Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.459
Filtrar
1.
Sci Transl Med ; 16(767): eadl3438, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356746

RESUMEN

Oxidative stress has long been implicated in Parkinson's disease (PD) pathogenesis, although the sources and regulation of reactive oxygen species (ROS) production are poorly defined. Pathogenic mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are associated with increased kinase activity and a greater risk of PD. The substrates and downstream consequences of elevated LRRK2 kinase activity are still being elucidated, but overexpression of mutant LRRK2 has been associated with oxidative stress, and antioxidants reportedly mitigate LRRK2 toxicity. Here, using CRISPR-Cas9 gene-edited HEK293 cells, RAW264.7 macrophages, rat primary ventral midbrain cultures, and PD patient-derived lymphoblastoid cells, we found that elevated LRRK2 kinase activity was associated with increased ROS production and lipid peroxidation and that this was blocked by inhibitors of either LRRK2 kinase or NADPH oxidase 2 (NOX2). Oxidative stress induced by the pesticide rotenone was ameliorated by LRRK2 kinase inhibition and was absent in cells devoid of LRRK2. In a rat model of PD induced by rotenone, a LRRK2 kinase inhibitor prevented the lipid peroxidation and NOX2 activation normally seen in nigral dopaminergic neurons in this model. Mechanistically, LRRK2 kinase activity was shown to regulate phosphorylation of serine-345 in the p47phox subunit of NOX2. This, in turn, led to translocation of p47phox from the cytosol to the membrane-associated gp91phox (NOX2) subunit, activation of the NOX2 enzyme complex, and production of ROS. Thus, LRRK2 kinase activity may drive cellular ROS production in PD through the regulation of NOX2 activity.


Asunto(s)
Modelos Animales de Enfermedad , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , NADPH Oxidasa 2 , Estrés Oxidativo , Enfermedad de Parkinson , Especies Reactivas de Oxígeno , Rotenona , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Células HEK293 , Estrés Oxidativo/efectos de los fármacos , Ratones , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Rotenona/farmacología , Ratas , Peroxidación de Lípido , Fosforilación/efectos de los fármacos , Células RAW 264.7 , Ratas Sprague-Dawley , NADPH Oxidasas
2.
Neuropharmacology ; 259: 110109, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39128581

RESUMEN

Glioblastoma multiforme (GBM) is the most common primary intracranial tumor with characteristics of high aggressiveness and poor prognosis. Deguelin, a component from the bark of Leguminosae Mundulea sericea (African plant), displays antiproliferative effects in some tumors, however, the inhibitory effect and mechanism of deguelin on GBM were still poorly understood. At first, we found that deguelin reduced the viability of GBM cells by causing cell cycle arrest in G2/M phase and inducing their apoptosis. Secondly, deguelin inhibited the migration of GBM cells. Next, RNA-seq analysis identified that CCL2 (encoding chemokine CCL2) was downregulated significantly in deguelin-treated GBM cells. As reported, CCL2 promoted the cell growth, and CCL2 was associated with regulating NFκB signaling pathway, as well as involved in modulating tumor microenvironment (TME). Furthermore, we found that deguelin inactivated CCL2/NFκB signaling pathway, and exougous CCL2 could rescue the anti-inhibitory effect of deguelin on GBM cells via upregulating NFκB. Finally, we established a syngeneic intracranial orthotopic GBM model and found that deguelin regressed the tumor growth, contributed to an anti-tumorigenic TME and inhibited angiogenesis of GBM by suppressing CCL2/NFκB in vivo. Taken together, these results suggest the anti-GBM effect of deguelin via inhibiting CCL2/NFκB pathway, which may provide a new strategy for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Quimiocina CCL2 , Glioblastoma , FN-kappa B , Rotenona , Transducción de Señal , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Animales , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Rotenona/análogos & derivados , Rotenona/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Ratones , Microambiente Tumoral/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Progresión de la Enfermedad , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Masculino
3.
Cells ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39120291

RESUMEN

A substantial challenge in human brain aging is to find a suitable model to mimic neuronal aging in vitro as accurately as possible. Using directly converted neurons (iNs) from human fibroblasts is considered a promising tool in human aging since it retains the aging-associated mitochondrial donor signature. Still, using iNs from aged donors can pose certain restrictions due to their lower reprogramming and conversion efficacy than those from younger individuals. To overcome these limitations, our study aimed to establish an in vitro neuronal aging model mirroring features of in vivo aging by acute exposure on young iNs to either human stress hormone cortisol or the mitochondrial stressor rotenone, considering stress as a trigger of in vivo aging. The impact of rotenone was evident in mitochondrial bioenergetic properties by showing aging-associated deficits in mitochondrial respiration, cellular ATP, and MMP and a rise in glycolysis, mitochondrial superoxide, and mitochondrial ROS; meanwhile, cortisol only partially induced an aging-associated mitochondrial dysfunction. To replicate the in vivo aging-associated mitochondrial dysfunctions, using rotenone, a mitochondrial complex I inhibitor, proved to be superior to the cortisol model. This work is the first to use stress on young iNs to recreate aging-related mitochondrial impairments.


Asunto(s)
Mitocondrias , Neuronas , Rotenona , Humanos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Rotenona/farmacología , Envejecimiento , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Hidrocortisona/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Donantes de Tejidos , Glucólisis/efectos de los fármacos , Adenosina Trifosfato/metabolismo
4.
J Steroid Biochem Mol Biol ; 243: 106561, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38866189

RESUMEN

The role of mitochondria in steroidogenesis is well established. However, the specific effects of mitochondrial dysfunction on androgen synthesis are not fully understood. In this study, we investigate the effects of various mitochondrial and metabolic inhibitors in H295R adrenal cells and perform a comprehensive analysis of steroid and metabolite profiling. We report that mitochondrial complex I inhibition by rotenone shifts cells toward anaerobic metabolism with a concomitant hyperandrogenic phenotype characterized by rapid stimulation of dehydroepiandrosterone (DHEA, 2 h) and slower accumulation of androstenedione and testosterone (24 h). Screening of metabolic inhibitors confirmed DHEA stimulation, which included mitochondrial complex III and mitochondrial pyruvate carrier inhibition. Metabolomic studies revealed truncated tricarboxylic acid cycle with an inverse correlation between citric acid and DHEA production as a common metabolic marker of hyperandrogenic inhibitors. The current study sheds light on a direct interplay between energy metabolism and androgen biosynthesis that could be further explored to identify novel molecular targets for efficient treatment of androgen excess disorders.


Asunto(s)
Andrógenos , Deshidroepiandrosterona , Mitocondrias , Humanos , Mitocondrias/metabolismo , Andrógenos/metabolismo , Andrógenos/biosíntesis , Deshidroepiandrosterona/metabolismo , Testosterona/metabolismo , Androstenodiona/metabolismo , Rotenona/farmacología , Glándulas Suprarrenales/metabolismo , Metabolismo Energético , Línea Celular , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo
5.
Tissue Cell ; 89: 102423, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875923

RESUMEN

Skeletal muscle function is highly dependent on the energy supply provided by mitochondria. Besides ATP production, mitochondria have several other roles, such as calcium storage, heat production, cell death signaling, autophagy regulation and redox state modulation. Mitochondrial function is crucial for skeletal muscle fiber formation. Disorders that affect mitochondria have a major impact in muscle development and function. Here we studied the role of mitochondria during chick skeletal myogenesis. We analyzed the intracellular distribution of mitochondria in myoblasts, fibroblasts and myotubes using Mitotracker labeling. Mitochondrial respiration was investigated in chick muscle cells. Our results show that (i) myoblasts and myotubes have more mitochondria than muscle fibroblasts; (ii) mitochondria are organized in long lines within the whole cytoplasm and around the nuclei of myotubes, while in myoblasts they are dispersed in the cytoplasm; (iii) the area of mitochondria in myotubes increases during myogenesis, while in myoblasts and fibroblasts there is a slight decrease; (iv) mitochondrial length increases in the three cell types (myoblasts, fibroblasts and myotubes) during myogenesis; (v) the distance of mitochondria to the nucleus increases in myoblasts and myotubes during myogenesis; (vi) Rotenone inhibits muscle fiber formation, while FCCP increases the size of myotubes; (vii) N-acetyl cysteine (NAC), an inhibitor of ROS formation, rescues the effects of Rotenone on muscle fiber size; and (viii) Rotenone induces the production of ROS in chick myogenic cells. The collection of our results suggests a role of ROS signaling in mitochondrial function during chick myogenesis.


Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas , Mioblastos , Especies Reactivas de Oxígeno , Rotenona , Animales , Especies Reactivas de Oxígeno/metabolismo , Desarrollo de Músculos/efectos de los fármacos , Embrión de Pollo , Rotenona/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Mioblastos/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
6.
Biosci Trends ; 18(2): 153-164, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38599881

RESUMEN

NAD(P)H-quinone oxidoreductase 1 (NQO1) is an essential redox enzyme responsible for redox balance and energy metabolism. Despite of its importance, the brain contains high capacity of polyunsaturated fatty acids and maintains low levels of NQO1 expression. In this study, we examined how levels of NQO1 expression affects cell survival in response to toxic insults causing mitochondrial dysfunction and ferroptosis, and whether NQO1 has a potential as a biomarker in different stressed conditions. Following treatment with rotenone, overexpressed NQO1 in SH-SY5Y cells improved cell survival by reducing mitochondrial reductive stress via increased NAD+ supply without mitochondrial biogenesis. However, NQO1 overexpression boosted lipid peroxidation following treatment with RSL3 and erastin. A lipid droplet staining assay showed increased lipid droplets in cells overexpressing NQO1. In contrast, NQO1 knockdown protected cells against ferroptosis by increasing GPX4, xCT, and the GSH/GSSG system. Also, NQO1 knockdown showed lower iron contents and lipid droplets than non-transfectants and cells overexpressing NQO1, even though it could not attenuate cell death when exposed to rotenone. In summary, our study suggests that different NQO1 levels may have advantages and disadvantages depending on the surrounding environments. Thus, regulating NQO1 expression could be a potential supplementary tool when treating neuronal diseases.


Asunto(s)
Ferroptosis , Mitocondrias , NAD(P)H Deshidrogenasa (Quinona) , Rotenona , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Ferroptosis/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Rotenona/toxicidad , Rotenona/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Piperazinas/farmacología , Carbolinas
7.
J Nat Prod ; 87(4): 1003-1012, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38579352

RESUMEN

Three new (1-3) and six known rotenoids (5-10), along with three known isoflavones (11-13), were isolated from the leaves of Millettia oblata ssp. teitensis. A new glycosylated isoflavone (4), four known isoflavones (14-18), and one known chalcone (19) were isolated from the root wood extract of the same plant. The structures were elucidated by NMR and mass spectrometric analyses. The absolute configuration of the chiral compounds was established by a comparison of experimental ECD and VCD data with those calculated for the possible stereoisomers. This is the first report on the use of VCD to assign the absolute configuration of rotenoids. The crude leaves and root wood extracts displayed anti-RSV (human respiratory syncytial virus) activity with IC50 values of 0.7 and 3.4 µg/mL, respectively. Compounds 6, 8, 10, 11, and 14 showed anti-RSV activity with IC50 values of 0.4-10 µM, while compound 3 exhibited anti-HRV-2 (human rhinovirus 2) activity with an IC50 of 4.2 µM. Most of the compounds showed low cytotoxicity for laryngeal carcinoma (HEp-2) cells; however compounds 3, 11, and 14 exhibited low cytotoxicity also in primary lung fibroblasts. This is the first report on rotenoids showing antiviral activity against RSV and HRV viruses.


Asunto(s)
Antivirales , Isoflavonas , Millettia , Isoflavonas/farmacología , Isoflavonas/química , Isoflavonas/aislamiento & purificación , Antivirales/farmacología , Antivirales/química , Antivirales/aislamiento & purificación , Millettia/química , Estructura Molecular , Humanos , Rotenona/farmacología , Rotenona/química , Rotenona/análogos & derivados , Hojas de la Planta/química , Raíces de Plantas/química , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitiales Respiratorios/efectos de los fármacos
8.
Biomolecules ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38672457

RESUMEN

Mitochondria, the energy hubs of the cell, are progressively becoming attractive targets in the search for potent therapeutics against neurodegenerative diseases. The pivotal role of mitochondrial dysfunction in the pathogenesis of various diseases, including Parkinson's disease (PD), underscores the urgency of discovering novel therapeutic strategies. Given the limitations associated with available treatments for mitochondrial dysfunction-associated diseases, the search for new potent alternatives has become imperative. In this report, we embarked on an extensive screening of 4224 fractions from 384 Australian marine organisms and plant samples to identify natural products with protective effects on mitochondria. Our initial screening using PD patient-sourced olfactory neurosphere-derived (hONS) cells with rotenone as a mitochondria stressor resulted in 108 promising fractions from 11 different biota. To further assess the potency and efficacy of these hits, the 11 biotas were subjected to a subsequent round of screening on human neuroblastoma (SH-SY5Y) cells, using 6-hydroxydopamine to induce mitochondrial stress, complemented by a mitochondrial membrane potential assay. This rigorous process yielded 35 active fractions from eight biotas. Advanced analysis using an orbit trap mass spectrophotometer facilitated the identification of the molecular constituents of the most active fraction from each of the eight biotas. This meticulous approach led to the discovery of 57 unique compounds, among which 12 were previously recognized for their mitoprotective effects. Our findings highlight the vast potential of natural products derived from Australian marine organisms and plants in the quest for innovative treatments targeting mitochondrial dysfunction in neurodegenerative diseases.


Asunto(s)
Productos Biológicos , Ensayos Analíticos de Alto Rendimiento , Mitocondrias , Humanos , Productos Biológicos/farmacología , Productos Biológicos/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Línea Celular Tumoral , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Rotenona/farmacología , Organismos Acuáticos/química
9.
PLoS One ; 19(4): e0292415, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669260

RESUMEN

One aspect of Caenorhabditis elegans that makes it a highly valuable model organism is the ease of use of in vivo genetic reporters, facilitated by its transparent cuticle and highly tractable genetics. Despite the rapid advancement of these technologies, worms must be paralyzed for most imaging applications, and few investigations have characterized the impacts of common chemical anesthetic methods on the parameters measured, in particular biochemical measurements such as cellular energetics and redox tone. Using two dynamic reporters, QUEEN-2m for relative ATP levels and reduction-oxidation sensitive GFP (roGFP) for redox tone, we assess the impact of commonly used chemical paralytics. We report that no chemical anesthetic is entirely effective at doses required for full paralysis without altering redox tone or ATP levels, and that anesthetic use alters the detected outcome of rotenone exposure on relative ATP levels and redox tone. We also assess the use of cold shock, commonly used in combination with physical restraint methods, and find that cold shock does not alter either ATP levels or redox tone. In addition to informing which paralytics are most appropriate for research in these topics, we highlight the need for tailoring the use of anesthetics to different endpoints and experimental questions. Further, we reinforce the need for developing less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters.


Asunto(s)
Adenosina Trifosfato , Caenorhabditis elegans , Oxidación-Reducción , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Imagen Óptica/métodos , Parálisis/inducido químicamente , Parálisis/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Rotenona/farmacología , Anestésicos/farmacología
10.
Molecules ; 29(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675592

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, primarily associated with dopaminergic neuron depletion in the Substantia Nigra. Current treatment focuses on compensating for dopamine (DA) deficiency, but the blood-brain barrier (BBB) poses challenges for effective drug delivery. Using differentiated SH-SY5Y cells, we investigated the co-administration of DA and the antioxidant Grape Seed Extract (GSE) to study the cytobiocompability, the cytoprotection against the neurotoxin Rotenone, and their antioxidant effects. For this purpose, two solid lipid nanoparticle (SLN) formulations, DA-co-GSE-SLNs and GSE-ads-DA-SLNs, were synthesized. Such SLNs showed mean particle sizes in the range of 187-297 nm, zeta potential values in the range of -4.1--9.7 mV, and DA association efficiencies ranging from 35 to 82%, according to the formulation examined. The results showed that DA/GSE-SLNs did not alter cell viability and had a cytoprotective effect against Rotenone-induced toxicity and oxidative stress. In addition, this study also focused on the evaluation of Alpha-synuclein (aS) levels; SLNs showed the potential to modulate the Rotenone-mediated increase in aS levels. In conclusion, our study investigated the potential of SLNs as a delivery system for addressing PD, also representing a promising approach for enhanced delivery of pharmaceutical and antioxidant molecules across the BBB.


Asunto(s)
Supervivencia Celular , Dopamina , Extracto de Semillas de Uva , Nanopartículas , Enfermedad de Parkinson , Rotenona , alfa-Sinucleína , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Dopamina/química , Dopamina/metabolismo , Nanopartículas/química , Extracto de Semillas de Uva/química , Extracto de Semillas de Uva/farmacología , Rotenona/farmacología , Línea Celular Tumoral , alfa-Sinucleína/metabolismo , Supervivencia Celular/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Estrés Oxidativo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Tamaño de la Partícula , Liposomas/química , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo
11.
Cells ; 13(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474335

RESUMEN

Hydrogen sulfide (H2S) has been recently recognized as an important gasotransmitter with cardioprotections, and iron is vital for various cellular activities. This study explored the regulatory role of H2S on iron metabolism and mitochondrial functions in cultured rat cardiac cells. Rotenone, a mitochondrial complex I inhibitor, was used for establishing an in vitro model of ischemic cell damage. It was first found that rotenone induced oxidative stress and lipid peroxidation and decreased mitochondrial membrane potential and ATP generation, eventually causing cell death. The supplement of H2S at a physiologically relevant concentration protected from rotenone-induced ferroptotic cell death by reducing oxidative stress and mitochondrial damage, maintaining GPx4 expression and intracellular iron level. Deferiprone, an iron chelator, would also protect from rotenone-induced ferroptosis. Further studies demonstrated that H2S inhibited ABCB8-mediated iron efflux from mitochondria to cytosol and promoted NFS1-mediated Fe-S cluster biogenesis. It is also found that rotenone stimulated iron-dependent H2S generation. These results indicate that H2S would protect cardiac cells from ischemic damage through preserving mitochondrial functions and intracellular Fe-S cluster homeostasis.


Asunto(s)
Ferroptosis , Rotenona , Ratas , Animales , Rotenona/farmacología , Mitocondrias/metabolismo , Línea Celular Tumoral , Hierro/metabolismo
12.
Molecules ; 29(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474469

RESUMEN

Diacetylcurcumin manganese complex (DiAc-Cp-Mn) is a diacetylcurcumin (DiAc-Cp) derivative synthesized with Mn (II) to mimic superoxide dismutase (SOD). It exhibited superior reactive oxygen species (ROS) scavenging efficacy, particularly for the superoxide radical. The present study investigated the ROS scavenging activity, neuroprotective effects, and underlying mechanism of action of DiAc-Cp-Mn in a cellular model of Parkinson's disease. This study utilized rotenone-induced neurotoxicity in SH-SY5Y cells to assess the activities of DiAc-Cp-Mn by measuring cell viability, intracellular ROS, mitochondrial membrane potential (MMP), SOD, and catalase (CAT) activities. The mRNA expression of the nuclear factor erythroid 2 p45-related factor (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), inducible nitric oxide synthase (iNOS), and Interleukin 1ß (IL-1ß), which are oxidative and inflammatory genes, were also evaluated to clarify the molecular mechanism. The results of the in vitro assays showed that DiAc-Cp-Mn exhibited greater scavenging activity against superoxide radicals, hydrogen peroxide, and hydroxyl radicals compared to DiAc-Cp. In cell-based assays, DiAc-Cp-Mn demonstrated greater neuroprotective effects against rotenone-induced neurotoxicity when compared to its parent compound, DiAc-Cp. DiAc-Cp-Mn maintained MMP levels, reduced intracellular ROS levels, and increased the activities of SOD and CAT by activating the Nrf2-Keap1 signaling pathway. In addition, DiAc-Cp-Mn exerted its anti-inflammatory impact by down-regulating the mRNA expression of iNOS and IL-1ß that provoked neuro-inflammation. The current study indicates that DiAc-Cp-Mn protects against rotenone-induced neuronal damage by reducing oxidative stress and inflammation.


Asunto(s)
Curcumina/análogos & derivados , Enfermedades Mitocondriales , Neuroblastoma , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Humanos , Manganeso/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Fármacos Neuroprotectores/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Inflamación , Superóxido Dismutasa/metabolismo , Antioxidantes/farmacología , ARN Mensajero/genética
13.
Eur J Pharmacol ; 970: 176482, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38452835

RESUMEN

Rotenone, a plant-based agricultural insecticide, has been shown to have anti-tumor activity through targeting mitochondrial complex I in cancer cells. However, off-target toxic side effect on nervous systems have greatly restricted the application of rotenone as anticancer drugs. Here, a folic acid-rotenol (FA-rotenol) conjugate was prepared by covalent coupling of the tumor-targeting ligand folic acid with rotenone derivative-rotenol to enhance its accumulation at tumor site. FA-rotenol conjugates present high in vitro cytotoxicties against several cell lines by inducing mitochondrial membrane potential depolarization and increasing the level of intracellular reactive oxygen species (ROS) to activate the mitochondrial pathway of apoptosis and enhance the G2/M cell cycle arrest. Because of the high affinity with over-expressed folate receptors, FA-rotenol conjugate demonstrated more effective in vivo therapeutic outcomes in 4T1 tumor-bearing mice than rotenone and rotenol. In addition, FA-rotenol conjugate can markedly inhibit the cell migration and invasion of HepG-2 cells. These studies confirm the feasibility of tumor-targeted ligand conjugated rotenone derivatives for targeted antitumor therapy; likewise, they lay the foundations for the development of other rotenol-conjugates with antitumor potential.


Asunto(s)
Antineoplásicos , Profármacos , Animales , Ratones , Profármacos/farmacología , Profármacos/uso terapéutico , Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Ligandos , Rotenona/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología
14.
J Neurochem ; 168(7): 1297-1316, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38413218

RESUMEN

Mitochondrial dysfunction is the main cause of gradual deterioration of structure and function of neuronal cells, eventually resulting in neurodegeneration. Studies have revealed a complex interrelationship between neurotoxicant exposure, mitochondrial dysfunction, and neurodegenerative diseases. Alteration in the expression of microRNAs (miRNAs) has also been linked with disruption in mitochondrial homeostasis and bioenergetics. In our recent research (Cellular and Molecular Neurobiology (2023) https://doi.org/10.1007/s10571-023-01362-4), we have identified miR-29b-3p as one of the most significantly up-regulated miRNAs in the blood of Parkinson's patients. The findings of the present study revealed that neurotoxicants of two different natures, that is, arsenic or rotenone, dramatically increased miR-29b-3p expression (18.63-fold and 12.85-fold, respectively) in differentiated dopaminergic SH-SY5Y cells. This dysregulation of miR-29b-3p intricately modulated mitochondrial morphology, induced oxidative stress, and perturbed mitochondrial membrane potential, collectively contributing to the degeneration of dopaminergic cells. Additionally, using assays for mitochondrial bioenergetics in live and differentiated SH-SY5Y cells, a reduction in oxygen consumption rate (OCR), maximal respiration, basal respiration, and non-mitochondrial respiration was observed in cells transfected with mimics of miR-29b-3p. Inhibition of miR-29b-3p by transfecting inhibitor of miR-29b-3p prior to exposure to neurotoxicants significantly restored OCR and other respiration parameters. Furthermore, we observed that induction of miR-29b-3p activates neuronal apoptosis via sirtuin-1(SIRT-1)/YinYang-1(YY-1)/peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)-regulated Bcl-2 interacting protein 3-like-dependent mechanism. Collectively, our studies have shown the role of miR-29b-3p in dysregulation of mitochondrial bioenergetics during degeneration of dopaminergic neurons via regulating SIRT-1/YY-1/PGC-1α axis.


Asunto(s)
Diferenciación Celular , Neuronas Dopaminérgicas , MicroARNs , Mitocondrias , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Línea Celular Tumoral , Diferenciación Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Rotenona/toxicidad , Rotenona/farmacología , Sirtuina 1/metabolismo , Sirtuina 1/genética
15.
FEBS J ; 291(12): 2636-2655, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38317520

RESUMEN

Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by progressive loss of dopamine-producing neurons from the substantia nigra region of the brain. Mitochondrial dysfunction is one of the major causes of oxidative stress and neuronal cell death in PD. E3 ubiquitin ligases such as Parkin (PRKN) modulate mitochondrial quality control in PD; however, the role of other E3 ligases associated with mitochondria in the regulation of neuronal cell death in PD has not been explored. The current study investigated the role of TRIM32, RING E3 ligase, in sensitization to oxidative stress-induced neuronal apoptosis. The expression of TRIM32 sensitizes SH-SY5Y dopaminergic cells to rotenone and 6-OHDA-induced neuronal death, whereas the knockdown increased cell viability under PD stress conditions. The turnover of TRIM32 is enhanced under PD stress conditions and is mediated by autophagy. TRIM32 translocation to mitochondria is enhanced under PD stress conditions and localizes on the outer mitochondrial membrane. TRIM32 decreases complex-I assembly and activity as well as mitochondrial reactive oxygen species (ROS) and ATP levels under PD stress. Deletion of the RING domain of TRIM32 enhanced complex I activity and rescued ROS levels and neuronal viability under PD stress conditions. TRIM32 decreases the level of XIAP, and co-expression of XIAP with TRIM32 rescued the PD stress-induced cell death and mitochondrial ROS level. In conclusion, turnover of TRIM32 increases during stress conditions and translocation to mitochondria is enhanced, regulating mitochondrial functions and neuronal apoptosis by modulating the level of XIAP in PD.


Asunto(s)
Apoptosis , Neuronas Dopaminérgicas , Mitocondrias , Estrés Oxidativo , Enfermedad de Parkinson , Especies Reactivas de Oxígeno , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Rotenona/farmacología , Transporte de Proteínas , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Línea Celular Tumoral , Oxidopamina/farmacología , Autofagia , Adenosina Trifosfato/metabolismo , Supervivencia Celular/genética
16.
Int J Biol Macromol ; 263(Pt 1): 130219, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367785

RESUMEN

Dysfunctional mitophagy contributes to Parkinson's disease (PD) by affecting dopamine-producing neurons. Mutations in parkin and pink1 genes, linked to familial PD, impede the removal of damaged mitochondria. Previous studies suggested Rab11's involvement in mitophagy alongside Parkin and Pink1. Additionally, mitochondria-endoplasmic reticulum contact sites (MERCS) regulate cellular functions, including mitochondrial quality control and calcium regulation. Our study explored whether activating mitophagy triggers the unfolded protein response and ER stress pathway in SH-SY5Y human cells. We induced a PD-like state by exposing undifferentiated SH-SY5Y cells to rotenone, an established PD-inducing agent. This led to reduced Rab11 and PERK- expression while increasing ATP5a, a mitochondrial marker, when Rab11 was overexpressed. Our findings suggest that enhancing endosomal trafficking can mitigate ER stress by regulating mitochondria, rescuing cells from apoptosis. Furthermore, we assessed the therapeutic potential of Rab11, both alone and in combination with L-Dopa, in a Drosophila PD model. In summary, our research underscores the role of mitophagy dysfunction in PD pathogenesis, highlighting Rab11's importance in alleviating ER stress and preserving mitochondrial function. It also provides insights into potential PD management strategies, including the synergistic use of Rab11 and L-Dopa.


Asunto(s)
Proteínas de Drosophila , Neuroblastoma , Enfermedad de Parkinson , Animales , Humanos , Levodopa , Rotenona/farmacología , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Drosophila/metabolismo , Línea Celular Tumoral , Neuroblastoma/patología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
17.
PLoS One ; 19(2): e0296297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38349932

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative diseases worldwide. Currently applied therapeutic protocols are limited to improve the motor functions of patients. Therefore, seeking alternative regimes with better therapeutic impact is crucial. This study aims to validate the therapeutic impact of mesenchymal stem cell injection using two delivery methods, intracranial administration and intravenous administration, on rotenone (ROT)-induced PD model in rats. Our work included behavioral, biochemical, histological, and molecular investigations. Open field test (OFT) and rotarod tests were applied. Important oxidative stress, antioxidant and proinflammatory markers were monitored. Substantia Nigra and Striatum tissues were examined histologically and the molecular expression of DOPA decarboxylase, Tyrosine hydroxylase, and α-synuclein in neurons in these tissues were investigated. Our results showed that MSC grafting improved motor and memory impairments and oxidative stress status that were observed after ROT administration. Additionally, BM-MSCs application restored SOD and CAT activities and the levels of DA, L-Dopa, IL6, IL1ß, and TNFα. Moreover, MSC grafting overwhelmed the pathological changes induced by ROT and normalized the expression of Tyrosine hydroxylase, DOPA decarboxylase, and α-synuclein towards the control values in the Nigral and Striatal tissues of male rats. Conclusively, both administration routes improved motor function, protection of the nigrostriatal system, and improved striatal dopamine release. The observed beneficial effect of applying MSCs suggests potential benefits in clinical applications. No significant differences in the outcomes of the treatment would favor a certain way of MSC application over the other. However, the intravenous delivery method seems to be safer and more feasible compared to the intrastriatal method.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Ratas , Masculino , Animales , alfa-Sinucleína/metabolismo , Trastornos Parkinsonianos/terapia , Trastornos Parkinsonianos/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Rotenona/farmacología , Dopa-Decarboxilasa/metabolismo , Células Madre Mesenquimatosas/metabolismo , Administración Intravenosa , Modelos Animales de Enfermedad
18.
Behav Brain Res ; 462: 114861, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38216060

RESUMEN

The objective of this study was to investigate the effects of exposure to rotenone, sleep deprivation, and the epidermal growth factor receptor (EGFR) inhibitor on the locomotor activity of zebrafish larvae. Observations were conducted on control groups, sleep-deprived groups without interventions, groups treated with rotenone or the EGFR inhibitor alone, and also groups with combined exposures. The results showed that sleep deprivation alone led to a decrease of speed of the locomotor activity compared to the control groups. The treatment with rotenone alone resulted in varied effects on the locomotor activity. However, a combined exposure to rotenone and sleep deprivation further reduced the locomotor activity compared to the control and rotenone-treated groups. The groups treated with the EGFR inhibitor alone exhibited variable effects on the locomotor activity. Furthermore, the combined exposure to the EGFR inhibitor and sleep deprivation resulted in diverse changes in the locomotor activity. However, the combined treatment with rotenone and the EGFR inhibitor produced complex alterations in the locomotor activity. These findings demonstrate the distinct effects of exposure to rotenone, sleep deprivation, and the EGFR inhibitor on the locomotor activity of zebrafish larvae. The interaction between these factors further modulates locomotor activity, suggesting a potential interplay between the EGFR system, sleep regulation, and the dopaminergic system. Understanding the relationship between the EGFR system, sleep regulation, and neurological regulation may contribute to the development of therapeutic strategies to address such issues as sleep disorders and neurodegenerative conditions.


Asunto(s)
Rotenona , Privación de Sueño , Animales , Privación de Sueño/metabolismo , Rotenona/farmacología , Pez Cebra/fisiología , Sueño/fisiología , Receptores ErbB/metabolismo
19.
Arch Toxicol ; 98(3): 943-956, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38285066

RESUMEN

Angiogenesis is a key process in embryonic development, a disruption of this process can lead to severe developmental defects, such as limb malformations. The identification of molecular perturbations representative of antiangiogenesis in zebrafish embryo (ZFE) may guide the assessment of developmental toxicity from an endpoint- to a mechanism-based approach, thereby improving the extrapolation of findings to humans. Thus, the aim of the study was to discover molecular changes characteristic of antiangiogenesis and developmental toxicity. We exposed ZFEs to two antiangiogenic drugs (SU4312, sorafenib) and two developmental toxicants (methotrexate, rotenone) with putative antiangiogenic action. Molecular changes were measured by performing untargeted metabolomics in single embryos. The metabolome response was accompanied by the occurrence of morphological alterations. Two distinct metabolic effect patterns were observed. The first pattern comprised common effects of two specific angiogenesis inhibitors and the known teratogen methotrexate, strongly suggesting a shared mode of action of antiangiogenesis and developmental toxicity. The second pattern involved joint effects of methotrexate and rotenone, likely related to disturbances in energy metabolism. The metabolites of the first pattern, such as phosphatidylserines, pterines, retinol, or coenzyme Q precursors, represented potential links to antiangiogenesis and related developmental toxicity. The metabolic effect pattern can contribute to biomarker identification for a mechanism-based toxicological testing.


Asunto(s)
Inhibidores de la Angiogénesis , Pez Cebra , Animales , Humanos , Inhibidores de la Angiogénesis/toxicidad , Inhibidores de la Angiogénesis/metabolismo , Angiogénesis , Metotrexato/toxicidad , Rotenona/farmacología , Embrión no Mamífero , Metabolómica
20.
Inflammopharmacology ; 32(1): 777-794, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38038781

RESUMEN

Parkinson's disease is a neuroprogressive disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta. Empagliflozin (EMPA), a SGLT-2 inhibitor, is an oral hypoglycemic agent with reported anti-inflammatory and antioxidant effects. The current study aimed to evaluate the neuroprotective effect of EMPA in rotenone-induced Parkinson's disease. Rats were randomly distributed among five groups as follows: control, rotenone (2 mg/kg), rotenone + EMPA (10 mg/kg), rotenone + EMPA (20 mg/kg), and EMPA (20 mg/kg) groups. They were treated for 30 consecutive days. Rotenone reduced locomotor activity and retention time on the rotarod performance test while elongated descent latency time. On the other side, EMPA corrected these behavioral changes. These results were confirmed by histological examination and number of intact neurons. Moreover, rotenone induced alpha-synuclein accumulation, reduced tyrosine hydroxylase expression, dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid concentrations. On the other side, EMPA reversed such effects induced by rotenone. Depending on previous results, EMPA (20 mg/kg) was selected for further mechanistic studies. Rotenone ameliorated superoxide dismutase and catalase activities and enhanced lipid peroxidation, interleukin-1ß, and tumor necrosis factor-α levels. By contrast, EMPA opposed rotenone-induced effects on oxidative stress and inflammation. Besides, rotenone reduced the expression of pAMP-activated protein kinase (pAMPK), peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), and Sirtuin-1 (SIRT-1), as well as abrogated NAD+/NADH ratio. However, EMPA activated the AMPK/SIRT-1/PGC-1α pathway. Moreover, rotenone hindered the wnt/ß-catenin pathway by reducing the wnt-3a level and ß-catenin expression. On the other side, EMPA triggered activation of the wnt/ß-catenin pathway. Collectively, EMPA may provide a promising solution for Parkinson's patients worldwide.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Enfermedad de Parkinson , Animales , Humanos , Ratas , Proteínas Quinasas Activadas por AMP , Compuestos de Bencidrilo/uso terapéutico , beta Catenina , Neuronas Dopaminérgicas , Glucósidos/uso terapéutico , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Rotenona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA