Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Arch Microbiol ; 206(7): 313, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900186

RESUMEN

Phenols are highly toxic chemicals that are extensively used in industry and produce large amounts of emissions. Notably, phenols released into the soil are highly persistent, causing long-term harm to human health and the environment. In this study, a gram-positive, aerobic, and rod-shaped bacterial strain, Z13T, with efficient phenol degradation ability, was isolated from the soil of sugarcane fields. Based on the physiological properties and genomic features, strain Z13T is considered as a novel species of the genus Rhodococcus, for which the name Rhodococcus sacchari sp. nov. is proposed. The type strain is Z13T (= CCTCC AB 2022327T = JCM 35797T). This strain can use phenol as its sole carbon source. Z13T was able to completely degrade 1200 mg/L phenol within 20 h; the maximum specific growth rate was µmax = 0.93174 h-1, and the maximum specific degradation rate was qmax = 0.47405 h-1. Based on whole-genome sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, strain Z13T contains a series of phenol degradation genes, including dmpP, CatA, dmpB, pcaG, and pcaH, and can metabolize aromatic compounds. Moreover, the potential of strain Z13T for soil remediation was investigated by introducing Z13T into simulated phenol-contaminated soil, and the soil microbial diversity was analyzed. The results showed that 100% of the phenol in the soil was removed within 7.5 d. Furthermore, microbial diversity analysis revealed an increase in the relative species richness of Oceanobacillus, Chungangia, and Bacillus.


Asunto(s)
Biodegradación Ambiental , Fenol , Filogenia , ARN Ribosómico 16S , Rhodococcus , Microbiología del Suelo , Contaminantes del Suelo , Rhodococcus/metabolismo , Rhodococcus/genética , Rhodococcus/clasificación , Rhodococcus/crecimiento & desarrollo , Rhodococcus/aislamiento & purificación , Contaminantes del Suelo/metabolismo , Fenol/metabolismo , ARN Ribosómico 16S/genética , Saccharum/metabolismo , Saccharum/microbiología , Saccharum/crecimiento & desarrollo , Suelo/química , Genoma Bacteriano
2.
BMC Plant Biol ; 24(1): 570, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886648

RESUMEN

BACKGROUND: Sucrose accumulation in sugarcane is affected by several environmental and genetic factors, with plant moisture being of critical importance for its role in the synthesis and transport of sugars within the cane stalks, affecting the sucrose concentration. In general, rainfall and high soil humidity during the ripening stage promote plant growth, increasing the fresh weight and decreasing the sucrose yield in the humid region of Colombia. Therefore, this study aimed to identify markers associated with sucrose accumulation or production in the humid environment of Colombia through a genome-wide association study (GWAS). RESULTS: Sucrose concentration measurements were taken in 220 genotypes from the Cenicaña's diverse panel at 10 (early maturity) and 13 (normal maturity) months after planting. For early maturity data was collected during plant cane and first ratoon, while at normal maturity it was during plant cane, first, and second ratoon. A total of 137,890 SNPs were selected after sequencing the 220 genotypes through GBS, RADSeq, and whole-genome sequencing. After GWAS analysis, a total of 77 markers were significantly associated with sucrose concentration at both ages, but only 39 were close to candidate genes previously reported for sucrose accumulation and/or production. Among the candidate genes, 18 were highlighted because they were involved in sucrose hydrolysis (SUS6, CIN3, CINV1, CINV2), sugar transport (i.e., MST1, MST2, PLT5, SUT4, ERD6 like), phosphorylation processes (TPS genes), glycolysis (PFP-ALPHA, HXK3, PHI1), and transcription factors (ERF12, ERF112). Similarly, 64 genes were associated with glycosyltransferases, glycosidases, and hormones. CONCLUSIONS: These results provide new insights into the molecular mechanisms involved in sucrose accumulation in sugarcane and contribute with important genomic resources for future research in the humid environments of Colombia. Similarly, the markers identified will be validated for their potential application within Cenicaña's breeding program to assist the development of breeding populations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Humedad , Saccharum , Sacarosa , Saccharum/genética , Saccharum/metabolismo , Colombia , Sacarosa/metabolismo , Polimorfismo de Nucleótido Simple , Genotipo
3.
Plant Physiol Biochem ; 213: 108828, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896914

RESUMEN

The NAC (NAM, ATAF, and CUC) is one of the largest transcription factor gene families in plants. In this study, 180, 141, and 131 NAC family members were identified from Saccharum complex, including S. officinarum, S. spontaneum, and Erianthus rufipilus. The Ka/Ks ratio of ATAF subfamily was all less than 1. Besides, 52 ATAF members from 12 representative plants were divided into three clades and there was only a significant expansion in maize. Surprisingly, ABA and JA cis-elements were abundant in hormonal response factor, followed by transcriptional regulator and abiotic stressor. The ATAF subfamily was differentially expressed in various tissues, under low temperature and smut pathogen treatments. Further, the ScATAF1 gene, with high expression in leaves, stem epidermis, and buds, was isolated. The encoded protein, lack of self-activation activity, was situated in the cell nucleus. Moreover, SA and JA stresses down-regulated the expression of this gene, while ABA, NaCl, and 4°C treatments led to its up-regulation. Interestingly, its expression in the smut susceptible sugarcane cultivars was much higher than the smut resistant ones. Notably, the colors presented slight brown in tobacco transiently overexpressing ScATAF1 at 1 d after DAB staining, while the symptoms were more obvious at 3 d after inoculation with Ralstonia solanacearum, with ROS, JA, and SA signaling pathway genes significantly up-regulated. We thus speculated ScATAF1 gene could negatively mediate hypersensitive reactions and produce ROS by JA and SA signaling pathways. These findings lay the groundwork for in-depth investigation on the biological roles of ATAF subfamily in sugarcane.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Saccharum , Factores de Transcripción , Saccharum/genética , Saccharum/microbiología , Saccharum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Ralstonia solanacearum/fisiología , Filogenia
4.
J Agric Food Chem ; 72(23): 13205-13216, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38809782

RESUMEN

Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.


Asunto(s)
Ciclopentanos , Resistencia a la Enfermedad , Fusarium , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Enfermedades de las Plantas , Proteínas de Plantas , Saccharum , Ácido Salicílico , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Saccharum/genética , Saccharum/microbiología , Saccharum/metabolismo , Saccharum/inmunología , Fusarium/fisiología , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/metabolismo , Nicotiana/inmunología , Etilenos/metabolismo
5.
Braz J Microbiol ; 55(2): 1117-1129, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38647869

RESUMEN

Global food production faces challenges concerning access to nutritious and sustainably produced food. Pleurotus djamor, however, is an edible mushroom that can be cultivated on agricultural waste. Considering that nutritional and functional potential of mushrooms can change based on cultivation conditions, we examined the influence of substrates with different compositions of banana leaf and sugarcane bagasse on the nutritional, mycochemical, and antioxidant properties of P. djamor. The mushrooms were grown for 120 days and dried in a circulating air oven at 45 °C for three days. We conducted bromatological analyses and mycochemical characterization (1H-NMR, total phenolics, and flavonoids) of the mushrooms and assayed the antioxidant activity of extracts from the dried mushrooms using an ethanol/water solution (70:30 v/v). In general, the substrates produced mushrooms with high protein (18.77 ± 0.24% to 17.80 ± 0.34%) and dietary fiber content (18.02 ± 0.05% to 19.32 ± 0.39%), and with low lipid (0.28 + 0.08% to 0.4 + 0.6%), and caloric content (maximum value: 258.42 + 8.49), with no significant differences between the groups (p ≥ 0.05). The mushrooms also exhibited high levels of total phenolics and flavonoids. The mushrooms cultivated on sugarcane bagasse substrates presented the highest values (p < 0.05). Analysis of the 1H-NMR spectra indicates an abundant presence of heteropolysaccharides, ß-glucans, α-glucans, and oligosaccharides, and all the mushroom extracts exhibited high antioxidant activity. In conclusion, our study demonstrates that agricultural residues permit sustainable production of edible mushrooms while maintaining nutritional and functional properties.


Asunto(s)
Antioxidantes , Celulosa , Musa , Hojas de la Planta , Pleurotus , Saccharum , Pleurotus/metabolismo , Pleurotus/química , Pleurotus/crecimiento & desarrollo , Saccharum/química , Saccharum/metabolismo , Antioxidantes/metabolismo , Antioxidantes/química , Musa/química , Hojas de la Planta/química , Celulosa/metabolismo , Valor Nutritivo , Flavonoides/metabolismo , Flavonoides/análisis , Fenoles/metabolismo , Agricultura/métodos
6.
Physiol Plant ; 176(3): e14313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666351

RESUMEN

Bipolaris setariae is known to cause brown stripe disease in sugarcane, resulting in significant yield losses. Silicon (Si) has the potential to enhance plant growth and biotic resistance. In this study, the impact of Si on brown stripe disease was investigated across susceptible and resistant sugarcane varieties, utilizing four Si concentrations (0, 15, 30, and 45 g per barrel of Na2SiO3·5H2O). Si significantly reduced the incidence of brown stripe disease (7.41-59.23%) and alleviated damage to sugarcane growth parameters, photosynthetic parameters, and photosynthetic pigments. Submicroscopic observations revealed that Si induced the accumulation of silicified cells in leaves, reduced spore accumulation, decreased stomatal size, and protected organelles from B. setariae damage. In addition, Si increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), reduced reactive oxygen species production (malondialdehyde and hydrogen peroxide) and modulated the expression of genes associated with hormone signalling (PR1, TGA, AOS, AOC, LOX, PYL8, and SnRK2), leading to the accumulation of abscisic acid and jasmonic acid and inhibiting SA synthesis. Si also activated the activity of metabolism-related enzymes (polyphenol oxidase and phenylalanine ammonia lyase) and the gene expression of PAL-dependent genes (PAL, C4H, and 4CL), regulating the accumulation of metabolites, such as chlorogenic acid and lignin. The antifungal test showed that chlorogenic acid (15ug µL-1) had a significant inhibitory effect on the growth of B. setariae. This study is the first to demonstrate the inhibitory effect of Si on B. setariae in sugarcane, highlighting Si as a promising and environmentally friendly strategy for managing brown stripe disease.


Asunto(s)
Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Especies Reactivas de Oxígeno , Saccharum , Silicio , Saccharum/efectos de los fármacos , Saccharum/metabolismo , Saccharum/microbiología , Saccharum/genética , Saccharum/crecimiento & desarrollo , Silicio/farmacología , Silicio/metabolismo , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Ascomicetos/fisiología , Ascomicetos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Depuradores de Radicales Libres/metabolismo
7.
Plant J ; 118(6): 2094-2107, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38523577

RESUMEN

The sugarcane (Saccharum spp.) genome is one of the most complex of all. Modern varieties are highly polyploid and aneuploid as a result of hybridization between Saccharum officinarum and S. spontaneum. Little research has been done on meiotic control in polyploid species, with the exception of the wheat Ph1 locus harboring the ZIP4 gene (TaZIP4-B2) which promotes pairing between homologous chromosomes while suppressing crossover between homeologs. In sugarcane, despite its interspecific origin, bivalent association is favored, and multivalents, if any, are resolved at the end of prophase I. Thus, our aim herein was to investigate the purported genetic control of meiosis in the parental species and in sugarcane itself. We investigated the ZIP4 gene and immunolocalized meiotic proteins, namely synaptonemal complex proteins Zyp1 and Asy1. The sugarcane ZIP4 gene is located on chromosome 2 and expressed more abundantly in flowers, a similar profile to that found for TaZIP4-B2. ZIP4 expression is higher in S. spontaneum a neoautopolyploid, with lower expression in S. officinarum, a stable octoploid species. The sugarcane Zip4 protein contains a TPR domain, essential for scaffolding. Its 3D structure was also predicted, and it was found to be very similar to that of TaZIP4-B2, reflecting their functional relatedness. Immunolocalization of the Asy1 and Zyp1 proteins revealed that S. officinarum completes synapsis. However, in S. spontaneum and SP80-3280 (a modern variety), no nuclei with complete synapsis were observed. Importantly, our results have implications for sugarcane cytogenetics, genetic mapping, and genomics.


Asunto(s)
Meiosis , Proteínas de Plantas , Saccharum , Saccharum/genética , Saccharum/metabolismo , Meiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromosomas de las Plantas/genética , Poliploidía , Regulación de la Expresión Génica de las Plantas , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
8.
Sci Rep ; 14(1): 3173, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326332

RESUMEN

This research represents a novel study to assess how coculture affects levan yield, structure, bioactivities, and molecular weight. Among the 16 honey isolates, four bacterial strains recorded the highest levan yield. The Plackett-Burman design showed that the coculture (M) of isolates G2 and K2 had the maximum levan yield (52 g/L) and the effective factors were sucrose, incubation time, and sugarcane bagasse. The CCD showed that the most proper concentrations for maximum levan yield (81 g/L): were 130 g/L of sucrose and 6 g/f of sugarcane bagasse. Levan's backbone was characterized, and the molecular weight was determined. G2 and K2 isolates were identified based on 16 sRNA as Bacillus megaterium strain YM1C10 and Rhizobium sp. G6-1. M levan had promising antioxidant activity (99.66%), slowed the migration activity to a great extent, and recorded 70.70% inhibition against the hepatoblastoma cell line (HepG2) at 1000 µg/mL. Gene expression analysis in liver cancer cell lines (HePG2) revealed that M levan decreased the expression of CCL20), 2GRB2, and CCR6) genes and was superior to Doxo. While increasing the expression of the IL4R and IL-10 genes. The DNA damage values were significantly increased (P < 0.01) in treated liver cancer cell lines with levan M and Doxo. The results referred to the importance of each of the hydroxyl and carboxyl groups and the molecular weight in levans bioactivities.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Saccharum , Celulosa , Carcinoma Hepatocelular/genética , Técnicas de Cocultivo , Neoplasias Hepáticas/genética , Saccharum/metabolismo , Fructanos/metabolismo , Bacterias/metabolismo , Sacarosa/metabolismo , Línea Celular
9.
Mol Plant Pathol ; 25(1): e13414, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38279852

RESUMEN

Fusarium sacchari is one of the primary pathogens causing pokkah boeng disease, which impairs the yield and quality of sugarcane around the world. Understanding the molecular mechanisms of the F. sacchari effectors that regulate plant immunity is of great importance for the development of novel strategies for the persistent control of pokkah boeng disease. In a previous study, Fs00367 was identified to inhibit BAX-induced cell death. In this study, Fs00367nsp (without signal peptide) was found to suppress BAX-induced cell death, reactive oxygen species bursts and callose accumulation. The amino acid region 113-142 of Fs00367nsp is the functional region. Gene mutagenesis indicated that Fs00367 is important for the full virulence of F. sacchari. A yeast two-hybrid assay revealed an interaction between Fs00367nsp and sugarcane ScPi21 in yeast that was further confirmed using bimolecular fluorescence complementation, pull-down assay and co-immunoprecipitation. ScPi21 can induce plant immunity, but this effect could be blunted by Fs00367nsp. These results suggest that Fs00367 is a core pathogenicity factor that suppresses plant immunity through inhibiting ScPi21-induced cell death. The findings of this study provide new insights into the molecular mechanisms of effectors in regulating plant immunity.


Asunto(s)
Fusarium , Saccharum , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología , Inmunidad de la Planta/genética , Saccharum/genética , Saccharum/metabolismo , Muerte Celular , Enfermedades de las Plantas
10.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37980713

RESUMEN

Salinity affects crop growth by modulating cellular ionic concentrations and generation of reactive oxygen species. Application of silicon (Si) has proved beneficial in ameliorating salinity-triggered plant growth and yield retardations. Leaf roll explants of three sugarcane (Saccharum officinarum ) genotypes (HSF-240, CPF-246, CPF-250) were cultured in Murashige and Skoog (MS) medium supplemented with K2 SiO3 . In vitro regenerated plantlets were acclimatised and grown in natural saline soil. In absence of Si, cv. CPF-246 exhibited better salt tolerance as indicted by maximum chlorophyll a and chlorophyll b contents, rate of photosynthesis and root K+ uptake along with less cellular hydrogen peroxide content. Silicon restricted root Na+ uptake but assisted in K+ , Ca2+ , Mg2+ and Fe2+ accretion in roots and their translocation towards shoots. Cv. HSF-240 and cv. CPF-250 exhibited more increase in photosynthetic pigment content, stomatal conductance and photosynthetic rate after addition of 25 or 50mgL-1 Si than control group. Optimum phenolic content and antioxidant enzyme activity along with decreased lipid peroxidation and hydrogen peroxide content were recorded in all three sugarcane genotypes raised in presence of 25 or 50mgL-1 Si. These findings signify Si supplementation (50mgL-1 ) in tissue culture medium and plant adaptation in saline soil. Further in vitro studies involving Si-mediated gene expression modulations in sugarcane protoplasts shall assist in deciphering cross-talk between Si uptake and cellular responses. The application of Si can further be tested for other plant species to devise strategies for improved crop growth and utilisation of saline areas for crop cultivation.


Asunto(s)
Antioxidantes , Saccharum , Antioxidantes/metabolismo , Saccharum/metabolismo , Silicio/farmacología , Clorofila A , Suelo , Peróxido de Hidrógeno , Solución Salina , Suplementos Dietéticos , Nutrientes
11.
Plant J ; 117(2): 573-589, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897092

RESUMEN

The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.


Asunto(s)
Cromatina , Saccharum , Succinatos , Saccharum/genética , Saccharum/metabolismo , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Fitomejoramiento , Genómica , Poliploidía
12.
Braz J Microbiol ; 54(4): 2765-2772, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37930616

RESUMEN

This manuscript deals with cordycepin, an interesting secondary compound produced from entomopathogenic fungus, Cordyceps. It has attracted commercial interest due to its immense pharmacological importance beneficial to human health. In this study, the contents of cordycepin and its derivatives, like adenine and adenosine, were evaluated through solid-state fermentation using combinations of various grains as substrate. Treatment with grain combination numbers 2, 7, 8, and 9 exhibited higher cordycepin content (1.621, 1.929, 1.895, and 1.996 mg/g cordycepin, respectively) than control (rice). The grain combination number 7 exhibited significantly higher adenine content (700 mg/g) than the control and all other combinations. Treatments with grain combination numbers 2, 5, and 7 exhibited higher adenosine content (2.719, 2.938, and 3.392 mg/g, respectively); however, no significant increase in adenosine content was noted in any treatments. The biomass including fresh mycelium and fruit body was found higher in grain combination numbers 7 and 9, leading to enhanced cordycepin content. Overall, the increase in the fresh biomass significantly enhanced cordycepin accumulation. The level of cordycepin was recorded as higher than that of its derivatives, adenosine and adenine. The grain combination of rice, wheat, jowar, bajra, and sugarcane bagasse added to basal medium exhibited the highest cordycepin content and was found suitable for solid-state fermentation of Cordyceps militaris. To our understanding, the present study is the first to use combinations of cereals for the production of cordycepin from C. militaris.


Asunto(s)
Cordyceps , Saccharum , Humanos , Cordyceps/metabolismo , Celulosa , Fermentación , Saccharum/metabolismo , Adenosina/química , Adenosina/metabolismo , Grano Comestible , Adenina
13.
Ecotoxicol Environ Saf ; 263: 115381, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597288

RESUMEN

Cadmium (Cd) is a toxic element that endangers crop growth and affects food safety and human health. Therefore, the study of Cd mitigation technology is important. Ultrasonic treatment can improve crop growth and enhance their ability to resist various abiotic stresses. In this study, the effect of ultrasonic treatment on alleviating sugarcane Cd stress was studied in a barrel experiment using sugarcane varieties 'ROC22' and 'LC05-136' as test materials. Sugarcane buds without ultrasonic treatment and with ultrasonic treatment (20-40 kHz mixed frequency ultrasound for 2 min, dry treatment) were planted in soil with Cd contents of 0, 50, 100, 250, and 500 mg·kg-1. Compared with non-ultrasonic treatment, Ultrasonic treatment significantly increased the activities of antioxidant enzymes in sugarcane, significantly increased the content of osmoregulation substances, significantly reduced the content of superoxide anion (the highest decreases reached 11.55%) and malondialdehyde (the highest decreases reached 20.59%), and significantly increased the expression level of metallothionein (MT)-related genes, with the expression of ScMT1 increased by 8.80-37.49% and the expression of ScMT2-1-5 increased by 1.55-69.33%. In addition, ultrasonic treatment significantly reduced the Cd contents in sugarcane roots, stems, leaves, bagasse, and juice (the highest reduction in Cd content was 49.18%). In general, ultrasonic treatment regulated the metabolism of reactive oxygen species and MT-related gene expression in sugarcane, increased the Cd tolerance of sugarcane, promoted photosynthesis in sugarcane leaves, improved root morphology, enhanced sugarcane growth, and increased cane and sugar yield.


Asunto(s)
Antioxidantes , Cadmio , Saccharum , Antioxidantes/metabolismo , Cadmio/toxicidad , Metalotioneína , Saccharum/efectos de los fármacos , Saccharum/metabolismo , Saccharum/efectos de la radiación , Ondas Ultrasónicas
14.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240257

RESUMEN

Sugarcane, a C4 plant, provides most of the world's sugar, and a substantial amount of renewable bioenergy, due to its unique sugar-accumulating and feedstock properties. Brazil, India, China, and Thailand are the four largest sugarcane producers worldwide, and the crop has the potential to be grown in arid and semi-arid regions if its stress tolerance can be improved. Modern sugarcane cultivars which exhibit a greater extent of polyploidy and agronomically important traits, such as high sugar concentration, biomass production, and stress tolerance, are regulated by complex mechanisms. Molecular techniques have revolutionized our understanding of the interactions between genes, proteins, and metabolites, and have aided in the identification of the key regulators of diverse traits. This review discusses various molecular techniques for dissecting the mechanisms underlying the sugarcane response to biotic and abiotic stresses. The comprehensive characterization of sugarcane's response to various stresses will provide targets and resources for sugarcane crop improvement.


Asunto(s)
Saccharum , Transcriptoma , Saccharum/metabolismo , Proteómica , Perfilación de la Expresión Génica , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Plant Physiol Biochem ; 200: 107760, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37207494

RESUMEN

Sugarcane is an important sugar and energy crop and smut disease caused by Sporisorium scitamineum is a major fungal disease which can seriously reduce the yield and quality of sugarcane. In plants, TGACG motif binding (TGA) transcription factors are involved in the regulation of salicylic acid (SA) and methyl jasmonate (MeJA) signaling pathways, as well as in response to various biotic and abiotic stresses. However, no TGA-related transcription factor has been reported in Saccharum. In the present study, 44 SsTGA genes were identified from Saccharum spontaneum, and were assorted into three clades (I, II, III). Cis-regulatory elements (CREs) analysis revealed that SsTGA genes may be involved in hormone and stress response. RNA-seq data and RT-qPCR analysis indicated that SsTGAs were constitutively expressed in different tissues and induced by S. scitamineum stress. In addition, a ScTGA1 gene (GenBank accession number ON416997) was cloned from the sugarcane cultivar ROC22, which was homologous to SsTGA1e in S. spontaneum and encoded a nucleus protein. It was constitutively expressed in sugarcane tissues and up-regulated by SA, MeJA and S. scitamineum stresses. Furthermore, transient overexpression of ScTGA1 in Nicotiana benthamiana could enhance its resistance to the infection of Ralstonia solanacearum and Fusarium solani var. coeruleum, by regulating the expression of immune genes related to hypersensitive response (HR), ethylene (ET), SA and jasmonic acid (JA) pathways. This study should contribute to our understanding on the evolution and function of the SsTGA gene family in Saccharum, and provide a basis for the functional identification of ScTGA1 under biotic stresses.


Asunto(s)
Saccharum , Ustilaginales , Saccharum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Ustilaginales/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
J Sci Food Agric ; 103(11): 5388-5400, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37038045

RESUMEN

BACKGROUND: Dipeptidyl peptidase-IV (DPP-IV), α-glucosidase, and α-amylase play a prominent role in regulating postprandial blood sugar levels, which are regarded as key targets for the treatment of type 2 diabetes mellitus (T2DM). The present study aimed to characterize bioactive compounds as potent crucial sugar metabolism enzyme inhibitors from sugarcane leaves by virtual screening. In total, 41 sugarcane leaf-derived compounds were used for the screening of multiple targets. Subsequently, the molecular mechanism and activity validation in vitro of the interaction between enzymes and compound were carried out. RESULTS: Flavonoid compound schaftoside was identified by molecular simulation and showed significant DPP-IV (0.1050 ± 1.22 mmol L-1 ), α-glucosidase (0.078 ± 0.06 mmol L-1 ), and α-amylase (0.3067 ± 0.35 mmol L-1 ) inhibitory effects. The residues ARG125 and TYR662 of DPP-IV may play crucial roles in inhibiting the activity of DPP-IV. Multiple hydrogen bonds and electrostatic interactions were exhibited between schaftoside and α-glucosidase. Molecular modeling revealed that schaftoside displays strong binding with the catalytic triad (ASP197, ASP300, and GLU233) of α-amylase. CONCLUSION: Our findings demonstrate that schaftoside from sugarcane leaves might be an edible for T2DM treatment." © 2023 Society of Chemical Industry.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Saccharum , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , alfa-Glucosidasas/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Simulación del Acoplamiento Molecular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Saccharum/metabolismo , Dipeptidil Peptidasa 4/química , alfa-Amilasas/química , Hojas de la Planta/metabolismo , Inhibidores de Glicósido Hidrolasas/química
17.
Bioresour Technol ; 376: 128847, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36898558

RESUMEN

Due to the limited availability of fossil fuels, pollution causing serious environmental issues, and their continuously rising price, the development of low-cost efficient enzymes and their implementation in biomass-based bioenergy industries are highly demanded. In the present work, phytogenic fabrication of copper oxide based nanocatalyst has been performed using moringa leaves and has been characterized using different techniques. Herein, the impact of different dosages of as-prepared nanocatalyst on fungal co-cultured cellulolytic enzyme production under co-substrate fermentation using wheat straw and sugarcane bagasse in 4:2 ratios in solid state fermentation (SSF) has been investigated. An optimal concentration of 25 ppm of nanocatalyst influenced the production of 32 IU/gds of enzyme, which showed thermal stability at 70 °C for 15 h. Additionally, enzymatic bioconversion of rice husk at 70 °C librated 41 g/L of total reducing sugars, which led to the production of 2390 mL/L of cumulative H2 in 120 h.


Asunto(s)
Moringa oleifera , Saccharum , Celulosa/metabolismo , Moringa oleifera/metabolismo , Cobre , Saccharum/metabolismo , Fermentación , Óxidos
18.
J Adv Res ; 54: 1-13, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36781019

RESUMEN

INTRODUCTION: Modern sugarcane cultivars (Saccharum spp. hybrids) derived from crosses between S. officinarum and S. spontaneum, with high-sugar traits and excellent stress tolerance inherited respectively. However, the contribution of the S. spontaneum subgenome to sucrose accumulation is still unclear. OBJECTIVE: To compensate for the absence of a high-quality reference genome, a transcriptome analysis method is needed to analyze the molecular basis of differential sucrose accumulation in sugarcane hybrids and to find clues to the contribution of the S. spontaneum subgenome to sucrose accumulation. METHODS: PacBio full-length sequencing was used to complement genome annotation, followed by the identification of differential genes between the high and low sugar groups using differential alternative splicing analysis and differential expression analysis. At the subgenomic level, the factors responsible for differential sucrose accumulation were investigated from the perspective of transcriptional and post-transcriptional regulation. RESULTS: A full-length transcriptome annotated at the subgenomic level was provided, complemented by 263,378 allele-defined transcript isoforms and 139,405 alternative splicing (AS) events. Differential alternative splicing (DA) analysis and differential expression (DE) analysis identified differential genes between high and low sugar groups and explained differential sucrose accumulation factors by the KEGG pathways. In some gene models, different or even opposite expression patterns of alleles from the same gene were observed, reflecting the potential evolution of these alleles toward novel functions in polyploid sugarcane. Among DA and DE genes in the sucrose source-sink complex pathway, we found some alleles encoding sucrose accumulation-related enzymes derived from the S. spontaneum subgenome were differentially expressed or had DA events between the two contrasting sugarcane hybrids. CONCLUSION: Full-length transcriptomes annotated at the subgenomic level could better characterize sugarcane hybrids, and the S. spontaneum subgenome was found to contribute to sucrose accumulation.


Asunto(s)
Saccharum , Transcriptoma , Saccharum/genética , Saccharum/metabolismo , Azúcares/metabolismo , Perfilación de la Expresión Génica , Sacarosa/metabolismo
19.
Chemosphere ; 318: 137736, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36603677

RESUMEN

A farm at Taoyuan in Taiwan was highly contaminated with decabrominated diphenyl ether (BDE-209), a widely used commercial brominated flame retardant and persistent in the environment, more than 10 years. Since crops are able to absorb and accumulate BDE-209 from soils in our previous research, posing a hazardous risk for humans, it is essential to develop a practical method of soil treatment. Thermal treatment was studied among different approaches. In our previous study (Ko et al., 2022), we found that heating to 450 °C for 30 min achieved a complete removal of BDE-209 in soil. However, the high temperature significantly decreased the original soil organic matter (SOM) from 2.47% to 0.27%, altering the soil texture, damaging microbial biomass, and thus affecting the revegetation after the thermal treatment. Sugarcane bagasse, a common agricultural residue, served as an amendment to restore soil fertility. Current results indicate that 2.5% bagasse can improve the SOM in soil by up to 2.73% and restore its bacterial composition, making the plant growth conditions similar to those of the untreated contaminated soil. In light of the high removal efficiency provided by the 450°C-thermal treatment and the high recovery efficiency of sugarcane bagasse, the strategy presented in this study serves to be a promising method for sustainable remediation.


Asunto(s)
Retardadores de Llama , Saccharum , Contaminantes del Suelo , Humanos , Celulosa , Contaminantes del Suelo/análisis , Suelo/química , Saccharum/metabolismo , Éteres Difenilos Halogenados/análisis , Grano Comestible/química
20.
Int J Biol Macromol ; 232: 123398, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36702220

RESUMEN

In plants, catalase (CAT) mainly scavenges H2O2 from reactive oxygen species (ROS) and regulates the growth and development. So far, genome-wide identification of CAT gene family in Saccharum has not yet been reported. Here, 16 SsCAT genes were identified based on a Saccharum spontaneum genome. They were clustered into three subfamilies, with closer genes sharing similar structures. Most SsCAT proteins contained three conserved amino acids, one active catalytic site, one heme-ligand signature, and three peroxisomal targeting signal 1 (PTS1) sequences. The cis-regulatory element prediction revealed that SsCAT genes were involved in growth and development, and in response to various hormones and stresses. RNA-Seq databases showed that SsCAT genes were differentially expressed in Saccharum tissues and under cold, drought, and Sporisorium scitamineum stresses. The ScCAT1 gene transcript (GenBank accession number KF664183) and relevant CAT activity were up-regulated under S. scitamineum stress. Overexpression of ScCAT1 gene in Nicotiana benthamiana could enhance its resistance to pathogen infection through scavenging of excessive toxic ROS and up-regulated expressions of genes related to hypersensitive response (HR), ROS and salicylic acid (SA) pathways. This study provides comprehensive information for the CAT gene family and sets up a basis for its function identification in sugarcane.


Asunto(s)
Saccharum , Saccharum/genética , Saccharum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Catalasa/metabolismo , Resistencia a la Enfermedad/genética , Peróxido de Hidrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA