Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.021
Filtrar
1.
Parasit Vectors ; 17(1): 232, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769548

RESUMEN

BACKGROUND: Schistosoma japonicum eggs lodge in the liver and induce a fibrotic granulomatous immune response in the liver of host. Galectin 3 (Gal-3) is a protein implicated in fibrosis in multiple organs. However, the pathology and molecular mechanisms promoting hepatic granuloma formation remain poorly understood. METHODS: To investigate the effect of blocking galectin-receptor interactions by α-lactose on liver immunopathology in mice with S. japonicum infection, C57BL/6 mice were infected with S. japonicum and alpha (α)-lactose was intraperitoneally injected to block the interactions of galectins and their receptors. RESULTS: Compared with S. japonicum-infected mice, there were significantly decreased Gal-3 mRNA and protein expression levels, decreased intensity of Gal-3 fluorescence in the liver, decreased serum ALT and AST levels, decreased egg numbers of S. japonicum in the liver section, attenuated hepatic and spleen pathology, and alleviated liver fibrosis accompanied with decreased protein expression levels of fibrosis markers [α-smooth muscle actin (α-SMA), collagen I, and collagen IV] in the liver of S. japonicum-infected mice blocked galectin-receptor interactions with hematoxylin-eosin staining, Masson's trichrome staining, immunohistochemistry, or Western blot analysis. Compared with S. japonicum-infected mice, blocking galectin-receptor interactions led to increased eosinophil infiltration and higher eosinophil cationic protein (ECP) expression in the liver, accompanied by increased mRNA levels of eosinophil granule proteins [ECP and eosinophil peroxidase (EPO)], IL-5, CCL11, and CCR3 in the liver and decreased mRNA levels of Gal-3 and M2 macrophage cytokines (TGF-ß, IL-10, and IL-4) in the liver and spleen by using quantitative real-time reverse transcription-polymerase chain reaction. In addition, there were increased Beclin1 protein expression and protein expression ratio of LC3B-II/LC3B-I and decreased p62 protein expression and protein expression ratios of phospho-mTOR/mTOR and phospho-AKT/AKT by Western blot; increased double-labeled F4/80+/LC3B+ cells by immunofluorescence staining; increased M1 macrophage polarization in the liver of S. japonicum-infected mice blocked galectin-receptor interactions by flow cytometric analysis and immunofluorescence staining. CONCLUSIONS: Our data found that blockage of galectin-receptor interactions downregulated Gal-3, which in turn led to reduced liver functional damage, elevated liver eosinophil recruitment, promoted macrophage autophagy through the Akt/mTOR signaling pathway, and alleviated liver pathology and fibrosis. Therefore, Gal-3 plays a pivotal role during S. japonicum infection and could be a target of pharmacologic potential for liver fibrosis induced by S. japonicum infection.


Asunto(s)
Galectina 3 , Cirrosis Hepática , Ratones Endogámicos C57BL , Schistosoma japonicum , Esquistosomiasis Japónica , Animales , Esquistosomiasis Japónica/parasitología , Esquistosomiasis Japónica/complicaciones , Cirrosis Hepática/parasitología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Galectina 3/metabolismo , Galectina 3/genética , Hígado/parasitología , Hígado/patología , Hígado/metabolismo , Femenino , Lactosa/farmacología , Lactosa/análogos & derivados , Galectinas/metabolismo , Galectinas/genética
2.
PLoS Pathog ; 20(4): e1012153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598555

RESUMEN

Schistosomiasis is a fatal zoonotic parasitic disease that also threatens human health. The main pathological features of schistosomiasis are granulomatous inflammation and subsequent liver fibrosis, which is a complex, chronic, and progressive disease. Extracellular vesicles (EVs) derived from schistosome eggs are broadly involved in host-parasite communication and act as important contributors to schistosome-induced liver fibrosis. However, it remains unclear whether substances secreted by the EVs of Schistosoma japonicum, a long-term parasitic "partner" in the hepatic portal vein of the host, also participate in liver fibrosis. Here, we report that EVs derived from S. japonicum worms attenuated liver fibrosis by delivering sja-let-7 into hepatic stellate cells (HSCs). Mechanistically, activation of HSCs was reduced by targeting collagen type I alpha 2 chain (Col1α2) and downregulation of the TGF-ß/Smad signaling pathway both in vivo and in vitro. Overall, these results contribute to further understanding of the molecular mechanisms underlying host-parasite interactions and identified the sja-let-7/Col1α2/TGF-ß/Smad axis as a potential target for treatment of schistosomiasis-related liver fibrosis.


Asunto(s)
Vesículas Extracelulares , Cirrosis Hepática , Schistosoma japonicum , Esquistosomiasis Japónica , Animales , Vesículas Extracelulares/metabolismo , Cirrosis Hepática/parasitología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Esquistosomiasis Japónica/metabolismo , Esquistosomiasis Japónica/parasitología , Esquistosomiasis Japónica/patología , Ratones , Interacciones Huésped-Parásitos/fisiología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/parasitología , Células Estrelladas Hepáticas/patología , MicroARNs/metabolismo , MicroARNs/genética , Transducción de Señal , Humanos , Proteínas del Helminto/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ratones Endogámicos C57BL
3.
Parasit Vectors ; 17(1): 116, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454463

RESUMEN

BACKGROUND: Schistosomiasis is a disease primarily caused by eggs laid by pathogens called schistosomes. Among the schistosome species infecting humans, Schistosoma japonicum possesses the largest fecundity; each adult female produces an average of 3500 eggs per day. The lack of proper culture conditions supporting continuous oviposition in vitro has precluded detailed investigation of mechanisms regulating sexual maturation and egg production in Schistosoma japonicum. METHODS: We optimized in vitro culture conditions by replacing reagents that are part of the classical ABC169 medium. Fast Blue BB staining and 4',6-diamidino-2-phenylindole (DAPI) labeling were applied to observe the sexual development status of the females. In vitro RNA interference (RNAi) technology was used to validate the capability of the modified medium. The detection of male ß-alanyl-tryptamine (BATT) was conducted using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Both m-AB169 (1640) and AB169 (1640) media are capable of facilitating the sexual development of paired virgin female S. japonicum, as well as sustaining the mature reproductive organs and egg production of adult S. japonicum for at least 22 days in vitro. M-AB169 (1640) provided a more stable condition for supporting the sexual maturity of female S. japonicum, as evidenced by the consistent initiation of egg production compared with AB169 (1640). Through a comparative analysis of S. japonicum and S. mansoni in diverse media, we demonstrated that these closely related species display distinct demands for their sexual development and egg production, suggesting a potential influence of nutritional factors on the observed variations in host ranges among different schistosome species. Importantly, we successfully identified the presence of the pheromone ß-alanyl-tryptamine (BATT) in S. japonicum, previously identified in S. mansoni, highlighting its conserved role in schistosome reproductive development. Through the employment of double-stranded RNA (dsRNA) treatment to silence two genes that are involved in either the male (gli1, glioma-associated oncogene homolog 1) or female (vf1, vitellogenic factor 1) side in male-induced female reproductive development of S. mansoni, we confirmed that the combination of m-AB169 (1640) and RNAi technology has the capacity to facilitate in vitro studies of S. japonicum's reproductive and oviposition processes. CONCLUSIONS: We developed a novel medium, m-AB169 (1640), that not only maintains the mature reproductive organs and continuous oviposition of adult female Schistosoma japonicum for up to 22 days but also supports the reproductive development and subsequent egg-laying of virgin females after pairing with male worms. This study provides a valuable in vitro platform for functional studies of the mechanisms underlying the fascinating biology of the female sexual development and egg production of S. japonicum, which may accelerate the development of new strategies targeting schistosome egg production.


Asunto(s)
Schistosoma japonicum , Schistosomatidae , Humanos , Animales , Masculino , Femenino , Schistosoma japonicum/genética , Oviposición , Reproducción , Genitales Femeninos , Triptaminas
4.
Microbiol Spectr ; 12(4): e0373523, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38441977

RESUMEN

Schistosomiasis japonica is one of the neglected tropical diseases characterized by chronic hepatic, intestinal granulomatous inflammation and fibrosis, as well as dysbiosis of intestinal microbiome. Previously, the probiotic Bacillus amyloliquefaciens has been shown to alleviate the pathological injuries in mice infected with Schistosoma japonicum by improving the disturbance of the intestinal microbiota. However, the underlying mechanisms involved in this process remain unclear. In this study, metagenomics sequencing and functional analysis were employed to investigate the differential changes in taxonomic composition and functional genes of the intestinal microbiome in S. japonicum-infected mice treated with B. amyloliquefaciens. The results revealed that intervention with B. amyloliquefaciens altered the taxonomic composition of the intestinal microbiota at the species level in infected mice and significantly increased the abundance of beneficial bacteria. Moreover, the abundance of predicted genes in the intestinal microbiome was also significantly changed, and the abundance of xfp/xpk and genes translated to urease was significantly restored. Further analysis showed that Limosilactobacillus reuteri was positively correlated with several KEGG Orthology (KO) genes and metabolic reactions, which might play important roles in alleviating the pathological symptoms caused by S. japonicum infection, indicating that it has the potential to function as another effective therapeutic agent for schistosomiasis. These data suggested that treatment of murine schistosomiasis japonica by B. amyloliquefaciens might be induced by alterations in the taxonomic composition and functional gene of the intestinal microbiome in mice. We hope this study will provide adjuvant strategies and methods for the early prevention and treatment of schistosomiasis japonica. IMPORTANCE: Targeted interventions of probiotics on gut microbiome were used to explore the mechanism of alleviating schistosomiasis japonica. Through metagenomic analysis, there were significant changes in the composition of gut microbiota in mice infected with Schistosoma japonicum and significant increase in the abundance of beneficial bacteria after the intervention of Bacillus amyloliquefaciens. At the same time, the abundance of functional genes was found to change significantly. The abundance of genes related to urease metabolism and xfp/xpk related to D-erythrose 4-phosphate production was significantly restored, highlighting the importance of Limosilactobacillus reuteri in the recovery and abundance of predicted genes of the gut microbiome. These results indicated potential regulatory mechanism between the gene function of gut microbiome and host immune response. Our research lays the foundation for elucidating the regulatory mechanism of probiotic intervention in alleviating schistosomiasis japonica, and provides potential adjuvant treatment strategies for early prevention and treatment of schistosomiasis japonica.


Asunto(s)
Bacillus amyloliquefaciens , Microbioma Gastrointestinal , Schistosoma japonicum , Esquistosomiasis Japónica , Animales , Ratones , Esquistosomiasis Japónica/tratamiento farmacológico , Ureasa , Schistosoma japonicum/genética , Bacterias/genética
5.
PLoS Negl Trop Dis ; 18(2): e0011966, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38381759

RESUMEN

Schistosomiasis is one of the most devastating human diseases worldwide. The disease is caused by six species of Schistosoma blood fluke; five of which cause intestinal granulomatous inflammation and bleeding. The current diagnostic method is inaccurate and delayed, hence, biomarker identification using metabolomics has been applied. However, previous studies only investigated infection caused by one Schistosoma spp., leaving a gap in the use of biomarkers for other species. No study focused on understanding the progression of intestinal disease. Therefore, we aimed to identify early gut biomarkers of infection with three Schistosoma spp. and progression of intestinal pathology. We infected 3 groups of mice, 3 mice each, with Schistosoma mansoni, Schistosoma japonicum or Schistosoma mekongi and collected their feces before and 1, 2, 4 and 8 weeks after infection. Metabolites in feces were extracted and identified using mass spectrometer-based metabolomics. Metabolites were annotated and analyzed with XCMS bioinformatics tool and Metaboanalyst platform. From >36,000 features in all conditions, multivariate analysis found a distinct pattern at each time point for all species. Pathway analysis reported alteration of several lipid metabolism pathways as infection progressed. Disturbance of the glycosaminoglycan degradation pathway was found with the presence of parasite eggs, indicating involvement of this pathway in disease progression. Biomarkers were discovered using a combination of variable importance for projection score cut-off and receiver operating characteristic curve analysis. Five molecules met our criteria and were present in all three species: 25-hydroxyvitamin D2, 1α-hydroxy-2ß-(3-hydroxypropoxy) vitamin D3, Ganoderic acid Md, unidentified feature with m/z 455.3483, and unidentified feature with m/z 456.3516. These molecules were proposed as trans-genus biomarkers of early schistosomiasis. Our findings provide evidence for disease progression in intestinal schistosomiasis and potential biomarkers, which could be beneficial for early detection of this disease.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis mansoni , Esquistosomiasis , Ratones , Humanos , Animales , Esquistosomiasis mansoni/diagnóstico , Esquistosomiasis/diagnóstico , Esquistosomiasis/parasitología , Biomarcadores , Diagnóstico Precoz , Progresión de la Enfermedad
6.
Exp Parasitol ; 259: 108721, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369179

RESUMEN

Glutathione S-transferases (GSTs) are a family of multifunctional isoenzymes involved in the neutralization of toxic compounds, drug resistance and several other cellular functions. The glutathione S-transferase enzyme of Schistosoma japonicum (SjGST-26) plays a role in human schistosomiasis and is also a frequently used fusion partner in mammalian and bacterial expression and pull-down systems. GSTs seem not to be naturally associated with metal ions. Exceptionally, in vitro, metal binding sites have been previously described in some schistosome GSTs; however, their possible physiological role is unclear. Molecules of several neurotransmitter transporters also contain a regulatory zinc binding site, which affects their transport cycle. Here we show that among several metals, manganese and zinc are able to induce a specific protein interaction of SjGST-26 with the glycine transporter GlyT1 and the GABA transporter GAT3 in vitro. The results suggest that metal-binding sites on SjGST-26 and neurotransmitter transporters might function in metal-coordinated interactions with other metalloproteins. Our results additionally indicate that the presence of metal ions in SjGST-26-based GST protein pull-down assays may lead to a false-positive interaction if the potential interacting target is the metalloprotein.


Asunto(s)
Schistosoma japonicum , Animales , Humanos , Manganeso , Zinc , Glutatión Transferasa/metabolismo , Iones , Glutatión , Mamíferos/metabolismo
7.
BMC Immunol ; 25(1): 2, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172683

RESUMEN

BACKGROUND: Despite the functions of TLRs in the parasitic infections have been extensively reported, few studies have addressed the role of TLR3 in the immune response to Schistosoma japonicum infections. The aim of this study was to investigate the properties of TLR3 in the liver of C57BL/6 mice infected by S. japonicum. METHODS: The production of TLR3+ cells in CD4+T cells (CD4+CD3+), CD8+T cells (CD8+CD3+), γδT cells (γδTCR+CD3+), NKT cells (NK1.1+CD3+), B cells (CD19+CD3-), NK (NK1.1-CD3+) cells, MDSC (CD11b+Gr1+), macrophages (CD11b+F4/80+), DCs (CD11c+CD11b+) and neutrophils (CD11b+ Ly6g+) were assessed by flow cytometry. Sections of the liver were examined by haematoxylin and eosin staining in order to measure the area of granulomas. Hematological parameters including white blood cell (WBC), red blood cell (RBC), platelet (PLT) and hemoglobin (HGB) were analyzed. The levels of ALT and AST in the serum were measured using biochemical kits. The relative titers of anti-SEA IgG and anti-SEA IgM in the serum were measured by enzyme-linked immunosorbent assay (ELISA). CD25, CD69, CD314 and CD94 molecules were detected by flow cytometry. RESULTS: Flow cytometry results showed that the expression of TLR3 increased significantly after S. japonicum infection (P < 0.05). Hepatic myeloid and lymphoid cells could express TLR3, and the percentages of TLR3-expressing MDSC, macrophages and neutrophils were increased after infection. Knocking out TLR3 ameliorated the damage and decreased infiltration of inflammatory cells in infected C57BL/6 mouse livers.,The number of WBC was significantly reduced in TLR3 KO-infected mice compared to WT-infected mice (P < 0.01), but the levels of RBC, platelet and HGB were significantly increased in KO infected mice. Moreover, the relative titers of anti-SEA IgG and anti-SEA IgM in the serum of infected KO mice were statistically decreased compared with the infected WT mice. We also compared the activation-associated molecules expression between S.japonicum-infected WT and TLR3 KO mice. CONCLUSIONS: Taken together, our data indicated that TLR3 played potential roles in the context of S. japonicum infection and it may accelerate the progression of S. japonicum-associated liver pathology.


Asunto(s)
Schistosoma japonicum , Animales , Ratones , Schistosoma japonicum/metabolismo , Receptor Toll-Like 3/metabolismo , Ratones Endogámicos C57BL , Inmunoglobulina G , Inmunoglobulina M
8.
Parasitol Int ; 99: 102833, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38061487

RESUMEN

The WHO considers schistosomiasis, which is controlled by the mass administration of the drug praziquantel (PZQ), to be a neglected tropical disease. Despite its clinical use for over four decades, PZQ remains the only choice of chemotherapy against this disease. Regarding the previous studies that demonstrated that PZQ activates the transient receptor potential (TRP) channel in Schistosoma mansoni (Sm.TRPMPZQ), the expression profile of the ortholog of this channel gene (Smp_246790.5) in S. japonicum (EWB00_008853) (Sj.TRPMPZQ) was analyzed. The relative expression of this gene in various stages of the parasite lifecycle was analyzed by quantitative real-time reverse transcription-PCR (qRT-PCR), and the expression of Sj.TRPMPZQ was observed by immunohistochemical staining using anti-serum against the recombinant Sj.TRPMPZQ protein. qRT-PCR revealed the significantly lower mRNA expression in the snail stage in comparison to other stages (p < 0.01). The relative quantity of the Sj.TRPMPZQ expression for paired females, unpaired males, and eggs was 60%, 56%, and 68%, respectively, in comparison to paired males that showed the highest expression (p < 0.05). Interestingly, immunostaining demonstrated that Sj.TRPMPZQ is expressed in the parenchyma which contains muscle cells, neuronal cells and tegument cells in adult worms. This may support the two major effects of PZQ-worm paralysis and tegument disruption-induced by channel activation. Moreover, the channel was expressed in both the eggshell and the miracidia inside, but could not be observed in sporocyst. These results suggest that the expression of Sj.TRPMPQZ corresponds to the known sensitivity of S. japonicum to PZQ.


Asunto(s)
Antihelmínticos , Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis mansoni , Canales Catiónicos TRPM , Masculino , Femenino , Animales , Praziquantel , Schistosoma japonicum/fisiología , Schistosoma mansoni/genética , Esquistosomiasis Japónica/parasitología , Esquistosomiasis mansoni/parasitología , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico
9.
Free Radic Biol Med ; 212: 295-308, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38141890

RESUMEN

Schistosomiasis, caused by Schistosoma spp., is a zoonotic parasitic disease affecting human health. Rattus norvegicus (rats) are a non-permissive host of Schistosoma, in which the worms cannot mature and cause typical egg granuloma. We previously demonstrated that inherent high levels of nitric oxide (NO), produced by inducible NO synthase (iNOS), is a key molecule in blocking the development of S. japonicum in rats. To further explore the mechanism of NO inhibiting S. japonicum development in rats, we performed S-nitrosocysteine proteomics of S. japonicum collected from infected rats and mice. The results suggested that S. japonicum in rats may have undergone endoplasmic reticulum (ER) stress. Interestingly, we found that the ER of S. japonicum in rats showed marked damage, while the ER of the worm in iNOS-/- rats and mice were relatively normal. Moreover, the expression of ER stress markers in S. japonicum from WT rats was significantly increased, compared with S. japonicum from iNOS-/- rats and mice. Using the NO donor sodium nitroprusside in vitro, we demonstrated that NO could induce ER stress in S. japonicum in a dose-dependent manner, and the NO-induced ER stress in S. japonicum could be inhibited by ER stress inhibitor 4-Phenyl butyric acid. We further verified that inhibiting ER stress of S. japonicum in rats promoted parasite development and survival. Furthermore, we demonstrated that NO-induced ER stress of S. japonicum was related to the efflux of Ca2+ from ER and the impairment of mitochondrial function. Collectively, these findings show that high levels of NO in rats could induce ER stress in S. japonicum by promoting the efflux of Ca2+ from ER and damaging the mitochondrial function, which block the worm development. Thus, this study further clarifies the mechanism of anti-schistosome in rats and provides potential strategies for drug development against schistosomiasis and other parasitosis.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Ratas , Ratones , Humanos , Animales , Óxido Nítrico , Mitocondrias , Estrés del Retículo Endoplásmico , Esquistosomiasis Japónica/tratamiento farmacológico , Esquistosomiasis Japónica/parasitología
10.
Parasitology ; 151(3): 260-270, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38105713

RESUMEN

Schistosomiasis, a parasite infectious disease caused by Schistosoma japonicum, often leads to egg granuloma and fibrosis due to the inflammatory reaction triggered by egg antigens released in the host liver. This study focuses on the role of the egg antigens CP1412 protein of S. japonicum (SjCP1412) with RNase activity in promoting liver fibrosis. In this study, the recombinant egg ribonuclease SjCP1412, which had RNase activity, was successfully prepared. By analysing the serum of the population, it has been proven that the anti-SjCP1412 IgG in the serum of patients with advanced schistosomiasis was moderately correlated with liver fibrosis, and SjCP1412 may be an important antigen associated with liver fibrosis in schistosomiasis. In vitro, the rSjCP1412 protein induced the human liver cancer cell line Hep G2 and liver sinusoidal endothelial cells apoptosis and necrosis and the release of proinflammatory damage-associated molecular patterns (DAMPs). In mice infected with schistosomes, rSjCP1412 immunization or antibody neutralization of SjCP1412 activity significantly reduced cell apoptosis and necroptosis in liver tissue, thereby reducing inflammation and liver fibrosis. In summary, the SjCP1412 protein plays a crucial role in promoting liver fibrosis during schistosomiasis through mediating the liver cells apoptosis and necroptosis to release DAMPs inducing an inflammatory reaction. Blocking SjCP1412 activity could inhibit its proapoptotic and necrotic effects and alleviate hepatic fibrosis. These findings suggest that SjCP1412 may be served as a promising drug target for managing liver fibrosis in schistosomiasis japonica.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Humanos , Ratones , Animales , Esquistosomiasis Japónica/complicaciones , Esquistosomiasis Japónica/parasitología , Ribonucleasas/metabolismo , Ribonucleasas/farmacología , Células Endoteliales , Cirrosis Hepática/parasitología , Cirrosis Hepática/patología , Hígado/patología , Inflamación/patología
11.
Acta Trop ; 249: 107084, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029954

RESUMEN

Schistosomiasis is a chronic and debilitating neglected tropical disease (NTD), second only to malaria as one of the most devastating parasitic diseases. Caused by a parasitic flatworm of the genus Schistosoma, infection occurs when skin comes in contact with contaminated freshwater that contains schistosome-hosting snails. The disease continues to be endemic in many regions of the Philippines, where it poses a significant public health challenge due to a lack of healthcare resources. In the Philippines, additional mammalian reservoirs for the S. japonicum parasite, especially bovines such as carabaos, also facilitate the spread of schistosomiasis. We extend existing compartment models to include human, snail, bovine, and free-living Schistosoma for a comprehensive look at the transmission dynamics of the disease. Sensitivity analysis of model parameters shows that the carabaos themselves can sustain the endemicity of schistosomiasis. Thus, we consider the control method of farming mechanization to avoid contaminated freshwater sources. We find that a reduction of contaminated water contacts by at least 77% will break the transmission cycle and eliminate the disease. However, reducing the contact by about 70% will still result in decrease of human schistosomiasis prevalence to under 1% in 15 years or less. Achieving such high reduction of contact rates could be a daunting task, especially in rural areas. Still, the potential to eliminate or at least reduce the schistosomiasis prevalence should be considered an additional benefit of mechanization efforts in the Philippines.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Animales , Bovinos , Humanos , Esquistosomiasis Japónica/parasitología , Filipinas/epidemiología , Modelos Epidemiológicos , Esquistosomiasis/epidemiología , Caracoles/parasitología , China/epidemiología , Mamíferos
12.
Cell Commun Signal ; 21(1): 366, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129877

RESUMEN

BACKGROUND: Macrophages and neutrophils are rapidly recruited around Schistosome eggs to form granulomas. Extracellular traps (ETs) of macrophages and neutrophils are part of the pathogen clearance armamentarium of leukocytes. Schistosome eggs possess the ability to resist attack by the host's immune cells and survive by employing various immune evasion mechanisms, including the release of extracellular vesicles (EVs). However, the specific mechanisms by which Schistosome egg-derived EVs (E-EVs) evade the immune response and resist attack from macrophage and neutrophil ETs remain poorly understood. In this study, we aimed to investigate the association between E-EVs and macrophage/neutrophil ETs. METHODS: EVs were isolated from the culture supernatant of S. japonicum eggs and treated macrophages and neutrophils with E-EVs and Sja-miR-71a. The formation of ETs was then observed. Additionally, we infected mice with S. japonicum, administered HBAAV2/9-Sja-miR-71a, and the formation of macrophage ETs (METs) and neutrophil ETs (NETs) in the livers was measured. Sema4D-knockout mice, RNA sequencing, and trans-well assay were used to clarify Sja-miR-71a in E-EVs inhibits METs and NETs formation via the Sema4D/ PPAR-γ/ IL-10 axis. RESULTS: Our findings revealed that E-EVs were internalized by macrophages and neutrophils, leading to the inhibition of METs and NETs formation. The highly expressed Sja-miR-71a in E-EVs targeted Sema4D, resulting in the up-regulation of IL-10 and subsequent inhibition of METs and NETs formation. Sema4D knockout up-regulated IL-10 expression and inhibited the formation of METs and NETs. Furthermore, we further demonstrated that Sja-miR-71a inhibits METs and NETs formation via the Sema4D/ PPAR-γ/ IL-10 axis. CONCLUSIONS: In summary, our findings provide new insights into the immune evasion abilities of Schistosome eggs by demonstrating their ability to inhibit the formation of METs and NETs through the secretion of EVs. This study enhances our understanding of the host-pathogen interaction and may have implications for the development of novel therapeutic approaches. Video Abstract.


Asunto(s)
Trampas Extracelulares , Vesículas Extracelulares , MicroARNs , Schistosoma japonicum , Ratones , Animales , Schistosoma japonicum/genética , Interleucina-10 , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Neutrófilos , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos
13.
PLoS Negl Trop Dis ; 17(11): e0011749, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38019787

RESUMEN

BACKGROUND: Schistosomiasis is one of the most important neglected tropical infectious diseases to overcome and the primary cause of its pathogenesis is ectopic maturation of the parasite eggs. Uptake of cholesteryl ester from the host high-density lipoprotein (HDL) is a key in this process in Schistosoma japonicum and CD36-related protein (CD36RP) has been identified as the receptor for this reaction. Antibody against the extracellular domain of CD36RP (Ex160) efficiently blocked the HDL cholesteryl ester uptake and the egg embryonation in vitro. However, whether Ex160 immunization could efficiently raise proper antibody responses to sufficiently block HDL cholesteryl ester uptake and the egg embryonation to protect host in vivo is very interesting but unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, rabbits were immunized with the recombinant Ex160 peptide (rEx160) to evaluate its anti-pathogenic vaccine potential. Immunization with rEx160 induced consistent anti-Ex160 IgG antibody and significant reduction in development of the liver granulomatosis lesions associated with suppressed intrahepatic maturation of the schistosome eggs. The immunization with rEx160 rescued reduction of serum HDL by the infection without changing its size distribution, being consistent with interference of the HDL lipid uptake by the parasites or their eggs by antibody against Ex160 in in vitro culture. CONCLUSIONS/SIGNIFICANCE: The results demonstrated that vaccination strategy against nutritional supply pathway of the parasite is effective for reducing its pathogenesis.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Animales , Conejos , Esquistosomiasis Japónica/parasitología , Schistosoma japonicum/metabolismo , Lipoproteínas HDL , Vacunación
14.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(4): 331-339, 2023 Oct 10.
Artículo en Chino | MEDLINE | ID: mdl-37926467

RESUMEN

OBJECTIVE: To evaluate the protective effect of recombinant Schistosoma japonicum cystatin (rSj-Cys) against acute kidney injury induced by acute liver failure and unravel the underlying mechanism, so as to provide insights into the clinical therapy of acute kidney injury. METHODS: Twenty-four male C57BL/6J mice at ages of 6 to 8 weeks were randomly divided into the normal control group, rSj-Cys control group, lipopolysaccharide (LPS)/D-galactosamine (D-GaIN) model group and LPS/D-GaIN + rSj-Cys treatment group, of 6 mice each group. Mice in the LPS/D-GaIN group and LPS/D-GaIN + rSj-Cys group were intraperitoneally injected with LPS (10 µg/kg) and D-GaIN (700 mg/kg), and mice in the LPS/D-GaIN + rSj-Cys group were additionally administered with rSj-Cys (1.25 mg/kg) by intraperitoneal injection 30 min post-modeling, while mice in the rSj-Cys group were intraperitoneally injected with rSj-Cys (1.25 mg/kg), and mice in the normal control group were injected with the normal volume of PBS. All mice were sacrificed 6 h post-modeling, and mouse serum and kidney samples were collected. Serum creatinine (Cr) and urea nitrogen (BUN) levels were measured, and the pathological changes of mouse kidney specimens were examined using hematoxylin-eosin (HE) staining. Serum tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels were detected using enzyme-linked immunosorbent assay (ELISA), and the expression of inflammatory factors and pyroptosis-related proteins was quantified in mouse kidney specimens using immunohistochemistry. In addition, the expression of pyroptosis-related proteins and nuclear factor-kappa B (NF-κB) signaling pathway-associated proteins was determined in mouse kidney specimens using Western blotting assay. RESULTS: HE staining showed no remarkable abnormality in the mouse kidney structure in the normal control group and the rSj-Cys control group, and renal tubular injury was found in LPS/D-GaIN group, while the renal tubular injury was alleviated in LPS/D-GaIN+rSj-Cys treatment group. There were significant differences in serum levels of Cr (F = 46.33, P < 0.001), BUN (F = 128.60, P < 0.001), TNF-α (F = 102.00, P < 0.001) and IL-6 (F = 202.10, P < 0.001) among the four groups, and lower serum Cr [(85.35 ± 32.05) µmol/L], BUN [(11.90 ± 2.76) mmol/L], TNF-α [(158.27 ± 15.83) pg/mL] and IL-6 levels [(56.72 ± 4.37) pg/mL] were detected in the in LPS/D-GaIN + rSj-Cys group than in the LPS/D-GaIN group (all P values < 0.01). Immunohistochemical staining detected significant differences in TNF-α (F = 24.16, P < 0.001) and IL-10 (F = 15.07, P < 0.01) expression among the four groups, and lower TNF-α [(106.50 ± 16.57)%] and higher IL-10 expression [(91.83 ± 5.23)%] was detected in the LPS/D-GaIN + rSj-Cys group than in the LPS/D-GaIN group (both P values < 0.01). Western blotting and immunohistochemistry detected significant differences in the protein expression of pyroptosis-related proteins NOD-like receptor thermal protein domain associated protein 3 (NLRP3) (F = 24.57 and 30.72, both P values < 0.001), IL-1ß (F = 19.24 and 22.59, both P values < 0.001) and IL-18 (F = 16.60 and 19.30, both P values < 0.001) in kidney samples among the four groups, and lower NLRP3, IL-1ß and IL-18 expression was quantified in the LPS/D-GaIN + rSj-Cys treatment group than in the LPS/D-GaIN group (P values < 0.05). In addition, there were significant differences in the protein expression of NF-κB signaling pathway-associated proteins p-NF-κB p-P65/NF-κB p65 (F = 71.88, P < 0.001), Toll-like receptor (TLR)-4 (F = 45.49, P < 0.001) and p-IκB/IκB (F = 60.87, P < 0.001) in mouse kidney samples among the four groups, and lower expression of three NF-κB signaling pathway-associated proteins was determined in the LPS/D-GaIN + rSj-Cys treatment group than in the LPS/D-GaIN group (all P values < 0.01). CONCLUSIONS: rSj-Cys may present a protective effect against acute kidney injury caused by acute liver failure through inhibiting inflammation and pyroptosis and downregulating the NF-κB signaling pathway.


Asunto(s)
Lesión Renal Aguda , Cistatinas , Fallo Hepático Agudo , Schistosoma japonicum , Ratones , Masculino , Animales , Interleucina-10 , Factor de Necrosis Tumoral alfa/genética , FN-kappa B/metabolismo , FN-kappa B/uso terapéutico , Interleucina-18/uso terapéutico , Schistosoma japonicum/metabolismo , Interleucina-6/uso terapéutico , Lipopolisacáridos/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones Endogámicos C57BL , Lesión Renal Aguda/tratamiento farmacológico , Cistatinas/uso terapéutico
15.
BMC Med Genomics ; 16(1): 269, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904220

RESUMEN

Schistosoma japonicum infection is an important public health problem and the S. japonicum infection is associated with a variety of diseases, including colorectal cancer. We collected the paraffin samples of CRC patients with or without S. japonicum infection according to standard procedures. Data-Independent Acquisition was used to identify differentially expressed proteins (DEPs), protein-protein interaction (PPI) network construction, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis and machine learning algorithms (least absolute shrinkage and selection operator (LASSO) regression) were used to identify candidate genes for diagnosing CRC with S. japonicum infection. To assess the diagnostic value, the nomogram and receiver operating characteristic (ROC) curve were developed. A total of 115 DEPs were screened, the DEPs that were discovered were mostly related with biological process in generation of precursor metabolites and energy,energy derivation by oxidation of organic compounds, carboxylic acid metabolic process, oxoacid metabolic process, cellular respiration aerobic respiration according to the analyses. Enrichment analysis showed that these compounds might regulate oxidoreductase activity, transporter activity, transmembrane transporter activity, ion transmembrane transporter activity and inorganic molecular entity transmembrane transporter activity. Following the development of PPI network and LASSO, 13 genes (hsd17b4, h2ac4, hla-c, pc, epx, rpia, tor1aip1, mindy1, dpysl5, nucks1, cnot2, ndufa13 and dnm3) were filtered, and 3 candidate hub genes were chosen for nomogram building and diagnostic value evaluation after machine learning. The nomogram and all 3 candidate hub genes (hsd17b4, rpia and cnot2) had high diagnostic values (area under the curve is 0.9556). The results of our study indicate that the combination of hsd17b4, rpia, and cnot2 may become a predictive model for the occurrence of CRC in combination with S. japonicum infection. This study also provides new clues for the mechanism research of S. japonicum infection and CRC.


Asunto(s)
Coinfección , Neoplasias Colorrectales , Schistosoma japonicum , Esquistosomiasis Japónica , Humanos , Animales , Proteómica , Biología Computacional , Aprendizaje Automático , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética
16.
Acta Parasitol ; 68(4): 723-734, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37594685

RESUMEN

BACKGROUND: An association between Schistosoma japonicum and colorectal cancer in humans has been known since a long time; however, this association remains understudied and lacks comprehensive experimentation support. OBJECTIVE: Various epidemiological and pathological studies have established the role of chronic inflammation as a major factor behind the induction of colorectal cancer. The aim of this review is to present the current knowledge on the association of Schistosoma japonicum with colorectal cancer. RESULT: Mechanisms which lead to induction and progression of colorectal cancer are highlighted along with diagnosis and treatment for the same. Further, various methodologies, including mass drug administration, use of new drugs and vaccines, role of apoptosis, and histone-modifying enzymes, have been described which can either prevent the schistosomal infection itself or can check it from reaching an advanced stage. CONCLUSIONS: Epidemiological, clinical, pathological and surgical studies suggest that Schistosoma japonicum is responsible for induction of colorectal cancer. However, thorough clinical studies are required to support and globally accept this notion. Further, methodologies highlighted in this work can be employed in order to take care of schistosomal infection or address the cancer induction and progression.


Asunto(s)
Neoplasias Colorrectales , Schistosoma japonicum , Animales , Humanos , Inflamación , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/patología
17.
EBioMedicine ; 94: 104730, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37487416

RESUMEN

BACKGROUND: Schistosomiasis is a disease that significantly impacts human health in the developing world. Effective diagnostics are urgently needed for improved control of this disease. CRISPR-based technology has rapidly accelerated the development of a revolutionary and powerful diagnostics platform, resulting in the advancement of a class of ultrasensitive, specific, cost-effective and portable diagnostics, typified by applications in COVID-19/cancer diagnosis. METHODS: We developed CRISPR-based diagnostic platform SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) for the detection of Schistosoma japonicum and S. mansoni by combining recombinase polymerase amplification (RPA) with CRISPR-Cas13a detection, measured via fluorescent or colorimetric readouts. We evaluated SHERLOCK assays by using 150 faecal/serum samples collected from Schistosoma-infected ARC Swiss mice (female), and 189 human faecal/serum samples obtained from a S. japonicum-endemic area in the Philippines and a S. mansoni-endemic area in Uganda. FINDINGS: The S. japonicum SHERLOCK assay achieved 93-100% concordance with gold-standard qPCR detection across all the samples. The S. mansoni SHERLOCK assay demonstrated higher sensitivity than qPCR and was able to detect infection in mouse serum as early as 3 weeks post-infection. In human samples, S. mansoni SHERLOCK had 100% sensitivity when compared to qPCR of faecal and serum samples. INTERPRETATION: These schistosomiasis diagnostic assays demonstrate the potential of SHERLOCK/CRISPR-based diagnostics to provide highly accurate and field-friendly point-of-care tests that could provide the next generation of diagnostic and surveillance tools for parasitic neglected tropical diseases. FUNDING: Australian Infectious Diseases Research Centre seed grant (2022) and National Health and Medical Research Council (NHMRC) of Australia (APP1194462, APP2008433).


Asunto(s)
COVID-19 , Schistosoma japonicum , Esquistosomiasis , Humanos , Femenino , Animales , Ratones , Sensibilidad y Especificidad , Australia , Esquistosomiasis/diagnóstico , Prueba de COVID-19
18.
J Cell Mol Med ; 27(15): 2261-2269, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37430471

RESUMEN

Schistosomiasis is a tropical parasitic disease that damages the liver and poses a serious threat to human health. Macrophages play a key role in the development of liver granulomas and fibrosis by undergoing polarization from M1 to M2 type during schistosomiasis. Therefore, regulating macrophage polarization is important for controlling pathological changes that occur during this disease. Triggering receptor expressed on myeloid cells 2 (TREM2) expressed on the surface of macrophages, dendritic cells and other immune cells has been shown to play a role in inhibiting inflammatory responses and regulating M2 macrophage polarization, however its role in macrophage polarization in schistosomiasis has not been investigated. In this study, we confirmed that TREM2 expression was upregulated in the livers and peritoneal macrophages of mice infected with Schistosoma japonicum. Moreover, the TREM2 expression trend correlated with the expression of M2 macrophage polarization-related molecules in the liver tissues of S. japonicum-infected mice. Using Trem2-/- mice, we also showed that Trem2 deletion inhibited Arg1 and Ym1 expression in liver tissues. Trem2 deletion also increased the number of F4/80 + CD86+ cells in peritoneal macrophages of infected mice. In summary, our study suggests that TREM2 may be involved in M2 macrophage polarization during schistosomiasis.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Humanos , Animales , Ratones , Macrófagos Peritoneales/patología , Macrófagos/metabolismo , Hígado/metabolismo , Esquistosomiasis/metabolismo , Esquistosomiasis/patología , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
19.
PLoS Negl Trop Dis ; 17(7): e0011215, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37410790

RESUMEN

BACKGROUND: Praziquantel (PZQ) has been the first line antischistosomal drug for all species of Schistosoma, and the only available drug for schistosomiasis japonica, without any alternative drugs since the 1980s. However, PZQ cannot prevent reinfection, and cannot cure schistosomiasis thoroughly because of its poor activity against juvenile schistosomes. In addition, reliance on a single drug is extremely dangerous, the development and spread of resistance to PZQ is becoming a great concern. Therefore, development of novel drug candidates for treatment and control of schistosomiasis is urgently needed. METHODOLOGYS/PRINCIPAL FINDINGS: One of the PZQ derivative christened P96 with the substitution of cyclohexyl by cyclopentyl was synthesized by School of Pharmaceutical Sciences of Shandong University. We investigated the in vitro and in vivo activities of P96 against different developmental stages of S. japonicum. Parasitological studies and scanning electron microscopy were used to study the primary action characteristics of P96 in vitro. Both mouse and rabbit models were employed to evaluate schistosomicidal efficacy of P96 in vivo. Besides calculation of worm reduction rate and egg reduction rate, quantitative real-time PCR was used to evaluate the in vivo antischistosomal activity of P96 at molecular level. In vitro, after 24h exposure, P96 demonstrated the highest activities against both juvenile and adult worm of S. japonicum in comparison to PZQ. The antischistosomal efficacy was concentration-dependent, with P96 at 50µM demonstrating the most evident schistosomicidal effect. Scanning electron microscopy demonstrated that P96 caused more severe damages to schistosomula and adult worm tegument compared to PZQ. In vivo, our results showed that P96 was effective against S. japonicum at all developmental stages. Notably, its efficacy against young stage worms was significantly improved compared to PZQ. Moreover, P96 retained the high activity comparable to PZQ against the adult worm of S. japonicum. CONCLUSIONS: P96 is a promising drug candidate for chemotherapy of schistosomiasis japonica, which has broad spectrum of action against various developmental stage, potentially addressing the deficiency of PZQ. It might be promoted as a drug candidate for use either alone or in combination with PZQ for the treatment of schistosomiasis.


Asunto(s)
Praziquantel , Esquistosomiasis Japónica , Esquistosomicidas , Animales , Ratones , Conejos , Microscopía Electrónica de Rastreo , Praziquantel/análogos & derivados , Praziquantel/farmacología , Schistosoma japonicum/efectos de los fármacos , Esquistosomiasis Japónica/tratamiento farmacológico , Esquistosomicidas/farmacología
20.
Parasitology ; 150(9): 786-791, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37496395

RESUMEN

Bovines are important reservoir hosts of schistosomiasis, placing humans and animals in rice fields areas at risk of infection. This study reported the prevailing infection of zoonotic parasites from bovine feces in the rice fields adjacent to Lake Mainit, Philippines. Formalin Ethyl Acetate Sedimentation was performed on 124 bovine fecal samples from rice fields and documented eggs and cysts from seven parasites: Schistosoma japonicum, Fasciola gigantica, Ascaris sp., Strongyloides sp., Balantidium coli, coccidian oocyst and a hookworm species. Among these parasites, F. gigantica harboured the highest infection with a 100% prevalence rate, followed by hookworms (51.61%), B. coli (30.64%) and S. japonicum (12.09%), respectively. The intensity of infection of S. japonicum eggs per gram (MPEG = 4.19) among bovines is categorized as 'light.' Bovine contamination index (BCI) calculations revealed that, on average, infected bovines in rice fields excrete 104 750 S. japonicum eggs daily. However, across all ricefield stations, bovines were heavily infected with fascioliasis with BCI at 162 700 F. gigantica eggs per day. The study reports that apart from the persistent cases of schistosomiasis in the area, bovines in these rice fields are also heavily infected with fascioliasis. The study confirms the critical role of bovines as a reservoir host for continued infection of schistosomiasis, fascioliasis and other diseases in the rice fields of Lake Mainit. Immediate intervention to manage the spread of these diseases in bovines is recommended.


Asunto(s)
Fascioliasis , Parásitos , Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Humanos , Animales , Bovinos , Esquistosomiasis Japónica/epidemiología , Esquistosomiasis Japónica/veterinaria , Esquistosomiasis Japónica/parasitología , Fascioliasis/epidemiología , Fascioliasis/veterinaria , Ecosistema , Lagos , Filipinas/epidemiología , China/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA