Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Curr Drug Targets ; 21(13): 1326-1343, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32564749

RESUMEN

Iron, which is described as the most basic component found in nature, is hard to be assimilated by microorganisms. It has become increasingly complicated to obtain iron from nature as iron (II) in the presence of oxygen oxidized to press (III) oxide and hydroxide, becoming unsolvable at neutral pH. Microorganisms appeared to produce organic molecules known as siderophores in order to overcome this condition. Siderophore's essential function is to connect with iron (II) and make it dissolvable and enable cell absorption. These siderophores, apart from iron particles, have the ability to chelate various other metal particles that have collocated away to focus the use of siderophores on wound care items. There is a severe clash between the host and the bacterial pathogens during infection. By producing siderophores, small ferric iron-binding molecules, microorganisms obtain iron. In response, host immune cells produce lipocalin 2 to prevent bacterial reuptake of siderophores loaded with iron. Some bacteria are thought to produce lipocalin 2-resistant siderophores to counter this risk. The aim of this article is to discuss the recently described roles and applications of bacterial siderophore.


Asunto(s)
Bacterias/metabolismo , Sideróforos/biosíntesis , Sideróforos/fisiología , Animales , Antibacterianos/química , Interacciones Huésped-Patógeno , Humanos , Hierro/metabolismo , Lipocalina 2/metabolismo , Mitofagia , Sideróforos/química , Sideróforos/uso terapéutico , beta-Lactamas/química
2.
PLoS Pathog ; 15(9): e1008029, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31545853

RESUMEN

Although Escherichia coli Nissle 1917 (EcN) has been used therapeutically for over a century, the determinants of its probiotic properties remain elusive. EcN produces two siderophore-microcins (Mcc) responsible for an antagonistic activity against other Enterobacteriaceae. EcN also synthesizes the genotoxin colibactin encoded by the pks island. Colibactin is a virulence factor and a putative pro-carcinogenic compound. Therefore, we aimed to decouple the antagonistic activity of EcN from its genotoxic activity. We demonstrated that the pks-encoded ClbP, the peptidase that activates colibactin, is required for the antagonistic activity of EcN. The analysis of a series of ClbP mutants revealed that this activity is linked to the transmembrane helices of ClbP and not the periplasmic peptidase domain, indicating the transmembrane domain is involved in some aspect of Mcc biosynthesis or secretion. A single amino acid substitution in ClbP inactivates the genotoxic activity but maintains the antagonistic activity. In an in vivo salmonellosis model, this point mutant reduced the clinical signs and the fecal shedding of Salmonella similarly to the wild type strain, whereas the clbP deletion mutant could neither protect nor outcompete the pathogen. The ClbP-dependent antibacterial effect was also observed in vitro with other E. coli strains that carry both a truncated form of the Mcc gene cluster and the pks island. In such strains, siderophore-Mcc synthesis also required the glucosyltransferase IroB involved in salmochelin production. This interplay between colibactin, salmochelin, and siderophore-Mcc biosynthetic pathways suggests that these genomic islands were co-selected and played a role in the evolution of E. coli from phylogroup B2. This co-evolution observed in EcN illustrates the fine margin between pathogenicity and probiotic activity, and the need to address both the effectiveness and safety of probiotics. Decoupling the antagonistic from the genotoxic activity by specifically inactivating ClbP peptidase domain opens the way to the safe use of EcN.


Asunto(s)
Escherichia coli/fisiología , Mutágenos/toxicidad , Probióticos/uso terapéutico , Animales , Antibiosis/genética , Antibiosis/fisiología , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/toxicidad , Vías Biosintéticas/genética , Enterobactina/análogos & derivados , Enterobactina/genética , Enterobactina/fisiología , Enterobactina/toxicidad , Escherichia coli/genética , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Femenino , Genes Bacterianos , Islas Genómicas , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Familia de Multigenes , Mutación , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Péptido Hidrolasas/fisiología , Péptidos/genética , Péptidos/fisiología , Péptidos/toxicidad , Policétidos/toxicidad , Probióticos/toxicidad , Dominios Proteicos , Salmonelosis Animal/microbiología , Salmonelosis Animal/terapia , Salmonella typhimurium , Sideróforos/genética , Sideróforos/fisiología , Sideróforos/toxicidad , Factores de Virulencia/genética , Factores de Virulencia/fisiología , Factores de Virulencia/toxicidad
3.
PLoS One ; 14(5): e0216085, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31067259

RESUMEN

Pseudomonas aeruginosa and Aspergillus fumigatus are pathogens frequently co-inhabiting immunocompromised patient airways, particularly in people with cystic fibrosis. Both microbes depend on the availability of iron, and compete for iron in their microenvironment. We showed previously that the P. aeruginosa siderophore pyoverdine is the main instrument in battling A. fumigatus biofilms, by iron chelation and denial of iron to the fungus. Here we show that A. fumigatus siderophores defend against anti-fungal P. aeruginosa effects. P. aeruginosa supernatants produced in the presence of wildtype A. fumigatus planktonic supernatants (Afsup) showed less activity against A. fumigatus biofilms than P. aeruginosa supernatants without Afsup, despite higher production of pyoverdine by P. aeruginosa. Supernatants of A. fumigatus cultures lacking the sidA gene (AfΔsidA), unable to produce hydroxamate siderophores, were less capable of protecting A. fumigatus biofilms from P. aeruginosa supernatants and pyoverdine. AfΔsidA biofilm was more sensitive towards inhibitory effects of pyoverdine, the iron chelator deferiprone (DFP), or amphothericin B than wildtype A. fumigatus biofilm. Supplementation of sidA-deficient A. fumigatus biofilm with A. fumigatus siderophores restored resistance to pyoverdine. The A. fumigatus siderophore production inhibitor celastrol sensitized wildtype A. fumigatus biofilms towards the anti-fungal activity of DFP. In conclusion, A. fumigatus hydroxamate siderophores play a pivotal role in A. fumigatus competition for iron against P. aeruginosa.


Asunto(s)
Antibiosis , Aspergillus fumigatus/fisiología , Pseudomonas aeruginosa/fisiología , Sideróforos/fisiología , Antibiosis/fisiología , Aspergillus fumigatus/metabolismo , Biopelículas/crecimiento & desarrollo , Oligopéptidos/metabolismo , Pseudomonas aeruginosa/metabolismo
4.
J Innate Immun ; 11(3): 249-262, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30605903

RESUMEN

Iron is necessary for the survival of almost all aerobic organisms. In the mammalian host, iron is a required cofactor for the assembly of functional iron-sulfur (Fe-S) cluster proteins, heme-binding proteins and ribonucleotide reductases that regulate various functions, including heme synthesis, oxygen transport and DNA synthesis. However, the bioavailability of iron is low due to its insolubility under aerobic conditions. Moreover, the host coordinates a nutritional immune response to restrict the accessibility of iron against potential pathogens. To counter nutritional immunity, most commensal and pathogenic bacteria synthesize and secrete small iron chelators termed siderophores. Siderophores have potent affinity for iron, which allows them to seize the essential metal from the host iron-binding proteins. To safeguard against iron thievery, the host relies upon the innate immune protein, lipocalin 2 (Lcn2), which could sequester catecholate-type siderophores and thus impede bacterial growth. However, certain bacteria are capable of outmaneuvering the host by either producing "stealth" siderophores or by expressing competitive antagonists that bind Lcn2 in lieu of siderophores. In this review, we summarize the mechanisms underlying the complex iron tug-of-war between host and bacteria with an emphasis on how host innate immunity responds to siderophores.


Asunto(s)
Interacciones Microbiota-Huesped , Inmunidad Innata , Hierro/metabolismo , Sideróforos/fisiología , GMP Cíclico/análogos & derivados , GMP Cíclico/fisiología , Compuestos Ferrosos/farmacología , Humanos , Inflamación/etiología , Lipocalina 2/fisiología , Neutrófilos/fisiología , Péptidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sideróforos/química
5.
Cell ; 175(2): 571-582.e11, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146159

RESUMEN

Elucidating the benefits of individual microbiota-derived molecules in host animals is important for understanding the symbiosis between humans and their microbiota. The bacteria-secreted enterobactin (Ent) is an iron scavenging siderophore with presumed negative effects on hosts. However, the high prevalence of Ent-producing commensal bacteria in the human gut raises the intriguing question regarding a potential host mechanism to beneficially use Ent. We discovered an unexpected and striking role of Ent in supporting growth and the labile iron pool in C. elegans. We show that Ent promotes mitochondrial iron uptake and does so, surprisingly, by binding to the ATP synthase α subunit, which acts inside of mitochondria and independently of ATP synthase. We also demonstrated the conservation of this mechanism in mammalian cells. This study reveals a distinct paradigm for the "iron tug of war" between commensal bacteria and their hosts and an important mechanism for mitochondrial iron uptake and homeostasis.


Asunto(s)
Enterobactina/fisiología , Hierro/metabolismo , Sideróforos/fisiología , Adenosina Trifosfato/metabolismo , Animales , ATPasas de Translocación de Protón Bacterianas/metabolismo , ATPasas de Translocación de Protón Bacterianas/fisiología , Transporte Biológico , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Enterobactina/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Células HEK293 , Humanos , Hierro/fisiología , Mitocondrias/metabolismo
6.
J Microbiol ; 56(7): 449-457, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29948830

RESUMEN

Bacterial biofilms remain a persistent threat to human healthcare due to their role in the development of antimicrobial resistance. To combat multi-drug resistant pathogens, it is crucial to enhance our understanding of not only the regulation of biofilm formation, but also its contribution to bacterial virulence. Iron acquisition lies at the crux of these two subjects. In this review, we discuss the role of iron acquisition in biofilm formation and how hosts impede this mechanism to defend against pathogens. We also discuss recent findings that suggest that biofilm formation can also have the reciprocal effect, influencing siderophore production and iron sequestration.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Hierro/metabolismo , Pseudomonas aeruginosa/fisiología , Animales , Fibrosis Quística/microbiología , Interacciones Huésped-Patógeno , Humanos , Ratones , Polisacáridos Bacterianos/fisiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/patogenicidad , Sideróforos/fisiología , Factores de Virulencia
7.
Fungal Genet Biol ; 111: 60-72, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29155067

RESUMEN

The symbiosis between Epichloë festucae and its host perennial ryegrass (Lolium perenne) is a model system for mutualistic interactions in which the fungal endophyte grows between plant shoot cells and acquires host nutrients to survive. E. festucae synthesises the siderophore epichloënin A (EA) via SidN, a non-ribosomal peptide synthetase (NRPS). EA is involved in the acquisition of iron, an essential micronutrient, as part of the process of maintaining a stable symbiotic interaction. Here, we mutated a different NRPS gene sidC and showed that it is required for production of a second siderophore ferricrocin (FC). Furthermore mutations in sidA, encoding an l-ornithine N5-monooxygenase, abolished both EA and FC production. Axenic growth phenotypes of the siderophore mutants were altered relative to wild-type (WT) providing insights into the roles of E. festucae siderophores in iron trafficking and consequently in growth and morphogenesis. During iron-limitation, EA is the predominant siderophore and in addition to its role in iron acquisition it appears to play roles in intracellular iron sequestration and oxidative stress tolerance. FC in contrast is exclusively located intracellularly and is the dominant siderophore under conditions of iron sufficiency when it is likely to have roles in iron storage and iron transport. Intriguingly, EA acts to promote but may also moderate E. festucae growth (depending on the amount of available iron). We therefore hypothesise that coordinated cellular iron sequestration through FC and EA may be one of the mechanisms that E. festucae employs to manage and restrain its growth in response to iron fluxes and ultimately persist as a controlled symbiont.


Asunto(s)
Epichloe/fisiología , Hierro/metabolismo , Péptido Sintasas/fisiología , Sideróforos/fisiología , Epichloe/enzimología , Epichloe/genética , Genes Fúngicos , Homeostasis , Lolium/microbiología , Mutagénesis , Estrés Oxidativo , Péptido Sintasas/biosíntesis , Péptido Sintasas/genética , Sideróforos/biosíntesis , Sideróforos/genética
8.
Free Radic Biol Med ; 105: 68-78, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27780750

RESUMEN

Iron is an essential micronutrient for most life forms including the majority of resident bacteria of the microbiota and their mammalian hosts. Bacteria have evolved numerous mechanisms to competitively acquire iron within host environments, such as the secretion of small molecules known as siderophores that can solubilize iron for bacterial use. However, siderophore biosynthesis and acquisition is not a capability equally harbored by all resident bacteria. Moreover, the structural diversity of siderophores creates variability in the susceptibility to host mechanisms that serve to counteract siderophore-mediated iron acquisition and limit bacterial growth. As a result, the differential capabilities to acquire iron among members of a complex microbial community carry important implications for the growth and function of resident bacteria. Siderophores can also directly influence host function by modulating cellular iron homeostasis, further providing a mechanism by which resident bacteria may influence their local environment at the host-microbial interface. This review will explore the putative mechanisms by which siderophore production by resident bacteria in the intestines may influence microbial community dynamics and host-bacterial interactions with important implications for pathogen- and microbiota-driven diseases including infection, inflammatory bowel diseases and colorectal cancer.


Asunto(s)
Hierro/metabolismo , Sideróforos/fisiología , Animales , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Interacciones Huésped-Patógeno , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Interacciones Microbianas
9.
Med Sci (Paris) ; 31(8-9): 756-63, 2015.
Artículo en Francés | MEDLINE | ID: mdl-26340835

RESUMEN

Iron is an essential nutriment for almost all forms of life, from bacteria to humans. Despite its key role in living organisms, iron becomes toxic at high concentrations. In the body, to circumvent this toxicity, almost all the intracellular iron is bound to proteins (especially to ferritin, a protein able to bind up to 4000 atoms of iron) and a small proportion (0.2% to 3%) to low molecular weight ligands (less than 2 kDa) constituting a free iron pool able to ensure the traffic of intracellular iron. A number of small molecules (citrate, phosphate, phospholipid, polypeptide) able to chelate iron, with variable affinities, have been known for a long time. In 2010, two teams have identified new mammal endogen chelators able to bind iron with similar chemical properties as bacterial siderophores. Recently, a few publications emphasized that most of the free iron present in the body cells is indeed linked to these siderophores, which play a key role in infected-host protection mechanisms during bacterial infections, through iron homeostasis and oxidative stress regulation.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Sideróforos/fisiología , Animales , Bacterias , Hierro/fisiología , Mamíferos
10.
Tuberculosis (Edinb) ; 95(2): 123-30, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25636179

RESUMEN

Iron is an essential element to most life forms including mycobacterial species. However, in the oxidative atmosphere iron exists as insoluble salts. Free and soluble iron ions are scarce in both the extracellular and intracellular environment which makes iron assimilation very challenging to mycobacteria. Tuberculosis, caused by the pathogen, Mycobacterium tuberculosis, is one of the most infectious and deadly diseases in the world. Extensive studies regarding iron acquisition strategies have been documented in mycobacteria, including work on the mycobacterial iron chelators (siderophores), the iron-responsive regulon, and iron transport and utilization pathways. Under low iron conditions, expression of the genes encoding iron importers, exporters and siderophore biosynthetic enzymes is up-regulated significantly increasing the ability of the bacteria to acquire limited host iron. Disabling these proteins impairs the growth of mycobacteria under low iron conditions both in vitro and in vivo, and that of pathogenic mycobacteria in animal models. Drugs targeting siderophore-mediated iron transport could offer promising therapeutic options. However, the discovery and characterization of an alternative iron acquisition mechanism, the heme transport and utilization pathway, questions the effectiveness of the siderophore-centered therapeutic strategy. Links have been found between these two distinct iron acquisition mechanisms, thus, targeting a few candidate proteins or mechanisms may influence both pathways, leading to effective elimination of the bacteria in the host.


Asunto(s)
Hierro/metabolismo , Mycobacterium/metabolismo , Proteínas Bacterianas/fisiología , Transporte Biológico/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Hemo/metabolismo , Humanos , Mycobacterium tuberculosis/metabolismo , Vías Secretoras/fisiología , Sideróforos/fisiología
11.
Rev Iberoam Micol ; 30(4): 217-25, 2013.
Artículo en Español | MEDLINE | ID: mdl-23684655

RESUMEN

Iron is an essential factor for both the growth and virulence of most of microorganisms. As a part of the innate (or nutritional) immune system, mammals have developed different mechanisms to store and transport this element in order to limit free iron bioavailability. To survive in this hostile environment, pathogenic fungi have specific uptake systems for host iron sources, one of the most important of which is based on the synthesis of siderophores-soluble, low-molecular-mass, high-affinity iron chelators. The increase in free iron that results from iron-overload conditions is a well-established risk factor for invasive fungal infection (IFI) such as mucormycosis or aspergillosis. Therefore, iron chelation may be an appealing therapeutic option for these infections. Nevertheless, deferoxamine -the first approved iron chelator- paradoxically increases the incidence of IFI, as it serves as a xeno-siderophore to Mucorales. On the contrary, the new oral iron chelators (deferiprone and deferasirox) have shown to exert a deleterious effect on fungal growth both in vitro and in animal models. The present review focuses on the role of iron metabolism in the pathogenesis of IFI and summarises the preclinical data, as well as the limited clinical experience so far, in the use of new iron chelators as treatment for mucormycosis and invasive aspergillosis.


Asunto(s)
Fungemia/metabolismo , Hongos/metabolismo , Hierro/metabolismo , Animales , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Benzoatos/farmacología , Benzoatos/uso terapéutico , Deferasirox , Deferiprona , Deferoxamina/efectos adversos , Susceptibilidad a Enfermedades , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Proteínas Fúngicas/fisiología , Fungemia/tratamiento farmacológico , Hongos/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Hierro/farmacocinética , Quelantes del Hierro/efectos adversos , Quelantes del Hierro/uso terapéutico , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/metabolismo , Modelos Animales , Estructura Molecular , Mucorales/efectos de los fármacos , Mucorales/metabolismo , Mucormicosis/tratamiento farmacológico , Mucormicosis/metabolismo , Oxidación-Reducción , Piridonas/farmacología , Piridonas/uso terapéutico , Sideróforos/fisiología , Especificidad de la Especie , Relación Estructura-Actividad , Triazoles/farmacología , Triazoles/uso terapéutico
12.
J Mol Med (Berl) ; 90(10): 1209-21, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22527885

RESUMEN

Siderophores are best known as small iron binding molecules that facilitate microbial iron transport. In our previous study we identified a siderophore-like molecule in mammalian cells and found that its biogenesis is evolutionarily conserved. A member of the short chain dehydrogenase family of reductases, 3-hydroxy butyrate dehydrogenase (BDH2) catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore. We have shown that depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of cellular iron and mitochondrial iron deficiency. These observations suggest that the mammalian siderophore is a critical regulator of cellular iron homeostasis and facilitates mitochondrial iron import. By utilizing bioinformatics, we identified an iron-responsive element (IRE; a stem-loop structure that regulates genes expression post-transcriptionally upon binding to iron regulatory proteins or IRPs) in the 3'-untranslated region of the human BDH2 (hBDH2) gene. In cultured cells as well as in patient samples we now demonstrate that the IRE confers iron-dependent regulation on hBDH2 and binds IRPs in RNA electrophoretic mobility shift assays. In addition, we show that the hBDH2 IRE associates with IRPs in cells and that abrogation of IRPs by RNAi eliminates the iron-dependent regulation of hBDH2 mRNA. The key physiologic implication is that iron-mediated post-transcriptional regulation of hBDH2 controls mitochondrial iron homeostasis in human cells. These observations provide a new and an unanticipated mechanism by which iron regulates its intracellular trafficking.


Asunto(s)
Hidroxibutirato Deshidrogenasa/genética , Proteínas Reguladoras del Hierro/metabolismo , Hierro/metabolismo , Sideróforos/metabolismo , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Transporte Biológico , Células Cultivadas , Expresión Génica , Regulación de la Expresión Génica , Genes Reporteros , Hemocromatosis/metabolismo , Hemocromatosis/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidroxibutirato Deshidrogenasa/metabolismo , Secuencias Invertidas Repetidas , Proteínas Reguladoras del Hierro/fisiología , Leontopithecus , Hígado/metabolismo , Hígado/patología , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Mitocondrias/metabolismo , Pan troglodytes , Unión Proteica , Elementos de Respuesta , Análisis de Secuencia de ADN , Sideróforos/fisiología
13.
Infect Immun ; 79(6): 2345-55, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21402762

RESUMEN

Staphylococcus aureus is a frequent cause of bloodstream, respiratory tract, and skin and soft tissue infections. In the bloodstream, the iron-binding glycoprotein transferrin circulates to provide iron to cells throughout the body, but its iron-binding properties make it an important component of innate immunity. It is well established that siderophores, with their high affinity for iron, in many instances can remove iron from transferrin as a means to promote proliferation of bacterial pathogens. It is also established that catecholamine hormones can interfere with the iron-binding properties of transferrin, thus allowing infectious bacteria access to this iron pool. The present study demonstrates that S. aureus can use either of two carboxylate-type siderophores, staphyloferrin A and staphyloferrin B, via the transporters Hts and Sir, respectively, to access the transferrin iron pool. Growth of staphyloferrin-producing S. aureus in serum or in the presence of holotransferrin was not enhanced in the presence of catecholamines. However, catecholamines significantly enhanced the growth of staphyloferrin-deficient S. aureus in human serum or in the presence of human holotransferrin. It was further demonstrated that the Sst transporter was essential for this activity as well as for the utilization of bacterial catechol siderophores. The substrate binding protein SstD was shown to interact with ferrated catecholamines and catechol siderophores, with low to submicromolar affinities. Experiments involving mice challenged intravenously with wild-type S. aureus and isogenic mutants demonstrated that the combination of Hts, Sir, and Sst transport systems was required for full virulence of S. aureus.


Asunto(s)
Citratos/fisiología , Hierro/fisiología , Ornitina/análogos & derivados , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidad , Transferrina/metabolismo , Animales , Western Blotting , Citratos/metabolismo , Epinefrina/metabolismo , Epinefrina/fisiología , Femenino , Genes Bacterianos/genética , Genes Bacterianos/fisiología , Humanos , Hierro/metabolismo , Ratones , Ratones Endogámicos BALB C , Norepinefrina/metabolismo , Norepinefrina/fisiología , Ornitina/metabolismo , Ornitina/fisiología , Sideróforos/metabolismo , Sideróforos/fisiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiología
14.
PLoS Pathog ; 6(9): e1001124, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20941352

RESUMEN

Iron is essential for a wide range of cellular processes. Here we show that the bZIP-type regulator HapX is indispensable for the transcriptional remodeling required for adaption to iron starvation in the opportunistic fungal pathogen Aspergillus fumigatus. HapX represses iron-dependent and mitochondrial-localized activities including respiration, TCA cycle, amino acid metabolism, iron-sulfur-cluster and heme biosynthesis. In agreement with the impact on mitochondrial metabolism, HapX-deficiency decreases resistance to tetracycline and increases mitochondrial DNA content. Pathways positively affected by HapX include production of the ribotoxin AspF1 and siderophores, which are known virulence determinants. Iron starvation causes a massive remodeling of the amino acid pool and HapX is essential for the coordination of the production of siderophores and their precursor ornithine. Consistent with HapX-function being limited to iron depleted conditions and A. fumigatus facing iron starvation in the host, HapX-deficiency causes significant attenuation of virulence in a murine model of aspergillosis. Taken together, this study demonstrates that HapX-dependent adaption to conditions of iron starvation is crucial for virulence of A. fumigatus.


Asunto(s)
Adaptación Psicológica , Aspergilosis/metabolismo , Aspergilosis/virología , Aspergillus fumigatus/patogenicidad , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Deficiencias de Hierro , Virulencia/fisiología , Alérgenos , Aminoácidos/metabolismo , Animales , Antibacterianos/farmacología , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Aspergilosis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Biomarcadores/metabolismo , Northern Blotting , ADN Mitocondrial/genética , Modelos Animales de Enfermedad , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Ornitina/metabolismo , ARN Mensajero/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sideróforos/fisiología , Tasa de Supervivencia , Tetraciclina/farmacología
15.
J Bacteriol ; 192(1): 117-26, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19854904

RESUMEN

To investigate the role of iron uptake mediated by the siderophore pyoverdine in the virulence of the plant pathogen Pseudomonas syringae pv. tabaci 6605, three predicted pyoverdine synthesis-related genes, pvdJ, pvdL, and fpvA, were mutated. The pvdJ, pvdL, and fpvA genes encode the pyoverdine side chain peptide synthetase III L-Thr-L-Ser component, the pyoverdine chromophore synthetase, and the TonB-dependent ferripyoverdine receptor, respectively. The Delta pvdJ and Delta pvdL mutants were unable to produce pyoverdine in mineral salts-glucose medium, which was used for the iron-depleted condition. Furthermore, the Delta pvdJ and Delta pvdL mutants showed lower abilities to produce tabtoxin, extracellular polysaccharide, and acyl homoserine lactones (AHLs), which are quorum-sensing molecules, and consequently had reduced virulence on host tobacco plants. In contrast, all of the mutants had accelerated swarming ability and increased biosurfactant production, suggesting that swarming motility and biosurfactant production might be negatively controlled by pyoverdine. Scanning electron micrographs of the surfaces of tobacco leaves inoculated with the mutant strains revealed only small amounts of extracellular polymeric matrix around these mutants, indicating disruption of the mature biofilm. Tolerance to antibiotics was drastically increased for the Delta pvdL mutant, as for the Delta psyI mutant, which is defective in AHL production. These results demonstrated that pyoverdine synthesis and the quorum-sensing system of Pseudomonas syringae pv. tabaci 6605 are indispensable for virulence in host tobacco infection and that AHL may negatively regulate tolerance to antibiotics.


Asunto(s)
Nicotiana/microbiología , Oligopéptidos/fisiología , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidad , Sideróforos/fisiología , Factores de Virulencia/fisiología , Virulencia/fisiología , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Farmacorresistencia Bacteriana/genética , Datos de Secuencia Molecular , Mutación/genética , Oligopéptidos/genética , Hojas de la Planta/microbiología , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/genética , Percepción de Quorum/genética , Percepción de Quorum/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sideróforos/genética , Virulencia/genética , Factores de Virulencia/genética
17.
Biometals ; 22(4): 659-69, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19343508

RESUMEN

The photosynthetic picocyanobacteria and eukaryotic microorganisms that inhabit the open ocean must be able to supply iron for their photosynthetic and respiratory needs from the subnanomolar concentrations available in seawater. Neither group appears to produce siderophores, although some coastal cyanobacteria do. This is interpreted as an adaptation to the dilute oceanic environment rather than a phylogenetic constraint, since there are cases in which related taxa from different environments have the capacity to produce siderophores. Most photosynthetic marine microorganisms are presumably, however, capable of accessing iron from strong chelates since the majority of dissolved iron in seawater is complexed by organic ligands, including siderophores. Rather than direct internalization of siderophores and other iron chelates, marine organisms primarily appear to use uptake pathways that involve a reduction step to free bound iron, closely coupled with transport into the cell.


Asunto(s)
Hierro/metabolismo , Fotosíntesis/fisiología , Agua de Mar/microbiología , Sideróforos/fisiología , Cianobacterias/metabolismo , Biología Marina , Modelos Biológicos , Estructura Molecular , Sideróforos/metabolismo , Microbiología del Agua
18.
Biometals ; 22(4): 583-93, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19350396

RESUMEN

Iron is essential for the survival of most organisms. Microbial iron acquisition depends on multiple, sometimes complex steps, many of which are not shared by higher eukaryotes. Depriving pathogenic microbes of iron is therefore a potential antimicrobial strategy. The following minireview briefly describes general elements in microbial iron uptake pathways and summarizes some of the current work aiming at their medicinal inhibition.


Asunto(s)
Hierro/metabolismo , Antiinfecciosos/farmacología , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Estructura Molecular , Sideróforos/metabolismo , Sideróforos/fisiología
19.
Cell Microbiol ; 10(2): 277-84, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18042257

RESUMEN

The acquisition of iron from mammalian hosts is an important aspect of infection because microbes must compete with the host for this nutrient and iron perception often regulates virulence factor expression. For example, iron levels are known to influence the elaboration of two major virulence factors, the polysaccharide capsule and melanin, in the pathogenic fungus Cryptococcus neoformans. This pathogen, which causes meningoencephalitis in immunocompromised people, acquires iron through the use of secreted reductants, cell surface reductases, a permease/ferroxidase uptake system and siderophore transporters. In addition, a master regulator, Cir1, integrates iron sensing with the expression of virulence factors, with growth at 37 degrees C and with signalling pathways that also influence virulence. The challenge ahead is to develop mechanistic views of the iron acquisition functions and regulatory schemes that operate when C. neoformans is in host tissue. Achieving these goals may contribute to an understanding of the notable predilection of the fungus for the mammalian central nervous system.


Asunto(s)
Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidad , Hierro/metabolismo , Animales , Ceruloplasmina/metabolismo , Ceruloplasmina/fisiología , Cobre/metabolismo , Criptococosis/metabolismo , Criptococosis/microbiología , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Hemo/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Ratones , Oxidorreductasas/metabolismo , Oxidorreductasas/fisiología , Sideróforos/metabolismo , Sideróforos/fisiología , Factores de Virulencia/metabolismo
20.
Biochim Biophys Acta ; 1778(9): 1781-804, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17916327

RESUMEN

To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.


Asunto(s)
Proteínas Bacterianas/química , Bacterias Gramnegativas/metabolismo , Hierro/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Bacterias Gramnegativas/química , Hemo/química , Hemo/fisiología , Lactoferrina/química , Lactoferrina/metabolismo , Lactoferrina/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Sideróforos/química , Sideróforos/metabolismo , Sideróforos/fisiología , Transferrina/química , Transferrina/metabolismo , Transferrina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA