presented with right eyelid droop, lethargy, fever, headache, fever (38.0-41.0 °C) and erythematous rash. The examination of cerebrospinal fluid (CSF) showed cerebrospinal pressure of 200 mm H2O, leukocyte count of 300.0 × 106/L, adenosine deaminase of 2.15 U/L, and total protein concentration of 0.93 g/L. The diagnosis of R. raoultii infection was confirmed by six genetic markers, and semi-quantified by enzyme-linked immunosorbent assay for rickettsial antigen. The patient gradually recovered after treatment with doxycycline and ceftriaxone. R. raoultii DNA was found both in a tick detached from this patient and in 0.18% (2/1107) of blood samples collected from local shepherds. CONCLUSIONS: This is the first reported case with neurological abnormalities caused by R. raoultii in northwestern China. It is vital to detect rickettsial agents both in blood and CSF for tick bite patients with neurological abnormalities. Public health workers and physicians should pay attention to neurological abnormalities caused by Rickettsia.


Asunto(s)
Enfermedades del Sistema Nervioso/diagnóstico , Infecciones por Rickettsia/diagnóstico , Rickettsia/metabolismo , Mordeduras de Garrapatas/diagnóstico , Adenosina Desaminasa/líquido cefalorraquídeo , Adulto , Animales , Antígenos Bacterianos/análisis , Antígenos Bacterianos/inmunología , Ceftriaxona/uso terapéutico , China , ADN Bacteriano/sangre , Doxiciclina/uso terapéutico , Humanos , Recuento de Leucocitos , Masculino , Enfermedades del Sistema Nervioso/etiología , Filogenia , ARN Ribosómico 16S/metabolismo , Rickettsia/clasificación , Rickettsia/genética , Infecciones por Rickettsia/complicaciones , Infecciones por Rickettsia/tratamiento farmacológico , Mordeduras de Garrapatas/complicaciones , Garrapatas/genética
3.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30219893

RESUMEN

In the last few decades, many studies have revealed the potential role of arthropod bacterial endosymbionts in shaping the host range of generalist herbivores and their performance on different host plants, which, in turn, might affect endosymbiont distribution in herbivore populations. We tested this by measuring the prevalence of endosymbionts in natural populations of the generalist spider mite Tetranychus urticae on different host plants. Focusing on Wolbachia, we then analysed how symbionts affected mite life-history traits on the same host plants in the laboratory. Overall, the prevalences of Cardinium and Rickettsia were low, whereas that of Wolbachia was high, with the highest values on bean and eggplant and the lowest on morning glory, tomato and zuchini. Although most mite life-history traits were affected by the plant species only, Wolbachia infection was detrimental for the egg-hatching rate on morning glory and zucchini, and led to a more female-biased sex ratio on morning glory and eggplant. These results suggest that endosymbionts may affect the host range of polyphagous herbivores, both by aiding and hampering their performance, depending on the host plant and on the life-history trait that affects performance the most. Conversely, endosymbiont spread may be facilitated or hindered by the plants on which infected herbivores occur.


Asunto(s)
Ipomoea nil/microbiología , Ipomoea nil/parasitología , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Solanum melongena/microbiología , Solanum melongena/parasitología , Tetranychidae/microbiología , Wolbachia/metabolismo , Animales , Bacteroidetes/metabolismo , Fabaceae/microbiología , Fabaceae/parasitología , Femenino , Especificidad del Huésped , Rickettsia/metabolismo , Simbiosis/fisiología , Tetranychidae/metabolismo
4.
Cell ; 167(3): 670-683.e10, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768890

RESUMEN

Spotted fever group (SFG) rickettsiae are human pathogens that infect cells in the vasculature. They disseminate through host tissues by a process of cell-to-cell spread that involves protrusion formation, engulfment, and vacuolar escape. Other bacterial pathogens rely on actin-based motility to provide a physical force for spread. Here, we show that SFG species Rickettsia parkeri typically lack actin tails during spread and instead manipulate host intercellular tension and mechanotransduction to promote spread. Using transposon mutagenesis, we identified surface cell antigen 4 (Sca4) as a secreted effector of spread that specifically promotes protrusion engulfment. Sca4 interacts with the cell-adhesion protein vinculin and blocks association with vinculin's binding partner, α-catenin. Using traction and monolayer stress microscopy, we show that Sca4 reduces vinculin-dependent mechanotransduction at cell-cell junctions. Our results suggest that Sca4 relieves intercellular tension to promote protrusion engulfment, which represents a distinctive strategy for manipulating cytoskeletal force generation to enable spread.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Mecanotransducción Celular , Infecciones por Rickettsia/metabolismo , Infecciones por Rickettsia/microbiología , Rickettsia/patogenicidad , Vinculina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Elementos Transponibles de ADN/genética , Fiebre/metabolismo , Fiebre/microbiología , Humanos , Mutagénesis Insercional , Mutación , Rickettsia/metabolismo , alfa Catenina/metabolismo
5.
PLoS One ; 11(6): e0157231, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27362650

RESUMEN

Rickettsiae actively escape from vacuoles and replicate free in the cytoplasm of host cells, where inflammasomes survey the invading pathogens. In the present study, we investigated the interactions of Rickettsia australis with the inflammasome in both mouse and human macrophages. R. australis induced a significant level of IL-1ß secretion by human macrophages, which was significantly reduced upon treatment with an inhibitor of caspase-1 compared to untreated controls, suggesting caspase-1-dependent inflammasome activation. Rickettsia induced significant secretion of IL-1ß and IL-18 in vitro by infected mouse bone marrow-derived macrophages (BMMs) as early as 8-12 h post infection (p.i.) in a dose-dependent manner. Secretion of these cytokines was accompanied by cleavage of caspase-1 and was completely abrogated in BMMs deficient in caspase-1/caspase-11 or apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), suggesting that R. australis activate the ASC-dependent inflammasome. Interestingly, in response to the same quantity of rickettsiae, NLRP3-/- BMMs significantly reduced the secretion level of IL-1ß compared to wild type (WT) controls, suggesting that NLRP3 inflammasome contributes to cytosolic recognition of R. australis in vitro. Rickettsial load in spleen, but not liver and lung, of R. australis-infected NLRP3-/- mice was significantly greater compared to WT mice. These data suggest that NLRP3 inflammasome plays a role in host control of bacteria in vivo in a tissue-specific manner. Taken together, our data, for the first time, illustrate the activation of ASC-dependent inflammasome by R. australis in macrophages in which NLRP3 is involved.


Asunto(s)
Inflamasomas/metabolismo , Macrófagos/microbiología , Rickettsia/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización CARD , Caspasa 1/metabolismo , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Hígado/metabolismo , Hígado/microbiología , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Bazo/metabolismo , Bazo/microbiología
6.
Ticks Tick Borne Dis ; 6(6): 829-35, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26234571

RESUMEN

Rickettsia parkeri is an Amblyomma-associated, spotted fever group Rickettsia species that causes an eschar-associated, febrile illness in multiple countries throughout the Western Hemisphere. Many other rickettsial species of known or uncertain pathogenicity have been detected in Amblyomma spp. ticks in the Americas, including Rickettsia amblyommii, "Candidatus Rickettsia andeanae" and Rickettsia rickettsii. In this study, we utilized an immunoproteomic approach to compare antigenic profiles of low-passage isolates of R. parkeri and R. amblyommii with serum specimens from patients with PCR- and culture-confirmed infections with R. parkeri. Five immunoreactive proteins of R. amblyommii and nine immunoreactive proteins of R. parkeri were identified by matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry. Four of these, including the outer membrane protein (Omp) A, OmpB, translation initiation factor IF-2, and cell division protein FtsZ, were antigens common to both rickettsiae. Serum specimens from patients with R. parkeri rickettsiosis reacted specifically with cysteinyl-tRNA synthetase, DNA-directed RNA polymerase subunit alpha, putative sigma (54) modulation protein, chaperonin GroEL, and elongation factor Tu of R. parkeri which have been reported as virulence factors in other bacterial species. Unique antigens identified in this study may be useful for further development of the better serological assays for diagnosing infection caused by R. parkeri.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Rickettsia/metabolismo , Animales , Antígenos Bacterianos/genética , Chlorocebus aethiops , Rickettsia/genética , Rickettsia/inmunología , Transcriptoma , Células Vero
7.
Proc Natl Acad Sci U S A ; 86(5): 1674-8, 1989 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-2922404

RESUMEN

We investigated if the monocytic Ehrlichia are totally dependent on their host cells for energy, or, as Rickettsia, are capable of some ATP synthesis in vitro. The Miyayama strain of Ehrlichia sennetsu and the Maryland and Illinois strains of Ehrlichia risticii were cultivated in a mouse macrophage cell line, separated from host cell constituents by procedures that included Renografin or Percoll gradient centrifugation, and tested after cryopreservation. Cells incubated without a metabolizing substrate contained little, if any, ATP. When the Ehrlichia cells were incubated for 1 hr at 34 degrees C with glutamine, significant amounts of ATP were detected. The amounts of ATP attained with glutamine were decreased in some instances by the addition of atractyloside, an inhibitor of adenine nucleotide translocase in mitochondria, and were decreased consistently and to a greater extent by 2,4-dinitrophenol. When ATP, instead of glutamine, was added to the ehrlichiae, upon incubation the amount of ATP was markedly decreased. Comparable responses under all these conditions were obtained with Rickettsia typhi, although the final ATP levels were higher. Control preparations derived from uninfected mouse macrophages or from the discards of the Ehrlichia purification procedures contained negligible amounts of ATP, which were not increased by incubation with glutamine. We conclude that with respect to ATP metabolism, the monocytic Ehrlichia resemble Rickettsia more closely than Chlamydia, even though Ehrlichia resemble Chlamydia in their intracellular location in the phagosomes and in possibly having a developmental cycle.


Asunto(s)
Ehrlichia/metabolismo , Metabolismo Energético , Rickettsia/metabolismo , Rickettsiaceae/metabolismo , 2,4-Dinitrofenol , Adenosina Trifosfato/metabolismo , Animales , Atractilósido/farmacología , Dinitrofenoles/farmacología , Ehrlichia/ultraestructura , Metabolismo Energético/efectos de los fármacos , Glutamina/metabolismo , Cinética , Microscopía Electrónica
8.
J Biol Chem ; 251(2): 389-96, 1976 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-1389

RESUMEN

The obligate intracellular parasitic bacterium, Rickettsia prowazeki, has a carrier-mediated transport system for ADP and ATP. The transport of nucleotides was measured by membrane filtration assays; the assay was shown not to harm the relatively labile rickettsiae. The nucleotide transport system was shown to reside in the rickettsiae, not in the contaminating yolk sac mitochondria of the preparation. The influx of nucleotide had an activation energy of 12 to 13 kcal above 22 deg-rees (an apparent transition temperature), and 30 kcal below this value. The uptake of nucleotide was independent of the Mg2+ concentration, but was markedly stimulated by the phosphate concentration. The pH optimum of the influx of nucleotide was pH 7. The specificity of the transport system was remarkable in that it required a specific moiety in each portion of the nucleotide, i.e. an adenine base, a ribose sugar, and two or three, but not one, phosphates. Of the wide variety of compounds tested, the system could transport only ADP, ATP, and (beta, gamma-methylene) adenosine 5'-triphosphate. The influx of nucleotide was a saturable process; half-maximum velocity was achieved at a nucleotide concentration of about 75 muM. ADP and ATP were competitive inhibitors of each other's transport. Although at least 95% of the labeled intracellular nucleotide was exchangeable, efflux of labeled nucleotide was observed only in the presence of unlabeled nucleotide in the medium. Half-maximum efflux was achieved at a concentration of about 75 muM. A large intracellular to extracellular concentration gradient of labeled nucleotide was maintained in the presence of metabolic inhibitors and uncouplers, which completely abolished rickettsial hemolysis. While having no effect on the steady state, KCN and DNP accelerated both influx and efflux. Measurements of the endogenous pool of adenine nucleotides in isolated rickettsiae show that is was large (5 mM), and that these unlabeled nucleotides exchanged, on approximately a 1/1 basis, with exogenously added nucleotide. These studies support the proposal that rickettsiae are not "leaky" to adenine nucleotides or to small molecules in general, and that they have a carrier-mediated transport system which allows an exchange of host and parasite ADP and ATP.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Rickettsia/metabolismo , Animales , Atractilósido/farmacología , Transporte Biológico Activo , Ácido Bongcréquico/farmacología , Membrana Celular/metabolismo , Embrión de Pollo , Cianuros/farmacología , Dinitrofenoles/farmacología , Femenino , Concentración de Iones de Hidrógeno , Cinética , Magnesio/farmacología , Permeabilidad , Fosfatos/farmacología , Rickettsia/efectos de los fármacos , Temperatura , Membrana Vitelina/efectos de los fármacos , Membrana Vitelina/metabolismo
13.
J Bacteriol ; 95(2): 389-96, 1968 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-5640379

RESUMEN

Glutamate catabolism and the factors contributing to metabolic stability of purified suspensions of Rickettsia rickettsi were investigated. By use of (14)C-glutamate, it was shown that CO(2) was produced from all carbons of glutamate and that (14)CO(2) production was reduced by the addition of most of the unlabeled intermediates of the citric acid cycle and pyruvate. Oxalacetate, added in various concentrations, did not stimulate glutamate utilization. When the cells were suspended in bovine plasma albumin (BPA), CO(2) production from glutamate proceeded at a nearly uniform rate for 8 hr at 32 C and for 24 hr at 15 C. When BPA was used, the cells retained their metabolic activity at 0 or 30 C regardless of cell concentration, and were not influenced by the addition of varoius metabolites. Without BPA, metabolic stability was directly related to concentration. Of the stabilizers tested on low concentrations of rickettsiae, reduced glutathione was the most effective, provided that the gas phase contained predominantly N(2). Under these conditions of low partial pressure of O(2), glutamate further stabilized metabolic activity and was actively metabolized. The cells were also stabilized by oxidized glutathione in a gas phase of air, but under these conditions glutamate was utilized at a more moderate rate and it impaired metabolic stability.


Asunto(s)
Glutamatos/metabolismo , Rickettsia/metabolismo , Dióxido de Carbono/biosíntesis , Isótopos de Carbono , Ciclo del Ácido Cítrico , Glutatión/farmacología , Magnesio/farmacología , Manganeso/farmacología , Nitrógeno/farmacología , Oxaloacetatos/farmacología , Oxígeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA