Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Nat Commun ; 15(1): 4790, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839752

RESUMEN

Cancer cells are often addicted to serine synthesis to support growth. How serine synthesis is regulated in cancer is not well understood. We recently demonstrated protein arginine methyltransferase 1 (PRMT1) is upregulated in hepatocellular carcinoma (HCC) to methylate and activate phosphoglycerate dehydrogenase (PHGDH), thereby promoting serine synthesis. However, the mechanisms underlying PRMT1 upregulation and regulation of PRMT1-PHGDH axis remain unclear. Here, we show the E3 ubiquitin ligase F-box-only protein 7 (FBXO7) inhibits serine synthesis in HCC by binding PRMT1, inducing lysine 37 ubiquitination, and promoting proteosomal degradation of PRMT1. FBXO7-mediated PRMT1 downregulation cripples PHGDH arginine methylation and activation, resulting in impaired serine synthesis, accumulation of reactive oxygen species (ROS), and inhibition of HCC cell growth. Notably, FBXO7 is significantly downregulated in human HCC tissues, and inversely associated with PRMT1 protein and PHGDH methylation level. Overall, our study provides mechanistic insights into the regulation of cancer serine synthesis by FBXO7-PRMT1-PHGDH axis, and will facilitate the development of serine-targeting strategies for cancer therapy.


Asunto(s)
Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Fosfoglicerato-Deshidrogenasa , Proteína-Arginina N-Metiltransferasas , Serina , Ubiquitinación , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Serina/metabolismo , Serina/biosíntesis , Fosfoglicerato-Deshidrogenasa/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Línea Celular Tumoral , Animales , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Ratones , Proliferación Celular , Metilación , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Masculino , Células HEK293 , Femenino , Células Hep G2
2.
Cell Death Dis ; 15(5): 319, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710705

RESUMEN

Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.


Asunto(s)
Argininosuccinato Sintasa , Proliferación Celular , Fosfoglicerato-Deshidrogenasa , Serina , Neoplasias de la Mama Triple Negativas , Fosfoglicerato-Deshidrogenasa/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Serina/metabolismo , Serina/biosíntesis , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Animales , Argininosuccinato Sintasa/metabolismo , Argininosuccinato Sintasa/genética , Línea Celular Tumoral , Ratones Desnudos , Ubiquitinación , Ratones , Glicina/metabolismo
3.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656254

RESUMEN

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Asunto(s)
Endorribonucleasas , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glucosa , Glutamina , Fosfoglicerato-Deshidrogenasa , Monoéster Fosfórico Hidrolasas , Proteínas Serina-Treonina Quinasas , Serina , Transaminasas , Humanos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Serina/biosíntesis , Transducción de Señal
4.
Eur Heart J ; 43(36): 3477-3489, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35728000

RESUMEN

AIMS: Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS: Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS: A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.


Asunto(s)
Cardiomiopatía Dilatada , Terapia Molecular Dirigida , Miocitos Cardíacos , Inhibidores de Proteínas Quinasas , Serina , Troponina T , Factor de Transcripción Activador 4/metabolismo , Adenosina Trifosfato/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Carbazoles/farmacología , Carbazoles/uso terapéutico , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiomiopatía Dilatada/genética , Evaluación Preclínica de Medicamentos/métodos , Glucosa/metabolismo , Glicina/biosíntesis , Glicina/genética , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Células Madre Pluripotentes Inducidas/fisiología , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Fosfoglicerato-Deshidrogenasa/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Serina/antagonistas & inhibidores , Serina/biosíntesis , Serina/genética , Troponina T/genética , Troponina T/metabolismo
5.
Lab Invest ; 102(2): 194-203, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34625658

RESUMEN

Glioblastoma (GBM) is the most malignant primary tumor in the central nervous system of adults. Temozolomide (TMZ), an alkylating agent, is the first-line chemotherapeutic agent for GBM patients. However, its efficacy is often limited by innate or acquired chemoresistance. Cancer cells can rewire their metabolic programming to support rapid growth and sustain cell survival against chemotherapies. An example is the de novo serine synthesis pathway (SSP), one of the main branches from glycolysis that is highly activated in multiple cancers in promoting cancer progression and inducing chemotherapy resistance. However, the roles of SSP in TMZ therapy for GBM patients remain unexplored. In this study, we employed NCT503, a highly selective inhibitor of phosphoglycerate dehydrogenase (PHGDH, the first rate-limiting enzyme of SSP), to study whether inhibition of SSP may enhance TMZ efficacy in MGMT-positive GBMs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flowcytometry and colony formation assays demonstrated that NCT503 worked synergistically with TMZ in suppressing GBM cell growth and inducing apoptosis in T98G and U118 cells in vitro. U118 and patient-derived GBM subcutaneous xenograft models showed that combined NCT503 and TMZ treatment inhibited GBM growth and promoted apoptosis more significantly than would each treatment alone in vivo. Mechanistically, we found that NCT503 treatment decreased MGMT expression possibly by modulating the Wnt/ß-catenin pathway. Moreover, intracellular levels of reactive oxygen species were elevated especially when NCT503 and TMZ treatments were combined, and the synergistic effects could be partially negated by NAC, a classic scavenger of reactive oxygen species. Taken together, these results suggest that NCT503 may be a promising agent for augmenting TMZ efficacy in the treatment of GBM, especially in TMZ-resistant GBMs with high expression of MGMT.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Daño del ADN , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Glioblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina/biosíntesis , Temozolomida/farmacología , Proteínas Supresoras de Tumor/metabolismo , Animales , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Sinergismo Farmacológico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Piperazinas/farmacología , Piridinas/farmacología , Serina/antagonistas & inhibidores , Tioamidas/farmacología , Carga Tumoral/efectos de los fármacos , Proteínas Supresoras de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
6.
Cancer Lett ; 523: 29-42, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34508795

RESUMEN

Cancer cells craftily adapt their energy metabolism to their microenvironment. Nutrient deprivation due to hypovascularity and fibrosis is a major characteristic of pancreatic ductal adenocarcinoma (PDAC); thus, PDAC cells must produce energy intrinsically. However, the enhancement of energy production via activating Kras mutations is insufficient to explain the metabolic rewiring of PDAC cells. Here, we investigated the molecular mechanism underlying the metabolic shift in PDAC cells under serine starvation. Amino acid analysis revealed that the concentrations of all essential amino acids and most nonessential amino acids were decreased in the blood of PDAC patients. In addition, the plasma serine concentration was significantly higher in PDAC patients with PHGDH-high tumors than in those with PHGDH-low tumors. Although the growth and tumorigenesis of PK-59 cells with PHGDH promoter hypermethylation were significantly decreased by serine starvation, these activities were maintained in PDAC cell lines with PHGDH promoter hypomethylation by serine biosynthesis through PHGDH induction. In fact, DNA methylation analysis by pyrosequencing revealed that the methylation status of the PHGDH promoter was inversely correlated with the PHGDH expression level in human PDAC tissues. In addition to PHGDH induction by serine starvation, PDAC cells showed enhanced serine biosynthesis under serine starvation through 3-PG accumulation via PGAM1 knockdown, resulting in enhanced PDAC cell growth and tumor growth. However, PHGDH knockdown efficiently suppressed PDAC cell growth and tumor growth under serine starvation. These findings provide evidence that targeting the serine biosynthesis pathway by inhibiting PHGDH is a potent therapeutic approach to eliminate PDAC cells in nutrient-deprived microenvironments.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Ácidos Glicéricos/metabolismo , Neoplasias Pancreáticas/patología , Fosfoglicerato-Deshidrogenasa/fisiología , Serina/biosíntesis , Animales , Línea Celular Tumoral , Islas de CpG , Metilación de ADN , Inducción Enzimática , Humanos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato Mutasa/fisiología
7.
Cell Rep ; 36(12): 109706, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551291

RESUMEN

The serine synthesis pathway (SSP) involving metabolic enzymes phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) drives intracellular serine biosynthesis and is indispensable for cancer cells to grow in serine-limiting environments. However, how SSP is regulated is not well understood. Here, we report that activating transcription factor 3 (ATF3) is crucial for transcriptional activation of SSP upon serine deprivation. ATF3 is rapidly induced by serine deprivation via a mechanism dependent on ATF4, which in turn binds to ATF4 and increases the stability of this master regulator of SSP. ATF3 also binds to the enhancers/promoters of PHGDH, PSAT1, and PSPH and recruits p300 to promote expression of these SSP genes. As a result, loss of ATF3 expression impairs serine biosynthesis and the growth of cancer cells in the serine-deprived medium or in mice fed with a serine/glycine-free diet. Interestingly, ATF3 expression positively correlates with PHGDH expression in a subset of TCGA cancer samples.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Neoplasias/patología , Serina/biosíntesis , Factor de Transcripción Activador 3/deficiencia , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Vías Biosintéticas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Estabilidad Proteica , Serina/deficiencia , Transaminasas/genética , Transaminasas/metabolismo , Trasplante Heterólogo , Factores de Transcripción p300-CBP/metabolismo
8.
Trends Cancer ; 7(8): 668-670, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34219053

RESUMEN

Several recent preclinical studies have demonstrated that simultaneously blocking exogenous and endogenous sources of serine in malignant cells mediates superior anticancer effects as compared with limiting either source alone. Here, we critically summarize key developments in targeting serine to treat cancer and discuss persisting challenges for implementing such a therapeutic approach in patients.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Dieta con Restricción de Proteínas , Neoplasias/terapia , Serina/antagonistas & inhibidores , Antimetabolitos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Terapia Combinada/métodos , Proteínas en la Dieta/efectos adversos , Proteínas en la Dieta/metabolismo , Humanos , Neoplasias/metabolismo , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/metabolismo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Monoéster Fosfórico Hidrolasas/metabolismo , Serina/biosíntesis , Transaminasas/antagonistas & inhibidores , Transaminasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Commun ; 12(1): 879, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563986

RESUMEN

Salmonella Typhimurium establishes systemic infection by replicating in host macrophages. Here we show that macrophages infected with S. Typhimurium exhibit upregulated glycolysis and decreased serine synthesis, leading to accumulation of glycolytic intermediates. The effects on serine synthesis are mediated by bacterial protein SopE2, a type III secretion system (T3SS) effector encoded in pathogenicity island SPI-1. The changes in host metabolism promote intracellular replication of S. Typhimurium via two mechanisms: decreased glucose levels lead to upregulated bacterial uptake of 2- and 3-phosphoglycerate and phosphoenolpyruvate (carbon sources), while increased pyruvate and lactate levels induce upregulation of another pathogenicity island, SPI-2, known to encode virulence factors. Pharmacological or genetic inhibition of host glycolysis, activation of host serine synthesis, or deletion of either the bacterial transport or signal sensor systems for those host glycolytic intermediates impairs S. Typhimurium replication or virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Macrófagos/metabolismo , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/patogenicidad , Sistemas de Secreción Tipo III/metabolismo , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Glucosa/metabolismo , Ácidos Glicéricos/metabolismo , Glucólisis , Factores de Intercambio de Guanina Nucleótido/genética , Macrófagos/microbiología , Ratones , Células RAW 264.7 , Salmonella typhimurium/metabolismo , Serina/biosíntesis , Transducción de Señal , Sistemas de Secreción Tipo III/genética , Virulencia
10.
Cancer Res ; 81(6): 1443-1456, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33500247

RESUMEN

Cancer-specific metabolic phenotypes and their vulnerabilities represent a viable area of cancer research. In this study, we explored the association of breast cancer subtypes with different metabolic phenotypes and identified isocitrate dehydrogenase 2 (IDH2) as a key player in triple-negative breast cancer (TNBC) and HER2. Functional assays combined with mass spectrometry-based analyses revealed the oncogenic role of IDH2 in cell proliferation, anchorage-independent growth, glycolysis, mitochondrial respiration, and antioxidant defense. Genome-scale metabolic modeling identified phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT1) as the synthetic dosage lethal (SDL) partners of IDH2. In agreement, CRISPR-Cas9 knockout of PHGDH and PSAT1 showed the essentiality of serine biosynthesis proteins in IDH2-high cells. The clinical significance of the SDL interaction was supported by patients with IDH2-high/PHGDH-low tumors, who exhibited longer survival than patients with IDH2-high/PHGDH-high tumors. Furthermore, PHGDH inhibitors were effective in treating IDH2-high cells in vitro and in vivo. Altogether, our study creates a new link between two known cancer regulators and emphasizes PHGDH as a promising target for TNBC with IDH2 overexpression. SIGNIFICANCE: These findings highlight the metabolic dependence of IDH2 on the serine biosynthesis pathway, adding an important layer to the connection between TCA cycle and glycolysis, which can be translated into novel targeted therapies.


Asunto(s)
Isocitrato Deshidrogenasa/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/biosíntesis , Neoplasias de la Mama Triple Negativas/patología , Animales , Mama/patología , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Proliferación Celular , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Isocitrato Deshidrogenasa/genética , Estimación de Kaplan-Meier , Metabolómica , Ratones , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/genética , Proteómica , Mutaciones Letales Sintéticas , Transaminasas/genética , Transaminasas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/mortalidad , Efecto Warburg en Oncología
11.
Nat Commun ; 12(1): 366, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446657

RESUMEN

Many tumour cells show dependence on exogenous serine and dietary serine and glycine starvation can inhibit the growth of these cancers and extend survival in mice. However, numerous mechanisms promote resistance to this therapeutic approach, including enhanced expression of the de novo serine synthesis pathway (SSP) enzymes or activation of oncogenes that drive enhanced serine synthesis. Here we show that inhibition of PHGDH, the first step in the SSP, cooperates with serine and glycine depletion to inhibit one-carbon metabolism and cancer growth. In vitro, inhibition of PHGDH combined with serine starvation leads to a defect in global protein synthesis, which blocks the activation of an ATF-4 response and more broadly impacts the protective stress response to amino acid depletion. In vivo, the combination of diet and inhibitor shows therapeutic efficacy against tumours that are resistant to diet or drug alone, with evidence of reduced one-carbon availability. However, the defect in ATF4-response seen in vitro following complete depletion of available serine is not seen in mice, where dietary serine and glycine depletion and treatment with the PHGDH inhibitor lower but do not eliminate serine. Our results indicate that inhibition of PHGDH will augment the therapeutic efficacy of a serine depleted diet.


Asunto(s)
Glicina/metabolismo , Neoplasias/dietoterapia , Serina/biosíntesis , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Glicina/análisis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/enzimología , Neoplasias/metabolismo , Neoplasias/fisiopatología , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/análisis
12.
Int J Oncol ; 58(2): 158-170, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33491748

RESUMEN

Serine/glycine biosynthesis and one­carbon metabolism are crucial in sustaining cancer cell survival and rapid proliferation, and of high clinical relevance. Excessive activation of serine/glycine biosynthesis drives tumorigenesis and provides a single carbon unit for one­carbon metabolism. One­carbon metabolism, which is a complex cyclic metabolic network based on the chemical reaction of folate compounds, provides the necessary proteins, nucleic acids, lipids and other biological macromolecules to support tumor growth. Moreover, one­carbon metabolism also maintains the redox homeostasis of the tumor microenvironment and provides substrates for the methylation reaction. The present study reviews the role of key enzymes with tumor­promoting functions and important intermediates that are physiologically relevant to tumorigenesis in serine/glycine/one­carbon metabolism pathways. The related regulatory mechanisms of action of the key enzymes and important intermediates in tumors are also discussed. It is hoped that investigations into these pathways will provide new translational opportunities for human cancer drug development, dietary interventions, and biomarker identification.


Asunto(s)
Antineoplásicos/uso terapéutico , Carbono/metabolismo , Glicina/biosíntesis , Neoplasias/patología , Serina/biosíntesis , Animales , Antineoplásicos/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Modelos Animales de Enfermedad , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Metilación/efectos de los fármacos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Oxidación-Reducción/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Efecto Warburg en Oncología/efectos de los fármacos
13.
Mol Cell ; 81(2): 386-397.e7, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33340488

RESUMEN

In tumors, nutrient availability and metabolism are known to be important modulators of growth signaling. However, it remains elusive whether cancer cells that are growing out in the metastatic niche rely on the same nutrients and metabolic pathways to activate growth signaling as cancer cells within the primary tumor. We discovered that breast-cancer-derived lung metastases, but not the corresponding primary breast tumors, use the serine biosynthesis pathway to support mTORC1 growth signaling. Mechanistically, pyruvate uptake through Mct2 supported mTORC1 signaling by fueling serine biosynthesis-derived α-ketoglutarate production in breast-cancer-derived lung metastases. Consequently, expression of the serine biosynthesis enzyme PHGDH was required for sensitivity to the mTORC1 inhibitor rapamycin in breast-cancer-derived lung tumors, but not in primary breast tumors. In summary, we provide in vivo evidence that the metabolic and nutrient requirements to activate growth signaling differ between the lung metastatic niche and the primary breast cancer site.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Mamarias Experimentales/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosfoglicerato-Deshidrogenasa/genética , Serina/biosíntesis , Animales , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Ácidos Cetoglutáricos/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Sirolimus/farmacología
14.
Cell Metab ; 33(1): 145-159.e6, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33357456

RESUMEN

A significant increase in dietary fructose consumption has been implicated as a potential driver of cancer. Metabolic adaptation of cancer cells to utilize fructose confers advantages for their malignant growth, but compelling therapeutic targets have not been identified. Here, we show that fructose metabolism of leukemic cells can be inhibited by targeting the de novo serine synthesis pathway (SSP). Leukemic cells, unlike their normal counterparts, become significantly dependent on the SSP in fructose-rich conditions as compared to glucose-rich conditions. This metabolic program is mediated by the ratio of redox cofactors, NAD+/NADH, and the increased SSP flux is beneficial for generating alpha-ketoglutarate from glutamine, which allows leukemic cells to proliferate even in the absence of glucose. Inhibition of PHGDH, a rate-limiting enzyme in the SSP, dramatically reduces leukemia engraftment in mice in the presence of high fructose, confirming the essential role of the SSP in the metabolic plasticity of leukemic cells.


Asunto(s)
Fructosa/metabolismo , Leucemia Mieloide Aguda/metabolismo , Serina/biosíntesis , Animales , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Ratones Congénicos , Ratones Endogámicos NOD , Células Tumorales Cultivadas
15.
Mol Cancer Ther ; 19(11): 2245-2255, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32879053

RESUMEN

One-carbon (1C) metabolism encompasses folate-mediated 1C transfer reactions and related processes, including nucleotide and amino acid biosynthesis, antioxidant regeneration, and epigenetic regulation. 1C pathways are compartmentalized in the cytosol, mitochondria, and nucleus. 1C metabolism in the cytosol has been an important therapeutic target for cancer since the inception of modern chemotherapy, and "antifolates" targeting cytosolic 1C pathways continue to be a mainstay of the chemotherapy armamentarium for cancer. Recent insights into the complexities of 1C metabolism in cancer cells, including the critical role of the mitochondrial 1C pathway as a source of 1C units, glycine, reducing equivalents, and ATP, have spurred the discovery of novel compounds that target these reactions, with particular focus on 5,10-methylene tetrahydrofolate dehydrogenase 2 and serine hydroxymethyltransferase 2. In this review, we discuss key aspects of 1C metabolism, with emphasis on the importance of mitochondrial 1C metabolism to metabolic homeostasis, its relationship with the oncogenic phenotype, and its therapeutic potential for cancer.


Asunto(s)
Antineoplásicos/farmacología , Metabolismo Energético/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Terapia Molecular Dirigida , Neoplasias/metabolismo , Aminohidrolasas/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Biomarcadores , Carbono/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Humanos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/antagonistas & inhibidores , Terapia Molecular Dirigida/métodos , Enzimas Multifuncionales/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/patología , Serina/biosíntesis
16.
EMBO Rep ; 21(9): e48260, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32783398

RESUMEN

IκB kinase ε (IKKε) is a key molecule at the crossroads of inflammation and cancer. Known to regulate cytokine secretion via NFκB and IRF3, the kinase is also a breast cancer oncogene, overexpressed in a variety of tumours. However, to what extent IKKε remodels cellular metabolism is currently unknown. Here, we used metabolic tracer analysis to show that IKKε orchestrates a complex metabolic reprogramming that affects mitochondrial metabolism and consequently serine biosynthesis independently of its canonical signalling role. We found that IKKε upregulates the serine biosynthesis pathway (SBP) indirectly, by limiting glucose-derived pyruvate utilisation in the TCA cycle, inhibiting oxidative phosphorylation. Inhibition of mitochondrial function induces activating transcription factor 4 (ATF4), which in turn drives upregulation of the expression of SBP genes. Importantly, pharmacological reversal of the IKKε-induced metabolic phenotype reduces proliferation of breast cancer cells. Finally, we show that in a highly proliferative set of ER negative, basal breast tumours, IKKε and PSAT1 are both overexpressed, corroborating the link between IKKε and the SBP in the clinical context.


Asunto(s)
Neoplasias de la Mama , Quinasa I-kappa B , Mitocondrias , Serina/biosíntesis , Neoplasias de la Mama/genética , Femenino , Humanos , Quinasa I-kappa B/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Oncogenes/genética
17.
J Invest Dermatol ; 140(11): 2242-2252.e7, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32389536

RESUMEN

Melanomas frequently harbor activating NRAS mutations leading to activation of MAPK kinase (MEK) and extracellular signal-regulated kinase 1/2 signaling; however, the clinical efficacy of inhibitors to this pathway is limited by resistance. Tumors rewire metabolic pathways in response to stress signals such as targeted inhibitors and drug resistance, but most therapy-resistant preclinical models are generated in conditions that lack physiological metabolism. We generated human NRAS-mutant melanoma xenografts that were resistant to the MEK inhibitor (MEKi) PD0325901 in vivo. MEKi-resistant cells showed cross-resistance to the structurally distinct MEKi trametinib and elevated extracellular signal-regulated kinase 1/2 phosphorylation and downstream signaling. Additionally, we observed upregulation of the serine synthesis pathway and PHGDH, a key enzyme in this pathway. Suppressing PHGDH in MEKi-resistant cells together with MEKi treatment decreased oxidative stress tolerance and cell proliferation. Together, our data suggest targeting PHGDH as a potential strategy in overcoming MEKi resistance.


Asunto(s)
GTP Fosfohidrolasas/genética , Glutatión/metabolismo , Melanoma/tratamiento farmacológico , Proteínas de la Membrana/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Mutación , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Animales , Resistencia a Antineoplásicos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Femenino , Humanos , Melanoma/genética , Melanoma/metabolismo , Ratones , Serina/biosíntesis , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Int J Biol Sci ; 16(9): 1495-1506, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32226297

RESUMEN

Serine, a non-essential amino acid, can be imported from the extracellular environment by transporters and de novo synthesized from glycolytic 3-phosphoglycerate (3-PG) in the serine biosynthetic pathway (SSP). It has been reported that active serine synthesis might be needed for the synthesis of proteins, lipids, and nucleotides and the balance of folate metabolism and redox homeostasis, which are necessary for cancer cell proliferation. Human D-3-phosphoglycerate dehydrogenase (PHGDH), the first and only rate-limiting enzyme in the de novo serine biosynthetic pathway, catalyzes the oxidation of 3-PG derived from glycolysis to 3-phosphohydroxypyruvate (3-PHP). PHGDH is highly expressed in tumors as a result of amplification, transcription, or its degradation and stability alteration, which dysregulates the serine biosynthesis pathway via metabolic enzyme activity to nourish tumors. And some recent researches reported that PHGDH promoted some tumors growth via non-metabolic way by upregulating target cancer-promoting genes. In this article, we reviewed the type, structure, expression and inhibitors of PHGDH, as well as the role it plays in cancer and tumor resistance to chemotherapy.


Asunto(s)
Neoplasias/enzimología , Fosfoglicerato-Deshidrogenasa/fisiología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/química , Fosfoglicerato-Deshidrogenasa/genética , Dominios Proteicos , Serina/biosíntesis
19.
EMBO Mol Med ; 12(2): e10491, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31930708

RESUMEN

During obesity, macrophages infiltrate the breast tissue leading to low-grade chronic inflammation, a factor considered responsible for the higher risk of breast cancer associated with obesity. Here, we formally demonstrate that breast epithelial cells acquire malignant properties when exposed to medium conditioned by macrophages derived from human healthy donors. These effects were mediated by the breast cancer oncogene IKKε and its downstream target-the serine biosynthesis pathway as demonstrated by genetic or pharmacological tools. Furthermore, amlexanox, an FDA-approved drug targeting IKKε and its homologue TBK1, delayed in vivo tumour formation in a combined genetic mouse model of breast cancer and high-fat diet-induced obesity/inflammation. Finally, in human breast cancer tissues, we validated the link between inflammation-IKKε and alteration of cellular metabolism. Altogether, we identified a pathway connecting obesity-driven inflammation to breast cancer and a potential therapeutic strategy to reduce the risk of breast cancer associated with obesity.


Asunto(s)
Neoplasias de la Mama/patología , Quinasa I-kappa B , Macrófagos/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Serina , Aminopiridinas/farmacología , Animales , Medios de Cultivo Condicionados , Células Epiteliales/patología , Femenino , Humanos , Quinasa I-kappa B/metabolismo , Inflamación , Glándulas Mamarias Humanas/patología , Ratones , Obesidad , Serina/biosíntesis
20.
Cell Res ; 30(2): 163-178, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31772275

RESUMEN

The Serine-Glycine-One-Carbon (SGOC) pathway is pivotal in multiple anabolic processes. Expression levels of SGOC genes are deregulated under tumorigenic conditions, suggesting participation of oncogenes in deregulating the SGOC biosynthetic pathway. However, the underlying mechanism remains elusive. Here, we identified that Interleukin enhancer-binding factor 3 (ILF3) is overexpressed in primary CRC patient specimens and correlates with poor prognosis. ILF3 is critical in regulating the SGOC pathway by directly regulating the mRNA stability of SGOC genes, thereby increasing SGOC genes expression and facilitating tumor growth. Mechanistic studies showed that the EGF-MEK-ERK pathway mediates ILF3 phosphorylation, which hinders E3 ligase speckle-type POZ protein (SPOP)-mediated poly-ubiquitination and degradation of ILF3. Significantly, combination of SGOC inhibitor and the anti-EGFR monoclonal antibody cetuximab can hinder the growth of patient-derived xenografts that sustain high ERK-ILF3 levels. Taken together, deregulation of ILF3 via the EGF-ERK signaling plays an important role in systemic serine metabolic reprogramming and confers a predilection toward CRC development. Our findings indicate that clinical evaluation of SGOC inhibitor is warranted for CRC patients with ILF3 overexpression.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Serina/biosíntesis , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Glicina/metabolismo , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Unión Proteica , Estabilidad Proteica , Estabilidad del ARN/genética , Especificidad por Sustrato , Análisis de Supervivencia , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA